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In prior research, signal detection theory (SDT) has been widely utilized to assess
metacognitive ability. However, the SDT metacognitive model requires the use of a two-
alternative forced-choice task, while confidence must also be measured discretely. In
our model, participants’ cognitive ability and their confidence in the cognitive task were
used to estimate their metacognitive abilities. Therefore, in this study, a metacognitive
model that can be applied to various cognitive tasks was developed. This model
implements the item response theory (IRT) and Q-learning models to estimate cognitive
ability; participants’ metacognitive ability is defined as the discrepancy between their
confidence in their cognitive ability and their actual cognitive ability. The entire procedure
was divided into two experiments. In experiment 1, two different cognitive tasks
were used to estimate metacognitive ability and to examine overall discriminative
and convergent validity. Notably, the parameters representing metacognitive ability did
not correlate with cognitive ability but were positively correlated between the two
tasks. In experiment 2, we performed a similar analysis using a different task to test
the replicability of experiment 1. The results for experiment 2 were replicated for
discriminative and convergent validity, albeit with weak results. Our metacognitive model
exhibited high interpretability and versatility.

Keywords: metacognitive ability, metacognitive model, confidence rating, Bayesian cognitive modeling, Bayesian
estimation, hierarchical model

INTRODUCTION

Metacognition refers to an individual’s perception of their own cognitive processes. Accordingly,
Flavell (1979) defined metacognition as the ability to precisely estimate one’s personal cognitive
processes. Conversely, Nelson and Narens (1990) argue that metacognition’s main function
concerns monitoring and controlling. Specifically, monitoring is a function that oversees and
estimates cognitive processes, whereas control is the regulation of any cognitive processes based
on gathered information (Koriat and Goldsmith, 1996). Several studies have been conducted based
on these definitions of metacognition (Koriat and Goldsmith, 1996; Akturk and Sahin, 2011;
Maniscalco and Lau, 2012).

When metacognition is impaired, we lose the ability to accurately perceive our own actions and
our environment. As a result, we form false beliefs when faced with uncertainty. Such beliefs act
as cognitive biases, leading to faulty reasoning and decision-making. Therefore, metacognition
is an important factor in understanding behavioral problems in schizophrenia (Koren et al.,
2006; Moritz and Woodward, 2007). Jumping to conclusions and overestimating uncertain events
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are the main symptoms of schizophrenia, and are problems
thought to be caused by impaired metacognition (Koren
et al., 2006). Koren et al. (2006) argued that poor
metacognition in schizophrenia is associated with other
neuropsychological problems (e.g., dysfunction of executive
functions or source-monitoring). Rouault et al. (2018) also
point out that metacognition is a neuropsychological factor
associated with symptoms of various psychiatric disorders,
not just schizophrenia. Thus, metacognition is a major
outcome for understanding psychiatric disorders from a
neuropsychological perspective.

Generally, metacognition has been measured through subjects’
performance in behavioral tasks. For example, Koriat and
Goldsmith (1996) implemented a behavioral task comprising
three phases: (a) answering a cognitive task, (b) estimating
one’s confidence to answer the last question of the particular
task, (c) and judging whether to venture a response to the last
question. Participants’ scores increased when they answered the
last question correctly; conversely, their scores decreased when
they answered incorrectly. If a participant opted not to venture a
response, their score remained the same. This study revealed that
participants should be encouraged to venture a response when
they feel more confident.

Moreover, Maniscalco and Lau (2012) suggested that there are
two indexes for metacognition, namely, absolute sensitivity and
relative sensitivity. Absolute sensitivity is a quantity of evaluated
information and accuracy of the metacognitive evaluation. The
accurate evaluation of information is nearly synonymous with
cognitive performance; that is, if an individual has high cognitive
ability, it is easier for them to distinguish when they have
erroneously answered a question. Thereby, this situation seems
to indicate that the participant has much to share. Additionally,
the standard measure of metacognition (the Goodman-Kruskal γ
correlation) corresponds to absolute sensitivity (Maniscalco and
Lau, 2012), while relative sensitivity only reflects the accuracy
of metacognitive evaluation (Maniscalco and Lau, 2012; Fleming
and Lau, 2014; Fleming, 2017). Therefore, relative sensitivity does
not depend on the type of cognitive tasks or performance.

Notably, relative sensitivity is a useful measure when
investigating the relationship between metacognition and other
psychological measures (Fleming, 2017). Relative sensitivity
enables researchers to differentiate between metacognitive and
cognitive ability. For example, Palmer et al. (2014) examined
the association between metacognition and aging, and found
that cognitive performance decreases over time. Therefore, it
is necessary to assess metacognitive ability independently from
cognitive ability (Fleming et al., 2010, 2014). Further, Fleming
et al. (2014) used relative sensitivity to investigate the neural
substrates of metacognition, as it is a suitable index to examine
the metacognitive process that distinguishes between cognitive
and metacognitive ability.

Maniscalco and Lau (2012) developed the absolute and relative
metacognitive index based on the signal detection theory (SDT).
In the standard SDT approach, metacognitive ability is defined as
the ability to distinguish a correct response from an incorrect one.
The SDT approach estimates type-1 d’ as a cognitive ability on
a two-alternative forced-choice (2AFC) task (i.e., a type-1 task).

