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Introduction:Alzheimer’s disease (AD) a�ects thewhole brain from the cellular

level to the entire brain network structure. The causal relationship among brain

regions concerning the di�erent AD stages is not yet investigated. This study

used Dynamic Causal Modeling (DCM) method to assess e�ective connectivity

(EC) and investigate the changes that accompany AD progression.

Methods: We included the resting-state fMRI data of 34 AD patients, 31

late mild cognitive impairment (LMCI) patients, 34 early MCI (EMCI) patients,

and 31 cognitive normal (CN) subjects selected from the Alzheimer’s Disease

Neuroimaging Initiative (ADNI) database. The parametric Empirical Bayes (PEB)

method was used to infer the e�ective connectivities and the corresponding

probabilities. A linear regression analysis was carried out to test if the

connection strengths could predict subjects’ cognitive scores.

Results: The results showed that the connections reduced from full

connection in the CN group to no connection in the AD group. Statistical

analysis showed the connectivity strengths were lower for later-stage patients.

Linear regression analysis showed that the connection strengths were partially

predictive of the cognitive scores.

Discussion: Our results demonstrated the dwindling connectivity

accompanying AD progression on causal relationships among brain regions

and indicated the potential of EC as a loyal biomarker in AD progression.

KEYWORDS

Alzheimer’s disease (AD), mild cognitive impairment (MCI), e�ective connectivity,

dynamic causal modeling, resting-state fMRI

1. Introduction

Alzheimer’s disease (AD) is a neurodegenerative disorder that leads to the death of

nerve cells and loss of brain tissues, which result in brain shrinkage causing disturbed

brain functioning (Deeksha and Abhishek, 2019). There are multiple stages of the

disorder: cognitively normal (CN), early mild cognitive impairment (EMCI), late mild

cognitive impairment (LMCI), and Alzheimer’s disease (AD) (Ramzan et al., 2020). CN

subjects age normally with no sign of depression or dementia, while EMCI and LMCI
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subjects suffer from difficulties in daily life activity caused by the

progressed disease. AD is the advanced and final stage of the

disease leading to death.

1.1. Brain regions and networks
associated with AD

Neural imaging analyzes in the past have identified

AD-affected brain regions by recording brain activities during

both cognitive tasks and resting state. For example, an fMRI

study of a learning task found that compared to CN subjects,

people with AD exhibit reduced brain activity in the parietal and

hippocampal regions during information encoding (Rombouts

et al., 2000). This was further confirmed by Smith (2002)

in which they found the most severe volume reduction in

the hippocampus (HC) important for the formation of new

memories. Another important brain region whose reduced

activity is associated with AD regardless of subtypes is

the posterior cingulate cortex (PCC) (Herholz et al., 2018).

PCC is a critical part of the retrieval process of episodic

memories (Greicius et al., 2003). Reduced activity in this

region is associated with decreased cognitive performance and

memory issues.

Bernard et al. (2015) identified PCC as the most connected

brain region in the altered brain networks of groups suffering

from memory declines. As a vital node in the default mode

network (DMN), PCC is connected with the precuneus (Prec),

medial prefrontal cortex (mPFC), intraparietal cortex (IPC),

inferior temporal cortex (ITC), and HC (Buckner et al., 2008).

Those brain regions in DMN tend to be active in a conscious

resting state with stimulus-independent thought, representing

a default mode of brain function (Greicius et al., 2003).

Studies of resting glucose metabolism and brain atrophy showed

disruptions in the DMN of AD patients. Similar disruptions

were also found in subjects at genetic risk for AD, implying

the changes in DMN occur early in the course of the disease

(Su et al., 2017).

Other brain networks are also affected by AD progression.

Chand et al. (2017b) studied the modulatory interactions

between DMN, salience network (SAN), and central executive

network (CEN) in subjects with normal cognition and MCI.

TABLE 1 Demographics and clinical information.

CN EMCI LMCI AD p-value

Gender 19F/12M 24F/10M 13F/18M 18F/16M

Age 76.65± 6.40 72.00± 6.56 73.00± 8.51 73.34± 7.36 0.059

MMSE score 29.32± 0.93 27.91± 1.89 27.54± 1.87 19.80± 4.02 <0.001

CDR score 0.00± 0.00 0.47± 0.12 0.48± 0.10 1.02± 0.41 <0.001

They found SAN modulates the interaction between the DMN

and CEN, and such modulation was disrupted in MCI. CEN,

anchored in the dorsolateral prefrontal cortex (dlPFC) and

posterior parietal cortex, is widely reported to be more activated

for cognitive functions such as attention, working memory, and

decision-making (Bor and Seth, 2012). SAN, anchored in the

insula and anterior cingulate cortex (ACC), was also studied to

understand the altered patterns of cognitive impairment (Chand

et al., 2017a). The connections between DMN, SAN, and CEN in

AD patients remain an interesting and understudied topic.