Using this approach, the participants are directed to determine
whether or not they have completed the type-1 task and estimate
the degree to which they can discriminate between correct and
incorrect options in the type-1 task as type-2 d’. Moreover,
Maniscalco and Lau’s (2012) model estimates meta-d’ in the
type-2 task as well as the type-2 d’, as it corresponds to type-
2 d’ in the standard SDT approach. In their approach, relative
sensitivity was estimated as meta-d’/type-1 d’ (Maniscalco and
Lau, 2012; Fleming and Lau, 2014). They called this measure
“metacognitive efficacy” because it expresses the superiority of
the type-2 performance, compared with the type-1 performance.
Further, Fleming (2017) applied hierarchical Bayesian modeling
to the SDT metacognition model to allow its consideration in
the context of within and between participants’ uncertainty (e.g.,
patients vs. controls) and provide a continuous scale for the
confidence rating.

Although SDT models are frequently used to evaluate
metacognitive ability, they have a few drawbacks. First, the SDT
theory assumes that the distribution of signal trial and noise trial
has an equal variance; however, this assumption often remains
unfulfilled (Fleming, 2017). Second, the SDT task is a 2AFC task,
however, it is not used by some metacognitive tasks (e.g., that of
Koriat and Goldsmith, 1996). Moreover, a loss of information
would occur if it is expressed in terms of a binary scale. The
same correct response includes a certain correct answer and
chance-level hits, among other aspects. Finally, in the SDT model,
confidence has been usually measured through a binary or Likert
scale (Fleming et al., 2014; Baird et al., 2015; Fleming, 2017).
This dependence is another constraint that the SDT model
imposes on the cognitive task. Still, it is possible to measure
confidence not only using a binary scale or a Likert scale but also
through a continuous range using the visual analog scale (VAS).
Continuous scales allow for more accurate measurement of
confidence. In summary, the SDT metacognition model imposes
the metacognitive task with certain restrictions. Consequently, it
is essential to develop a metacognitive model that can be applied
to various metacognitive tasks.

Based on our definition of metacognition, we would like
to propose a new method to quantify metacognitive ability.
Metacognitive ability has been defined as the difference between
confidence rating and cognitive performance (Nelson and
Narens, 1990; Koriat and Goldsmith, 1996; Georghiades, 2004;
Akturk and Sahin, 2011; Maniscalco and Lau, 2012; Yeung
and Summerfield, 2012; Fleming and Lau, 2014). That is, the
higher the consistency between the subjective assessment of task
performance and objective task performance, the greater the
evaluated metacognitive ability. Many previous metacognition
studies have reaffirmed this definition. Thus, the following
question arises: “How do we quantify the discrepancy between
objective cognitive performance and subjective confidence?”
Further, we divide this question into two sub-questions: “How
do we express cognitive performance?” and “How do we
express the gap between objective cognitive performance and
subjective evaluation?”

In the present study, we attempted to develop a novel
metacognitive model that can be applied to various metacognitive
tasks, even if they are not 2AFC tasks. Participants can respond
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to a variety of scales of cognitive performance and confidence.
While the SDT model assumes that the variance of confidence
for correct and incorrect answers is equal, our model does
not require this assumption. We examined the validity of this
model from two perspectives. First, we conducted a correlation
analysis between the correct ratio and metacognitive ability.
As Maniscalco and Lau (2012) posited that relative sensitivity
is independent of cognitive performance, the parameter of
metacognitive ability should not correlate with the correct ratio.
Besides, this analysis is equivalent to discriminant validity,
and we conducted a correlation analysis between metacognitive
abilities measured through different metacognitive tasks. If
metacognitive ability is independent of cognitive performance,
it should be measured on the same scale with different tasks.
Furthermore, metacognitive ability is a domain-specific function
(McCurdy et al., 2013; Fleming et al., 2014; Baird et al., 2015).
McCurdy et al. (2013) provided empirical support for these
findings by measuring metacognitive ability using perceptual
decision and the verbal memory task; they found that the
correlation of metacognitive abilities between the two tasks was
r = 0.47. As metacognitive ability refers to domain-specificity,
correlations are lower for different tasks, even if similar concepts
are being measured. Therefore, convergent validity is expected to
indicate a correlation between the different metacognitive tasks;
however, in terms of domain specificity, moderate (rather than
high) correlation is expected to appear.