While brain regions are considered responsible for specific

functions, information is passed around through structural,

functional, and effective connections. The temporal correlations

among the affected brain regions were studied using functional

connectivity (FC). Reduction of FC in the DMN was primarily

and consistently reported in AD compared with MCI patients

and CN subjects (Greicius et al., 2004; Wu et al., 2011; Grieder

et al., 2018; Soman et al., 2020). From the early stages to

the late stages of AD, generally reduced correlations within

five studied networks including DMN, SAN, dorsal attention

network, control network, and sensory-motor network were

reported (Brier et al., 2012). The decreased FCs between the

posterior part of the cerebral cortex (Prec & PCC) and the

anterior parts (ACC & mPFC) were particularly significant in

AD patients (Ibrahim et al., 2021).

Representing the directional causal relationships between

brain regions, effective connectivity (EC) depicts the influence

that one neural system exerts over another (Friston et al., 1993).

As opposed to the FC quantified with measures of statistical

TABLE 2 Coordinates of ROI in MNI space.

Regions x y z

L-dlPFC –39 34 37

R-dlPFC 35 39 31

L-ACC –5 39 20

R-ACC 6 33 16

L-PCC –8 –49 38

R-PCC 8 –48 39

mPFC 0 53 –14
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dependencies, EC corresponds to the parameter of a model

that tries to explain the cause of such dependencies (Friston,

2011). Compared to CN subjects, AD patients showed reduced

EC within DMN (Zhong et al., 2014). Both the intensity and

quantity of the connections decreased and the inter-network

interactions were also weaker than that of CN subjects (Liu

et al., 2012). Wu et al. (2011) found the ECs from HC to IPC,

mPFC, and PCC were all lost in AD patients. ECs in CEN were

also disturbed by AD progression. Cai et al. (2017) reported

decreased EC within the dlPFC → caudate → thalamus

→ dlPFC circuit. Using such differences in the EC circuit,

their results distinguished MCI patients who since reverted

to the normal functioning state, patients who maintained the

MCI state, and patients who progressed to AD. Although the

FIGURE 1

Subject-specific e�ective connectivity matrices following DCM of the resting-state fMRI for CN (A), EMCI (B), LMCI (C), and AD (D) subjects.

Each matrix element represents e�ective connectivity among 7 nodes in the following order: left PCC, right PCC, left ACC, right ACC, left dlPFC,

right dlPFC, and mPFC. Directions of the connections are represented from columns to rows.
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small handful of studies shed some light on the connectivity

pattern difference between CN subjects and AD patients, no

investigation was done on the strengths (i.e., the scaled coupling

rate between regions) of such connections. The relationships

between the connection strengths and severity of AD were

also neglected.

1.2. E�ective connectivity estimated by
dynamic causal modeling

To study the EC of AD patients, we use the dynamic

causal modeling method on resting-state fMRI. First

introduced in 2003, DCM has quickly become the most

popular approach to EC (Friston et al., 2013). DCM

regards the propagation of neural activity through brain

networks as an input-state-output system (Friston et al.,

2003). It infers effective connections under the Bayesian

framework to find the model best explaining the observed

data. DCM models are motivated by the biophysical

behaviors of the neuronal system, thus they reflect empirical

knowledge about the connection strength parameters

(Stephan et al., 2010).

To infer the connection strengths, Parametric Empirical

Bayes (PEB) method is used. This hierarchical method is used

to quantify the commonalities and differences across subjects by

collating parameters of interest in a two-level model (within-

subject level and between-subject level) (Zeidman et al., 2019).

The connectivity strengths allow us to into the modulatory effect

of the AD progression.

The aim of this study is to investigate the EC between

brain regions in different AD progression stages. EC of

each subject and group will be estimated using DCM so

the directions and intensities of the connections can be

compared to reveal the development of AD. We expect

that the strength of the connections will be weaker in AD

and LMCI subjects compared to EMCI and CN subjects,

and that the connectivity strength will be positively related

to the mini-mental state examination (MMSE) scores and

negatively related to clinical dementia rating (CDR) scores.

The worse the cognitive test performance, the weaker the

connection.

FIGURE 2

E�ective connectivity for CN (A), EMCI (B), LMCI (C), and AD (D) subject groups.
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2. Materials and methods

2.1. fMRI data

Data used in this study were obtained from the

Alzheimer’s Disease Neuroimaging Initiative (ADNI) database

(adni.loni.usc.edu). The ADNI was launched in 2003 as a

public-private partnership, led by Principal Investigator Michael

W. Weiner, MD. The primary goal of ADNI has been to test

whether serial magnetic resonance imaging (MRI), positron

emission tomography (PET), other biological markers, and

clinical and neuropsychological assessment can be combined

to measure the progression of MCI and early Alzheimer’s

disease (AD).

Under ADNI, there are numerous research data sets

available. We used fMRI data from subjects whose longitudinal

records of the visits were fully documented and publicly

available. To ensure the uniformity of data acquisition protocols

and formats, all images and corresponding clinical data (e.g.,

mini-mental state examination, [MMSE], clinical dementia

rating, [CDR]) were downloaded from ADNI-2 phase since it

has most of the fMRI data. We selected four types of subjects,

whose general inclusion/exclusion criteria are as follows: (1) CN

subjects: MMSE scores above 24, CDR = 0, free of memory

complaints; (2) EMCI patients: MMSE scores above 24, CDR

= 0.5, have subjective memory complaints, abnormal memory

functions; (3) LMCI patients: MMSE scores above 24, CDR

= 0.5, have subjective memory complaints, abnormal memory

functions (more severe compared to EMCIs); (4) AD patients:

MMSE scores ranging from 20 to 26, CDR above 0.5, have

FIGURE 4

E�ective connectivity for CN, EMCI, LMCI, and AD subject

groups.

FIGURE 3

PEB estimates of connectivity for the four subject groups. Each row represents a threshold imposed on the evidence for each connection. The

first row represents a no-threshold condition. The second, third, fourth, and fifth row represent free energy exceeding 0.5, 0.75, 0.95, and 0.99

conditions, respectively. CN (A), EMCI (B), LMCI (C), and AD (D).
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subjective memory complaints, abnormal memory functions

(same as LMCIs).

In this study, 34 AD patients, 31 LMCI patients, 34 EMCI

patients, and 31 CN subjects were selected and analyzed. All

subjects remained in their progression stage (stable) throughout

the entire data collection visits (spanning for at least 24

months). The average age was 76.65, 72.00, 73.00, and 73.34

for CNs, EMCIs, LMCIs, and ADs, respectively. Details of the

demographic and clinical information could be found in Table 1.

2.2. Data acquisition and preprocessing

The data were acquired on a 3.0-T (Philips) scanner with

TR/TE set as 3,000/30 ms and flip angle of 80. Resting-state

functional images were obtained using an echo-planar imaging

sequence (EPI). Each series has 140 volumes, and each volume

consists of 48 slices of image matrices with dimensions 64 × 64

with voxel size of 3.31 × 3.31 × 3.31 mm3. During the fMRI

scans, all participants were instructed to keep their eyes open

and relax.

The preprocessing was carried out using Statistical

Parametric Mapping 12 (SPM 12, http://www.fil.ion.

ucl.ac.uk/spm) and RESTplus toolkits (Jia et al., 2019).

The first 10 volumes of each functional time series were

discarded from analysis to allow for participant’s stabilization

and magnetic field equilibration. The remaining 130

volumes were corrected for the staggered order of slice

acquisition that was used during echo-planar scanning. The

correction ensures the data on each slice corresponds to

the same point in time. The preprocessing also included

regression of head motion parameters, realignment for

head movement, and spatial normalization using T1 image

unified segmentation to the Montreal Neurological Institute

(MNI) space.

2.3. Dynamic causal modeling

We modeled the regions of interest (ROIs) as nodes in the

EC networks. To include regions from DMN, SAN, and CEN

networks, mPFC and bilateral PCC, dlPFC, ACC were chosen as

regions of interest We summarized ROI activity by extracting

TABLE 3 Connectivity strengths (means and variances) of CN subjects.