MATERIALS AND METHODS

Primarily, two experiments were conducted. In experiment
1, we examined the construct validity of the metacognitive
index. Participants engaged in two metacognitive tasks. In
experiment 2, we conducted a conceptual replicability test to
confirm replication for the results of experiment 1. Additionally,
we compared our measure with an existing measure of
metacognitive ability developed by Maniscalco and Lau (2012).
Before fitting the model to the empirical data in each experiment,
simulation and parameter recovery were carried out to examine
the behavior of the model parameters and the validity of the
estimates. Firstly, we defined cognitive performance as the
probability of correct response during trial-by-trial analysis. In
our model, cognitive performance was the quantified probability
based on the item response theory (IRT). Previous studies have
assessed participants’ cognitive performance using a binary scale
(Koriat and Goldsmith, 1996; Koren et al., 2006; Fleming et al.,
2014; Baird et al., 2015). However, participants’ correct and
incorrect responses reflect not only their cognitive abilities but
also the difficulty of the task. By applying the IRT model, it
is possible to separate participants’ abilities from the factors
affecting task difficulty (Baker and Kim, 2004). As a result,
it is possible to continuously assess participants’ cognitive
performance in each trial. The IRT model estimates participants’
abilities and task difficulty. In each trial, sth participants’ data were
generated as follows (Equation 1):

kst ∼ bernoulli (Pst) (1)

Here, Pst represents the probability of correct response to the
trial tth. We postulated participant ability (θ s) and item difficulty
(bt) to calculate Pst. Pst was calculated as follows (Equation 2):

Pst ∼
1

1 + exp(−(θs − bt)) (2)

This logistic function is often used in the IRT model. As
shown in the equation above, the probability of correct response
on each trial is denoted by two factors: the participant’s ability
and the item’s difficulty. Hence, it is not only applicable to
tasks other than the 2AFC but it enables us to consider factors
accompanying the task.

In the SDT model, confidence is thought to be distributed with
respect to correct and incorrect responses within the cognitive
task (i.e., type-2 task). The greater the distance (type-2 d’)
of the distribution between correct and incorrect trials, the
higher the individual’s metacognitive ability (Galvin et al., 2003;
Maniscalco and Lau, 2012). In other words, metacognitive ability
was considered as the ability to better discriminate between
correct and incorrect trials by levels of confidence (Yeung
and Summerfield, 2012; Fleming and Lau, 2014). However,
participants’ cognitive performance and confidence can also be
measured on a continuous scale. For instance, Koren et al. (2006)
developed a metacognitive task using the Wisconsin card-sorting
test. This task has been used to examine metacognitive ability
in patients with schizophrenia (Bruno et al., 2012; Quiles et al.,
2015. In Koren et al.’s (2006) task, participants were asked to rate
their confidence in the VAS. The SDT model cannot estimate
metacognition in a metacognitive task of this type. Consequently,
there is a need for a model that can be applied even if the
confidence level is continuous, to replace the SDT model.

Defining the Discrepancy
We defined the discrepancy between objective cognitive
performance and subjective evaluation as the variation
in confidence in cognitive performance. By thinking of
metacognitive ability as a function of reducing the variance of
participants’ confidence in the probability of a correct response,
we no longer need to assume that there is equal variance with the
two distributions. Notably, participants with high metacognitive
ability rate their confidence closer to the probability of a correct
response, as opposed to participants with low metacognitive
ability. Therefore, metacognitive ability indicates the precision of
confidence; consequently, a higher metacognitive ability indicates
greater precision and confidence closer to the probability of a
correct response based on the IRT model.

Bias is a key variable in modeling metacognitive ability.
Schraw (2009) classified the indicators obtained by metacognitive
judgment into five categories: absolute accuracy, relative
accuracy, scatter, discrimination, and bias. All indicators except
for scatter quantify the discrepancy between confidence and
cognitive performance from various perspectives. The bias index,
on the other hand, differs from metacognitive ability in that it
relates to the baseline of the confidence rating. Bias represents a
certain polarization in the confidence rating, commonly referred
to as overconfidence or underconfidence. The higher the bias,
the higher the overall confidence rating, and vice versa. Previous
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research has demonstrated that people make biased judgments
in confidence ratings (Ais et al., 2016; Lebreton et al., 2018,
2019). For example, in the study of Lebreton et al. (2018),
gain or loss feedback was provided to participants for their
responses. In a gain situation, the participants receive money if
they answer correctly, but nothing if they answer incorrectly.
On the other hand, in a loss situation, participants can avoid
losses if they answer correctly, and lose a certain amount
of money if they answer incorrectly. Lebreton et al. (2018)
showed that people grade their confidence higher in gain than
in loss situations. Bias is also taken into account in existing
metacognitive models. Fleming and Lau (2014) uses a 2 × 2
matrix to explain the relationship between metacognitive ability
and bias. Metacognitive ability is a parameter that discriminates
between correct and incorrect trials based on confidence, whereas
bias is a parameter that increases or decreases the overall level
of confidence. In existing SDT metacognitive models, it has been
incorporated into the model as bias.

In light of the existing discussion on bias, we modeled sth
participant’s confidence rating in tth trial as Equation 3:

confidencest ∼ Normal
(
100Pst + biass,

1
meta s

)
(3)

In the above equation, metas is the metacognitive ability of
the sth participant, and biass is the bias of the sth participant. To
scale the confidence rating, the probability of a correct response
(Pst) is multiplied by 100. Since confidence is rated from 0 to
100, it is a truncated normal distribution with a lower bound of
0 and an upper bound of 100. That is, we assume that the most
rational participant would rate their confidence as the probability
of a correct answer multiplied by 100. However, for participants
who do not, bias causes their confidence to regularly increase or
decrease from the probability of a correct response, with a further
constant variation depending on their metacognitive ability. The
participants with high metacognition have high precision in
their judgment, hence, their standard deviation in confidence
distribution is low. Thus, people with high metacognition rate
their confidence close to their probability of providing a correct
response. Nevertheless, we followed Fleming (2017) to adopt a
hierarchical model approach for estimating metacognitive ability
as Equation 4:

metas ∼ Normal (µmeta, σmeta) (4)

In this way, the metacognitive ability of each participant can be
estimated more reliably than if they are estimated independently.
In Equation 4, µmeta and σmeta indicate group-level parameters
for metacognitive ability. We assumed that each participant’s
metacognitive abilities were normally distributed around µmeta.