From To M Var From To M Var

L-PCC

L-PCC –3.409E-01 6.199E-04

L-dlPFC

L-PCC 3.484E-02 1.530E-04

R-PCC 6.963E-02 3.062E-04 R-PCC 3.612E-02 1.464E-04

L-ACC 5.544E-02 1.761E-04 L-ACC 4.268E-02 1.375E-04

R-ACC 4.120E-02 2.040E-04 R-ACC 7.986E-03 1.581E-04

L-dlPFC 5.228E-02 2.487E-04 L-dlPFC -3.802E-01 4.622E-04

R-dlPFC 6.599E-02 2.595E-04 R-dlPFC 8.666E-02 2.186E-04

mPFC 7.884E-02 3.153E-04 mPFC 2.884E-02 2.817E-04

R-PCC

L-PCC 6.810E-02 2.755E-04

R-dlPFC

L-PCC 4.900E-02 1.725E-04

R-PCC –3.764E-01 6.527E-04 R-PCC 3.800E-02 1.521E-04

L-ACC 7.408E-02 1.726E-04 L-ACC 7.492E-02 1.531E-04

R-ACC 8.136E-02 2.196E-04 R-ACC 4.455E-02 1.638E-04

L-dlPFC 5.234E-02 2.783E-04 L-dlPFC 9.445E-02 2.746E-04

R-dlPFC 3.964E-02 2.076E-04 R-dlPFC –3.612E-01 5.436E-04

mPFC 6.622E-02 3.035E-04 mPFC 9.391E-03 2.791E-04

L-ACC

L-PCC 5.377E-02 1.601E-04

mPFC

L-PCC 5.165E-02 9.981E-05

R-PCC 6.388E-02 1.628E-04 R-PCC 4.584E-02 1.029E-04

L-ACC -3.631E-01 5.412E-04 L-ACC 4.635E-02 1.305E-04

R-ACC 1.026E-01 2.350E-04 R-ACC 5.455E-02 1.704E-04

L-dlPFC 6.959E-02 2.084E-04 L-dlPFC 2.421E-02 1.640E-04

R-dlPFC 8.255E-02 2.076E-04 R-dlPFC 1.884E-02 1.347E-04

mPFC 6.039E-02 3.249E-04 mPFC -4.345E-01 4.733E-04

R-ACC L-PCC 4.640E-02 1.806E-04 R-ACC L-dlPFC 9.842E-03 2.496E-04

R-PCC 6.570E-02 1.899E-04 R-dlPFC 5.221E-02 1.962E-04

L-ACC 1.055E-01 1.868E-04 mPFC 8.409E-02 3.808E-04

R-ACC –3.787E-01 6.092E-04
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time series at all voxels within a sphere having radius 8 mm

around an associated MNI coordinate for the ROI. See Table 2

for MNI coordinates of each ROI. The coordinates were chosen

based on previous investigations on bilateral PCC (Jeong et al.,

2009), dlPFC (Gruber et al., 2010), ACC (Mannell et al., 2010),

and mPFC (Maguire et al., 2010).

DCM is comprised of two models: the neuronal model and

the observation model. For the resting state, the neuronal model

tasks the form as follows:

ẋ(t) = Ax(t)+ Cu+ v (1)

In the equation above, x denotes the neuronal activity and

u denotes stimulus. v denotes the random neuronal fluctuation

that represents the state noise. Stimulus u is still included in

the equation for the resting state scenario, but is usually set to

zero in resting state models. The parameters θ = {A,Bj,C}

represent the intrinsic connectivity, extrinsic connectivity, and

input, respectively.

The second model in DCM is the observation model.

fMRI machines detect the activated brain regions by observing

the changes in BOLD signal y. The generalized BOLD signal

model was proposed by Stephan et al. (2007), in which

both blood volume v and deoxyhemoglobin content q affect

the observations:

y(t) ≈ V0

[

k1(1− q(t))+ k2

(

1−
q(t)

v(t)

)

+ k3(1− v(t))

]

(2)

where V0 is the resting venous blood volume fraction and

k1, k2, k3 represent the coefficients associated with the machine’s

echo time and relaxation time. Changes in blood volume and

deoxyhemoglobin level were caused by neuronal activities, and

in turn, changed the observed BOLD signal responses. Thus the

neuronal model and the observation model together captured

the dynamics of the neural activity propagation.

We used PEB to infer the connectivity strengths for the four

subject groups. In general, for PEB, a parameter vector is first

sampled from a prior distribution. A random effect is added to

the parameter vector for this subject. Then data are generated

using the DCM and observation noise is added to model the

observed response. The calculated connection strengths are

accompanied by the likelihood of each connection. By setting

the threshold for the likelihood, the most probable estimates

TABLE 4 Connectivity strengths (means and variances) of EMCI patients.

From To M Var From To M Var

L-PCC

L-PCC 7.504E-03 1.392E-03

L-dlPFC

L-PCC –7.158E-03 3.091E-04

R-PCC 7.255E-02 6.470E-04 R-PCC 5.229E-03 2.948E-04

L-ACC -6.740E-03 3.921E-04 L-ACC 9.506E-04 2.746E-04

R-ACC 1.104E-04 4.442E-04 R-ACC 1.175E-02 3.170E-04

L-dlPFC –5.802E-03 5.360E-04 L-dlPFC 1.565E-02 9.202E-04

R-dlPFC –1.665E-02 5.609E-04 R-dlPFC 5.899E-03 4.342E-04

mPFC 7.926E-03 6.711E-04 mPFC –9.337E-03 5.716E-04

R-PCC

L-PCC 6.762E-02 5.799E-04

R-dlPFC

L-PCC –1.288E-02 3.344E-04

R-PCC 6.716E-02 1.344E-03 R-PCC –2.525E-03 2.922E-04

L-ACC –3.008E-04 3.713E-04 L-ACC 8.878E-05 2.918E-04

R-ACC –5.156E-03 4.654E-04 R-ACC 4.412E-03 3.118E-04

L-dlPFC 5.251E-03 5.813E-04 L-dlPFC 7.060E-03 5.344E-04

R-dlPFC –2.854E-03 4.369E-04 R-dlPFC –4.639E-03 1.031E-03

mPFC 4.507E-03 6.313E-04 mPFC 8.892E-03 5.481E-04

L-ACC

L-PCC –6.195E-03 3.188E-04

mPFC

L-PCC –2.391E-03 1.884E-04

R-PCC –1.887E-03 3.256E-04 R-PCC –1.817E-04 1.953E-04

L-ACC 1.061E-02 1.076E-03 L-ACC 5.777E-03 2.484E-04

R-ACC 9.613E-03 4.618E-04 R-ACC –1.794E-03 3.265E-04

L-dlPFC 8.388E-03 4.118E-04 L-dlPFC –5.725E-03 3.153E-04

R-dlPFC 1.560E-03 4.094E-04 R-dlPFC 1.985E-03 2.557E-04

mPFC 4.181E-03 6.446E-04 mPFC –4.249E-03 8.931E-04

R-ACC L-PCC -9.365E-04 3.535E-04 R-ACC L-dlPFC 1.425E-02 4.945E-04

R-PCC –8.538E-03 3.734E-04 R-dlPFC –2.793E-03 3.781E-04

L-ACC 3.769E-03 3.685E-04 mPFC –1.599E-03 7.549E-04

R-ACC 4.587E-02 1.121E-03
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TABLE 5 Connectivity strengths (means and variances) of LMCI patients.