A difference between the model of Maniscalco and Lau
(2012) and our model is the methodology used to measure
cognitive performance and the discrepancy between performance
and confidence. To measure cognitive performance, our model
used the probability of a correct response as estimated by the
IRT model, whereas Maniscalco and Lau’s (2012) model used
correct and incorrect responses. To measure the discrepancy
between performance and confidence, our model used precision
in confidence rating, whereas Maniscalco and Lau’s (2012) model
used meta-d’/type-1 d’. The IRT model solved the problem of

cognitive performance being aggregated into 0 or 1 by using
cognitive performance. We used the probability of a correct
response estimated in each trial, rather than the behavioral
data of correct and incorrect responses. The probability of a
correct response provides the reference point for the participant’s
confidence rating. Therefore, we can treat cognitive performance
continuously without restrictions, such as the homogeneity of
variance for noise and signal distribution. Our model also
renders metacognitive ability easier to interpret compared with
the SDT model. In our model, the higher the metacognition,
the more accurate the confidence rating for the probability of
a correct response. Finally, we interpret metacognitive ability
as the accuracy of confidence ratings for the probability of a
correct response.

Experiment 1
The purpose of study 1 was to affirm the validity of the
metacognitive model. We selected general knowledge questions
and visual memory exercises for metacognitive tasks. The
metacognitive general knowledge task was prevalent in the
metacognitive study (Koriat and Goldsmith, 1996; Danion et al.,
2001), followed by the metacognitive memory task.

Participants
Seventy-eight undergraduates and graduate students [35 men, 43
women; mean age = 21.13 years (SD = 1.65)] participated in this
study. All candidates provided their written informed consent
before participating in this study. The study design was approved
by the Ethics Committee on Research with Human Participants
at Senshu University (14-ML147004-1).

Metacognitive General Knowledge Task
A metacognitive task was developed to enable participants’ (a)
response to general knowledge questions, (b) estimation of
confidence in the last answer, and (c) judgment on whether
they should venture a response to the last question (Koriat
and Goldsmith, 1996; Figure 1A). General knowledge questions
relied on a collection of questions related to an employment
examination. As the collection we referred to encompassed five
items, we excluded one option according to the metacognitive
task of Koriat and Goldsmith (1996). Further, the general
knowledge questions were presented in a random order.
Confidence estimation was also conducted ranging from 0 (“not
confident at all”) to 100 (“very confident”). Participants were
informed that if they answered the last question correctly, their
total score would increase, but if their response attempt was
incorrect, their total score would decrease, and that if they did not
venture a response, their total score would remain unchanged.
Additionally, participants were instructed to obtain the highest
score possible. We did not use the data from the venturing phase
in the metacognitive model proposed in this study. Moreover, to
control the feedback effect, the participants were not presented
with their total score.

We presented the stimuli on a PC monitor, while participants
pressed buttons and used a computer mouse to register their
responses. Participants had to press a button numbered 1 to
4 in order to answer a general knowledge question. They also
used the mouse to indicate their confidence rating and venture
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FIGURE 1 | (A) Metacognitive general knowledge task. (B) Metacognitive recognition task.

a response to the items in the test. All phases were carried out at
the participant’s own pace and took approximately 10–20 m to
complete, depending on the individual.

Metacognitive Visual Recognition Task
The metacognition tasks we conducted used recognition-related
questions including memorization and recognition (Figure 1B).
For encoding, sixty pictures were presented in random order.
Each picture remained onscreen for 500ms, while the inter-trial-
interval lasted 3,000 ms. The recognition phase also entailed
participants’ (a) response to recognition questions, (b) estimation
of confidence in the last answer, and (c) judgment on whether
they should venture a response to the last question. Moreover,
recognition-related questions comprised four options that
targeted stimuli-presented memorization and three distractors.
We selected the picture stimuli from the International Affective
Pictures System (IAPS) (Lang et al., 2008), and selected three
emotional valences (positive, neutral, and negative) per 80
pieces, based on the framework of Liu et al. (2008). As with
the metacognitive general knowledge task, we presented the
stimuli on a PC monitor and used buttons and a mouse to
register participants’ responses. All phases were conducted at the
participant’s own pace and took between 5 and 15 min.

Procedure
After submitting their informed consent, participants engaged in
two metacognitive tasks and completed several questionnaires1.
The task order was counterbalanced (see Endnote 1), and all
participants were randomized. Prior to starting the experiment,
participants practiced the first metacognition task that they
would be tested in.