From To M Var From To M Var

L-PCC

L-PCC –1.199E-01 1.015E-03

L-dlPFC

L-PCC 6.182E-03 2.909E-04

R-PCC –1.256E-03 5.652E-04 R-PCC 7.941E-03 2.758E-04

L-ACC –5.495E-03 3.014E-04 L-ACC –9.103E-03 2.560E-04

R-ACC –9.420E-03 3.543E-04 R-ACC 2.300E-02 2.967E-04

L-dlPFC 2.550E-03 4.434E-04 L-dlPFC 2.085E-03 8.191E-04

R-dlPFC –1.605E-02 4.667E-04 R-dlPFC –9.015E-03 4.198E-04

mPFC –1.796E-02 5.707E-04 mPFC 1.179E-02 5.486E-04

R-PCC

L-PCC –7.482E-03 5.010E-04

R-dlPFC

L-PCC –5.887E-03 3.081E-04

R-PCC –8.564E-03 1.019E-03 R-PCC –3.466E-03 2.682E-04

L-ACC –1.755E-02 2.905E-04 L-ACC 2.083E-03 2.688E-04

R-ACC –5.122E-02 3.840E-04 R-ACC –8.858E-03 2.847E-04

L-dlPFC –1.325E-04 4.950E-04 L-dlPFC –9.867E-03 5.166E-04

R-dlPFC –3.978E-03 3.545E-04 R-dlPFC –8.523E-03 8.884E-04

mPFC –9.359E-05 5.348E-04 mPFC 1.400E-02 5.155E-04

L-ACC

L-PCC –3.593E-04 2.845E-04

mPFC

L-PCC –1.639E-02 1.856E-04

R-PCC –6.853E-03 2.953E-04 R-PCC 1.907E-03 1.919E-04

L-ACC –1.716E-02 9.317E-04 L-ACC 2.758E-03 2.480E-04

R-ACC 2.230E-02 4.335E-04 R-ACC –3.905E-03 3.266E-04

L-dlPFC –1.620E-02 3.768E-04 L-dlPFC 5.830E-03 3.145E-04

R-dlPFC 5.083E-03 3.784E-04 R-dlPFC 7.055E-03 2.541E-04

mPFC 8.337E-03 6.097E-04 mPFC 1.704E-03 8.557E-04

R-ACC L-PCC –1.153E-02 3.178E-04 R-ACC L-dlPFC 5.281E-02 4.550E-04

R-PCC –1.963E-02 3.398E-04 R-dlPFC –5.729E-03 3.422E-04

L-ACC 2.144E-02 3.367E-04 mPFC –1.910E-03 7.172E-04

R-ACC –1.708E-02 9.975E-04

are selected. Bayesian Model Reduction (BMR) was used to

control the switching on and off of each connection (to calculate

the likelihood with the connection’s presence and absence) and

estimate the parameter to infer the connectivity pattern. The

connectivity strengths for each subject group were compared

using analysis of variance (ANOVA). Bonferroni correction was

applied for multiple comparisons. A linear regression analysis

was also carried out to test if EC between regions could predict

subjects’ cognitive scores.

3. Results

3.1. Connectivity at individual level

The estimated DCMs for the four subject groups are shown

in Figure 1. The subject-specific matrices represent the intrinsic

EC among the seven brain regions during the resting state.

3.2. Connectivity at group level

The PEB process estimates group EC at five levels of

confidence. At 0.5 level, all subject groups presented full

connections (connections present among all ROI pairings). See

Figure 2 for details of each subject group. However, the fully

connected pattern only persisted for the CN group. Only two

connections remained for the EMCI group after thresholding for

0.99 level. One connection (self connection L-PCC → L-PCC)

remained for the LMCI group at 0.99 level. No connection

was left after thresholding for the AD patient group. More

information can be found in Figure 3.

The group EC strengths were calculated following the

calculation of connection probabilities. Posterior means and

variances of all connection strengths for each subject group

were presented in detail in Figure 4 and Tables 3–6. ANOVA

of the effective connection strengths showed only connections

L-PCC → L-PCC, R-PCC → R-ACC, and R-ACC → R-ACC

were significantly different within subject groups. See details in

Table 7.

Following the PEB analysis, a linear regression analysis was

carried out to test if resting-state connectivity between the brain

regions could predict subjects’ cognitive scores. For MMSE, the

forward step-wise linear regression showed the EC between left

dlPFC to left PCC was the first variable automatically entered

into the step-wise regression (β = −0.234, p = 0.007),

followed by connection between L-dlPFC to mPFC (β =

0.222, p = 0.01), and connection between L-PCC to R-ACC
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TABLE 6 Connectivity strengths (means and variances) of AD patients.

From To M Var From To M Var

L-PCC

L-PCC –7.011E-03 1.168E-03

L-dlPFC

L-PCC 1.323E-03 2.828E-04

R-PCC 1.440E-02 5.774E-04 R-PCC 2.956E-03 2.704E-04

L-ACC –1.603E-02 3.334E-04 L-ACC –6.805E-04 2.516E-04

R-ACC –1.203E-02 3.841E-04 R-ACC 1.293E-02 2.900E-04

L-dlPFC –7.879E-04 4.708E-04 L-dlPFC 7.789E-03 8.131E-04

R-dlPFC 5.539E-03 4.926E-04 R-dlPFC –1.942E-02 4.063E-04

mPFC –1.006E-02 6.036E-04 mPFC 4.186E-03 5.329E-04

R-PCC

L-PCC 4.370E-02 5.260E-04

R-dlPFC

L-PCC 2.395E-03 3.132E-04

R-PCC –1.175E-03 1.205E-03 R-PCC –7.823E-03 2.732E-04

L-ACC 1.342E-03 3.316E-04 L-ACC –3.121E-03 2.745E-04

R-ACC –1.220E-02 4.189E-04 R-ACC –6.892E-03 2.915E-04

L-dlPFC 2.197E-03 5.355E-04 L-dlPFC –1.485E-02 5.105E-04

R-dlPFC –4.947E-03 3.930E-04 R-dlPFC 8.310E-03 9.384E-04

mPFC –3.278E-03 5.842E-04 mPFC 1.818E-02 5.201E-04

L-ACC

L-PCC –1.373E-02 2.948E-04

mPFC

L-PCC –7.312E-03 1.835E-04

R-PCC –3.841E-03 3.021E-04 R-PCC –7.829E-03 1.897E-04

L-ACC 4.132E-03 1.005E-03 L-ACC 8.341E-03 2.437E-04

R-ACC –3.207E-03 4.381E-04 R-ACC 1.196E-02 3.169E-04

L-dlPFC –6.189E-03 3.858E-04 L-dlPFC 1.328E-03 3.076E-04

R-dlPFC –3.707E-04 3.839E-04 R-dlPFC 1.336E-02 2.490E-04

mPFC 9.397E-03 6.201E-04 mPFC 3.043E-03 8.657E-04

R-ACC L-PCC -9.231E-03 3.321E-04 R-ACC L-dlPFC 1.420E-02 4.658E-04

R-PCC –1.157E-02 3.478E-04 R-dlPFC –1.957E-03 3.551E-04

L-ACC –2.483E-03 3.496E-04 mPFC 1.027E-02 7.185E-04

R-ACC 5.261E-03 1.077E-03

(β = 0.168, p = 0.048). Together, they explain 11.5% of variance

in MMSE scores (R2 = 0.115, F = 5.434, p = 0.002). For CDR,

both forward and backward connections between L-dlPFC and

mPFC are predictive of the score (R2 = 0.121, F = 8.755, p <

0.001). Connection from L-dlPFC to mPFC negatively predicted

the score (β = −0.307, p < 0.001), and connection from mPFC

to L-dlPFC positively predicted the score (β = 0.214, p =

0.012). Scatter plots of effective connections vs. MMSE and CDR

scores are shown in Figure 5.

4. Discussion

The DCM results revealed that the effective connection

pattern and strength were different among the multiple stages

of AD subjects. As expected, the EC analysis showed that the

EC of EMCI, LMCI, and AD patients was reduced compared

to that of CN subjects. The number of connections reduced

from full connection in CN group to no connection in AD

group. Statistical analysis revealed that for connection R-PCC

→ R-ACC, connection strength of CN is greater than that of

LMCI. For connection R-ACC → R-ACC, connection strength

of EMCI is greater than that of LMCI. In addition, for

connection L-PCC → L-PCC, the connection strength of CN

and EMCI is marginally greater than that of LMCI. Cognitive

scores were also partially predicted by connectivity strengths of

specific connections. MMSE scores were partially predicted by

connection L-dlPFC→ L-PCC, L-dlPFC→mPFC, and L-PCC

→ R-ACC. CDR scores were partially predicted by connection

L-dlPFC→mPFC and mPFC→ L-dlPFC.

The number of ECs was reported to dwindle steadily

throughout the AD progression. Consistent with the results

reported in this study, Wu et al. (2011) found that connections

between mPFC and PCC were all lost in AD patients compared

to CN subjects. Rytsar et al. (2011) also reported that AD was

associated with significantly weakened effective connections.

Although their study was focused on the visual cortex, it

nonetheless provides evidence that loss of EC is common in

AD progression. Neufang et al. (2011) related the connectivity

parameters to subjects’ gray matter volume and found gray

matter volume at the right middle frontal gyrus significantly

correlated with connectivity strengths. They concluded that the

reduction of EC contributes to brain control impairments in

AD patients.
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TABLE 7 ANOVA results for the e�ective connections.

Connection (I) group (J) group Mean difference (I-J) Std. error Sig.