Simulation
We conducted a simulation of our metacognitive model behavior.
We set the probability of obtaining a correct answer from 0

to 1, which was assumed to be the same for all participants,
while metacognitive ability were set to 0.01 or 0.1 and bias
were set to −20 or 20 to generate the simulation data. We
retrieved the simulation data of four participants with divergent
metacognitive ability. Thereafter, our models conducted an 80
trial cognitive task with varying degrees of difficulty and rated
participants’ confidence in the last answer on each trial. Note that
participants’ cognitive abilities (i.e., Equation 2) were assumed
to be identical. As a result of our simulations, we visualized the
probability of a correct response and confidence for the four
simulated participants.

Parameter Recovery
We checked a parameter recovery on our model, which evaluates
the goodness for estimating the method of applying the cognitive
model (Busemeyer and Diederich, 2010). First, we set the true
value of each parameter as follows: µmeta = 0.1, σmeta = 1,
θ s ∼ uniform (0, 5), bt ∼ normal (0, 5), biass ∼ normal (0,
5). From the values of these parameters, we generated data
for 100 participants according to our model. We used this
data to estimate the metacognitive abilities of each participant.
The goodness of the parameter recovery was examined via
correlation analysis between the true and estimated values of
the metacognitive ability parameters. The details of parameter
estimation are presented below.

Data Analysis
We used the data analysis software R3.6.0 (R Core Team,
2019). The estimation for the parameter was conducted through
Bayesian estimation. The Hamiltonian Monte Carlo Algorithm
was adopted using the rstan package (version 2.18.2; Stan
Development Team, 2018). The Markov chain Monte Carlo
(MCMC) sample size was 20,000 (iteration = 10,000, warm-
up = 5,000, thin = 1, and chain = 4). The convergence
diagnosis was based on Rhat statistics (Gelman and Rubin, 1992).
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We adopted the above setting for all parameter estimates in
this study. Afterward, we conducted a correlation analysis
between the correct ratio and metacognitive parameter as
discriminant validity, and correlation analysis between the two
metacognitive tasks as convergent validity. We will also examine
the correlation between the estimated metacognitive abilities
and biases. Additionally, we used BayesFactor packages (version
0.9.12-4.2) (Morey and Rouder, 2018) to estimate the correlation
coefficient and Bayes factor. In all correlation analyses, the Bayes
factor was compared between models with r = 0 and models with
r 6= 0.

Experiment 2
In experiment 2, to gauge conceptual replicability, we developed
a meta verbal memory task and a novel meta reversal learning
task. Memory tasks are often used to estimate metacognition
(McCurdy et al., 2013; Fleming et al., 2014; Baird et al., 2015).
For the verbal memory task, we developed the Japanese version
of a verbal memory task based on McCurdy et al. (2013).
We also developed an original metacognitive task using a
reversal learning task. Although we are interested in measuring
metacognition in the learning process, we could not find the
meta-learning task. Hence, we need to measure metacognitive
ability under the given circumstances. Further, a simple learning
task would be too easy for participants and could inflate their
confidence level. Therefore, we used a reversal learning task
to ensure that the confidence level was wide-ranging. In Study
2, we conducted a total of four analyses. Two of them were
correlational analyses of the estimated metacognitive ability in
each cognitive task, with the performance in the cognitive tasks
and correlational analyses of the metacognitive abilities across
cognitive tasks, in order to gauge the conceptual replicability of
Study 1. The other two analyses were comparisons with existing
estimation methods. The cognitive tasks used in Study 2 are both
2AFC tasks. Therefore, the method using the SDT, proposed
by Maniscalco and Lau (2012), can be applied therein. Thus,
we carried out the same correlation analysis with participants’
performance in each task as well as between tasks, based on
the metacognitive ability estimated by the SDT model. The
comparison between the first two analyses and the latter two
allows us to verify the superiority of the proposed model over the
existing methods.

Participants
Sixty-six undergraduates and graduate students [male = 25,
female = 41; mean age = 19.79 (SD = 1.00)] took part in this study.
All participants provided written informed consent before the
experiment. This study was approved by the Ethics Committee
on Research with Human Participants at Senshu University (16-
DL167002-1).

Metacognitive Verbal Recognition Task
Metacognition exercises that depend on memory tasks included
encoding and recognition (McCurdy et al., 2013; Figure 2A).
This task consisted of four blocks. In the initial blocks, the
participants were shown 50 words. We used Japanese words
from the NTT database (Amano and Kondo, 2008). This

memorization phase lasted 30–60 s (the duration of which
was randomly assigned for each block). After memorization,
three phases of the metacognitive task followed: (a) answering
the recognition questions, (b) estimating the confidence in the
last answer, and (c) judging whether to venture a response
to the last question. The recognition questions followed the
2AFC format. The participants were introduced to both a
target and a distractor word and were asked for a target
word of their choice that had been presented during the
memorization phase. Each block consisted of 20 trials, yielding
a total of 80 trials. As with the metacognitive general knowledge
task, we presented the stimuli on a PC monitor and used
buttons and a mouse to register participants’ responses. All
phases were conducted at the participant’s own pace and took
approximately 20 min.

Metacognitive Reversal Learning Task
The metacognition task that utilized the reversal learning
procedure consisted of 3 phases (Figure 2B) and was based
on Chamberlain et al. (2006). In the reversal learning task,
participants were asked to choose one of two options and
to learn which stimuli were associated with reward. First,
two stimuli were displayed in two of four randomly selected
locations. Subsequently, the participants were asked to select
a single option, and to conclude the trial; the participants
received feedback regarding whether their answers were correct
or incorrect. Furthermore, during the acquisition process, the
correct option resulted in a 70:30 ratio of reward/punishment.
Conversely, the incorrect option resulted in a 30:70 ratio
of punishment/reward. After 40 trials, the reinforcement
contingency was reversed. In the flow of the task, participants
were asked to (a) choose one of two options located in four
randomly selected locations, (b) estimate their confidence in
the last answer, and (c) judge whether they should venture a
response to the last question. Notably, (b) and (c) were parts
of the same procedure in the metacognitive memory task, while
the participants received probabilistic feedback at the end of
each trial. The procedure for this experiment was similar to
the previous one.

Procedure
After participants submitted their informed consent, they
engaged in two metacognitive tasks. Before the task, participants
had to answer several questionnaires2. Subsequently, the
task order was counterbalanced, and all participants were
assigned randomly. Additionally, a practice trial was conducted
before each task.

Simulation
We simulated our metacognitive model behavior again. Since no
trials were independent in the reversal learning task, it is not
appropriate to use the IRT model to figure the probability of the
correct choice. Therefore, instead of the probability of correct
response, we used the Q value estimated by the Q-learning model
as a measure of cognitive performance (Katahira, 2015). In the
Q-learning model, the Q value is updated by Equation 5:

Qst = Qst−1 + αL
s
(
feedbackst − Qst−1

)
(5)
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FIGURE 2 | (A) Metacognitive reversal learning task. (B) Metacognitive verbal memory task.

In this equation, the subscript s stands for participant t in the
trial. Participants choose one of two alternate opportunities in
each trial and receive feedback. The participants have a Q value
for each choice, and the Q value is updated based on the feedback.
The magnitude at which the updated Q value is stipulated is
through the learning rate αL of the participants. By contrast, the
Q values of the occurrence when participants did not choose any
option decayed according to the participant’s forgetfulness rate
(αF). Next, the probability of participants choosing each option
is calculated by using the Q value as follows Equation 6:

choice probabilityst =
1

1 + exp
(
βs

(
Qoption1

st −Qoption2
st

)) (6)

Here, βs represents the randomness of the participants; the
higher the value of βs, the greater its sensitivity in terms of the
choice probability between the two possible options. Thus, the
choice probability reflects the participant’s learning abilities and
inconsistencies.

Following the balance theory, Lebreton et al. (2019) modeled
the confidence in a learning task as follows. The balance theory
assumes that evidence for a given option as being accurate
accumulates independently for each option, and that a decision
is made when a certain threshold is crossed (Vickers, 2001).
At this point, the degree of confidence is the difference in the
evidence for each option at the time the decision is made. In other
words, the greater the difference between the correctness of the
two alternatives, the higher the confidence level. One view that
differs from the balance theory is that the degree of confidence in
each option is evaluated independently. Zylberberg et al. (2012)
showed that in a perceptual task, confidence in one option is not
affected by evidence for the other option. This can be said to be
a refutation of the balance theory. However, the task we adopt
in this study is a forced two-choice learning task, which means
that one of the choices is always the correct answer. Therefore, it
is natural to assume that the degree of confidence in one option
is affected by the correctness of the other option. Therefore,
in this study, we represent the process of confidence based on
the balance theory.

On the other hand, there is a modification to be made in
introducing Lebreton et al. (2019) into our study. Lebreton et al.

(2019) incorporates an intercept parameter in order to express
confidence in a regression model. However, since we would be
modeling metacognitive ability, we still need to incorporate the
bias parameter, which is the overall level of confidence. When
the intercept parameter and the bias parameter coexist, there is
a concern that the parameters will be less discriminative and will
not converge. Therefore, in our study, we treat the intercept term
as a bias parameter and formulate it as follows.

confidencest ∼ Normal(b11Qst

+ b1confidencest−1 + biass,
1

metas
) (7)

In Equation 7, 1Q is the absolute value of the difference
between the Q values of the two alternatives. 1Q is expressed as
follows:

1Qst = abs
(

Qoption1
st − Qoption2

st

)
(8)

Equations 7 and 8 express that the confidence level is
obtained by a regression model that includes the difference
in evidence between the alternatives based on the balanced
model, the confidence level before one trial, and the bias.
Further, metacognitive ability, like the model in experiment 1,
is the precision for the value that the confidence should take.
Additionally, we created a hierarchical model for metacognitive
ability according to Equation 9:

metas ∼ Normal (µmeta, σmeta) (9)

Using the Q-learning model presents another advantage that
allows us to test the generality of our metacognitive model. If
the IRT model is the only way to estimate participants’ cognitive
performance, the cognitive task used to estimate metacognitive
ability is limited. However, if the metacognitive ability can be
estimated in the same way using the Q-learning model, it can be
applied to a variety of functions, including learning tasks.