L-PCC→ L-PCC CN EMCI 0.0002 0.0158 1.0000

LMCI 0.0426 0.0159 0.0502

AD 0.0275 0.0156 0.4792

EMCI CN –0.0002 0.0158 1.0000

LMCI 0.0424 0.0160 0.0552

AD 0.0272 0.0157 0.5084

LMCI CN –0.0426 0.0159 0.0502

EMCI –0.0424 0.0160 0.0552

AD –0.0152 0.0158 1.0000

AD CN –0.0275 0.0156 0.4792

EMCI –0.0272 0.0157 0.5084

LMCI 0.0152 0.0158 1.0000

R-PCC → R-ACC CN EMCI 0.0252 0.0148 0.5469

LMCI 0.0503 0.0149 0.0060

AD 0.0268 0.0146 0.4113

EMCI CN –0.0252 0.0148 0.5469

LMCI 0.0251 0.0150 0.5887

AD 0.0016 0.0147 1.0000

LMCI CN –0.0503 0.0149 0.0060

EMCI –0.0251 0.0150 0.5887

AD –0.0235 0.0148 0.6941

AD CN –0.0268 0.0146 0.4113

EMCI –0.0016 0.0147 1.0000

LMCI 0.0235 0.0148 0.6941

R-ACC→ R-ACC CN EMCI –0.0102 0.0152 1.0000

LMCI 0.0391 0.0154 0.0726

AD 0.0080 0.0150 1.0000

EMCI CN 0.0102 0.0152 1.0000

LMCI 0.0493 0.0155 0.0110

AD 0.0182 0.0151 1.0000

LMCI CN –0.0391 0.0154 0.0726

EMCI –0.0493 0.0155 0.0110

AD –0.0311 0.0152 0.2624

AD CN –0.0080 0.0150 1.0000

EMCI –0.0182 0.0151 1.0000

LMCI 0.0311 0.0152 0.2624

Although not enough EC analyzes have been carried out

for AD, evidence from FC studies also showed the degenerative

effect of disease progression on the communications between

brain regions. For example, Binnewijzend et al. (2012)

investigated regional FC in DMN of CN, MCI, and AD patients.

Although the statistical difference was only observed between

AD and MCI patients, they reported numerical decreases of

FC from CN to MCI to AD. A meta-review of past MCI

studies by Xu et al. (2020) suggested increased FCs in MCI

patients were located in the precentral gyrus and middle

frontal gyrus, and decreased FCs were located in the middle

frontal gyrus, cingulate gyrus, and superior frontal gyrus. They

concluded that the effect of AD progression is presented in the

interactive neural networks and that dysfunctional connectivity

may reflect the gradual decline from MCI to AD. The results

from our study agree with the notion that disruption in

connectivities can be detected in early stage of AD, as early as

EMCI stage.
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FIGURE 5

Scatterplots of significant e�ective connectivities vs. MMSE scores (A) and CDR scores (B). Linear fit lines are shown. Both β and p values for

each correlation are shown.

Only a handful of studies have investigated the EC of AD

patients. Among them, even fewer studies looked into the

details of the connection strengths and their relationships with

cognitive scores. Chand et al. (2017b) studied the interaction

of DMN, CEN, and SAN and showed that disruption in

SAN correlated significantly with lower cognitive performance.

In the present study, we found the interactions between

DMN and CEN significantly affected cognitive performance.

Connections between L-dlPFC, PCC, and mPFC partially

predict both the MMSE and CDR scores. ACC anchored in

SAN did not demonstrate a great effect on cognitive scores.

However, it is worth noting that connections involving ACC

were sensitive to the disease progression. Lower connection

strengths were observed for later-stage subjects in connections

involving ACC.

Considering the relationship of EC with FC, Neufang et al.

(2011) found that two connectivities are significantly related in

healthy subjects. Yet they pointed out this kind of similarity is

disrupted in AD patients. FC strengths are not good indicators

of EC strengths in AD patients. In fronto-cingulo-parietal

connections, subjects with AD showed significant differences

between the measures. Past studies associated such differences

with age rather than AD (Raji et al., 2009), yet the study on EC

among patients within different AD stages suggested otherwise.

The Cingulate is an important region as well as a vital part

of fronto-cingulo connections. The strengths of connections

involving cingulate are predictive of cognitive scores as shown

in this study. This could be due to disconnections among the

networks, or it could be the result of the impaired integration

of the cingulate cortex itself. Further studies are still needed to

clarify the exact role of cingulate cortex and its connections in

AD progression. Overall, the results highlighted the important

progressively disrupting effect of AD on DMN, CEN, and SAN.

We believe such an effect could be valuable for the classification

and prediction of AD stages. The altered connectivity strengths

combined with other symptoms and biological information

of the patients could be used as classification features in

patient diagnoses.

Due to the relatively small sample size of the current

study, further investigation of AD progression is still needed to

draw a conclusion of the generative effect of the progression

on the connectivity strengths. We did not include other

complications (e.g., depression, Parkinson’s disease) in our

current study, but as these are common diseases among

AD patients, further studies are still needed to look into

the combined effect of multiple neurological disorders on

brain connectivities. Further studies should also include brain

signals captured under other experimental conditions in

addition to the resting state and investigate the intrinsic

brain dynamics.

5. Conclusion

The results of this study showed the potential of EC as

a biomarker in predicting and classifying AD progression.
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Reduced ECs were reported in later stages of AD progression

compared to CN subjects. The directional information revealed

exclusively with EC using DCM has contributed, and may

further contribute, to our understanding of the progression of

Alzheimer’s disease.
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