Since we used a different model in experiment 1, we again
simulated the behavior of the model. The values for each
parameter were set in advance and the simulation data was
created. We assumed a situation in which four participants with
different metacognitive abilities and biases would participate in

Frontiers in Human Neuroscience | www.frontiersin.org 7 April 2022 | Volume 16 | Article 706538

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-16-706538 April 7, 2022 Time: 22:0 # 8

Somatori and Kunisato Metacognition and Precision of Confidence

FIGURE 3 | Simulation of the association between the probability of a correct
answer and confidence in different metacognitive ability and bias.

a learning task consisting of 80 trials. The relationship between
each participant’s confidence level, metacognitive ability, and
bias was visualized.

Parameter Recovery
We checked a parameter recovery on our model and set the
true value of each parameter as follows: µmeta = 0.1, σmeta = 1,
bias ∼ normal (50, 10), αL

s ∼ beta (2, 1), αF
s ∼ beta (2,

1), βs ∼ uniform (0, 10), b1 = 20, b2 = 0.1. From the values
of these parameters, we generated data for 100 participants
according to our model. Thereafter, we used this data to estimate
the metacognitive ability of each participant. The goodness of
the parameter recovery was examined by correlation analysis
between the true and estimated values of the metacognitive
ability parameters. The details on parameter estimation are
presented below.

Data Analysis
In total, our study comprised 58 participants for the following
analysis. As eight participants were correct at a rate of less
than 0.5 (i.e., level in a chance), we determined that the
participants were not very keen about the task. We used a
data analysis environment of the R3.6.0 program (R Core
Team, 2019). The estimation for the parameter was conducted
through the Bayesian estimation. Besides, the Hamiltonian
Monte Carlo Algorithm was adopted using the rstan package
(version 2.18.2) (Stan Development Team, 2018). The MCMC
sample size was 20,000 (iteration = 10,000, warm-up = 5,000,
thin = 1, and chain = 4) and the convergence diagnosis
was based on Rhat statistics (Gelman and Rubin, 1992), and
was validated. To estimate the metacognitive ability based on
the SDT model, we used the script developed by Fleming,
which allows Bayesian estimation of meta-d’ using JAGS1. JAGS

1https://github.com/metacoglab/HMeta-d

is a library for Bayesian estimation using MCMC sampling
(Plummer, 2003). While Fleming’s script assumes a cognitive
task in which both signal and noise trials are performed, the
present study employs the cognitive tasks in which only signal
trials are performed. Therefore, we made some changes to the
script with reference to Mazancieux et al. (2020). The MCMC
sample size was the same as in the case of rstan. The Rhat
statistic was used for convergence diagnosis as in the proposed
model. The metacognitive ability was obtained by dividing the
estimated meta-d’ by d’. Experiment 2 was carried out to examine
reproductivity; hence, an analysis similar to experiment 1 was
conducted. We also used BayesFactor packages (version 0.9.12-
4.2) (Morey and Rouder, 2018) to estimate the correlation
coefficient and Bayes factor.

RESULTS

Experiment 1
Simulation and Parameter Recovery of the
Metacognitive Model
Figure 3 depicts the performance of four participants with
different metacognitive abilities on the same cognitive task. Their
probability of correct response and confidence for each trial
were simulated. High-metacognition participants (meta = 0.1)
rated their confidence near their respective probability of a
correct response. Accordingly, low-metacognition (meta = 0.01)
participants rated their confidence without relation to their
probability of a correct response. In addition, participants with
high bias (bias = 20) rated their confidence higher overall,
while participants with low bias (bias = −20) rated their
confidence lower.

Figures 4A,B shows that the true parameter value we set
and the parameter values estimated by Bayesian estimation were
moderately to strongly correlated (meta: r = 0.985; bias = 0.583).
Therefore, this suggests that the parameters of the model can be
adequately projected using Bayesian estimation.

Discriminatory and Concomitant Validity of
Metacognitive Ability
The correlation analysis with the metacognitive abilities was
estimated and the correct ratio was provided for Figures 5A,B.
However, metacognitive ability did not correlate with cognitive
performance in each task. Moreover, in the general knowledge
task, r = −0.060 [95% confidence interval (CI): −0.277 to
0.154; Bayes factor (BF) = 0.303]. In the recognition task,
r = 0.148 (95%CI: −0.064 to 0.361; BF = 0.654). The correlation
analysis with metacognitive ability in the two tasks is shown
in Figure 5C. A medium correlation was observed between the
metacognitive ability of each task, r = 0.399 (95%CI: 0.200 to
0.600; BF = 208.587).

Figures 5D,E shows the correlation between metacognitive
ability and bias. The correlation was observed in the general
knowledge task, r = 0.305 (95% CI: 0.092 to 0.507; BF = 13.253).
In the recognition task, r = −0.108 (95%CI: −0.321 to
0.107; BF = 0.416).

Frontiers in Human Neuroscience | www.frontiersin.org 8 April 2022 | Volume 16 | Article 706538

https://github.com/metacoglab/HMeta-d
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-16-706538 April 7, 2022 Time: 22:0 # 9

Somatori and Kunisato Metacognition and Precision of Confidence

FIGURE 4 | (A) Correlations between the true values and estimated value in metacognitive ability, (B) Correlations between the true values and estimated value in
bias.

FIGURE 5 | (A) Correlations between the correct ratio and metacognitive ability in the general knowledge task, (B) correlation between the correct ratio and
metacognitive ability in the recognition task, (C) correlation with metacognitive ability between tasks, (D) correlations between metacognitive ability and bias in the
general knowledge task, (E) correlations between metacognitive ability and bias in the recognition task.

Experiment 2
Simulation and Parameter Recovery of the
Metacognitive Model
As in experiment 1, we plotted the possibility of a correct
response and the confidence of the five participants with
different metacognitive abilities in Figure 6. Participants with
higher metacognitive ability rated their confidence closer to

their respective probability of a correct response. In addition,
participants with high bias (bias = 70) rated their confidence
higher overall, while participants with low bias (bias = 30) rated
their confidence lower.

Similarly, Figures 7A,B shows that the true parameter value
we set and the parameter value estimated by Bayesian estimation
were strongly correlated (meta: r = 0.986; bias = 0.890). Therefore,
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FIGURE 6 | Simulation of the association between the probability of a correct
answer and confidence in different metacognitive abilities.

this indicates that the parameters of the model can be adequately
estimated using Bayesian estimation.

Discriminatory and Concomitant Validity of
Metacognitive Ability
The correlation analysis with the metacognitive ability was
estimated and the correct ratio was also provided for
Figures 8A,B. Metacognitive ability did not correlate with
cognitive performance in each task. In the memory task,
r = −0.030 (95%CI: −0.269 to 0.217; BF = 0.306) and in the
reversal learning task, r = 0.063 (95%CI: −0.182 to 0.312;
BF = 0.340). The results of experiment 1 on discriminant validity
were replicated.

The correlation analysis with the metacognitive ability in the
two tasks is also presented in Figure 8C. Lastly, the metacognitive
ability indicated a medium correlation between tasks [i.e.,
r = 0.368 (95%CI: 0.136 to 0.592; BF = 21.115)].

Figures 8D,E shows the correlation between metacognitive
ability and bias. The correlation was observed in the memory
task, r = 0.133 (95% CI: −0.113 to 0.374; BF = 0.534). In
the reversal learning task, r = −0.226 (95%CI: −0.462 to
0.020; BF = 1.565).

Figure 9 shows the results of the discriminant and convergent
validity for meta-d’/d’. As evident in Figures 9A,B, meta-d’/d’
was found to be correlated with the correct ratio, r = −0.400
(95%CI: −0.631 to −0.152; BF = 54.598), r = 0.300 (95%CI:
0.056 to 0.536; BF = 5.263). In addition, the correlation between
tasks (Figure 9C) was positive, but the 95% confidence interval
included 0, r = 0.130 (95%CI:−0.112 to 0.364; BF = 0.505).

DISCUSSION

Typically, a model based on the SDT is used to measure
metacognitive ability (Maniscalco and Lau, 2012; McCurdy et al.,
2013; Fleming and Lau, 2014; Baird et al., 2015); however,
the SDT model is suitable for tasks that measure cognitive
performance in a 2AFC task and confidence in the discrete scale.
Further, some metacognitive tasks do not meet the assumptions
and constraints of the SDT metacognitive model (Koriat and
Goldsmith, 1996; Koren et al., 2006). Therefore, in the present
study, we established a new metacognitive model that does not
depend on similar constraints as the SDT model. In our model,
participants’ cognitive abilities were derived using the IRT and
Q-learning model; we estimated the metacognitive ability as the
precision of cognitive performance. Further, our model enables
the assessment of participants’ responses and confidence with
various measures.

We systematized a metacognitive model based on examining
discriminant validity and construct validity. Maniscalco and
Lau (2012) argued that there are two aspects of metacognition,
namely, absolute sensitivity and relative sensitivity. Absolute
sensitivity might serve as a measure of metacognition; however,
the measure of relative sensitivity has not been comprehensively

FIGURE 7 | (A) Correlations between the true values and estimated value in metacognitive ability, (B) correlations between the true values and estimated value in
bias.
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FIGURE 8 | (A) Correlations between the correct ratio and metacognitive ability in the memory task, (B) correlation between the correct ratio and metacognitive
ability in the reversal learning task, (C) correlation with metacognitive ability between tasks, (D) correlations between metacognitive ability and bias in the memory
task, (E) correlations between metacognitive ability and bias in the reversal learning task.

investigated. As such, we conducted modeling to that process
based on the theoretical framework of metacognition (Flavell,
1979; Koriat and Goldsmith, 1996; Koren et al., 2006; Fleming
and Lau, 2014).

In experiment 1, our metacognitive measure did not
correlate with the correct ratio. Therefore, our metacognitive
measure was independent of cognitive performance. This
finding specified that our parameter of metacognitive ability
has discriminant validity. Contrariwise, the previous study
contended that relative metacognition has to be independent
of cognitive ability (Maniscalco and Lau, 2012), as we do not
know what the measure imitates if the measure correlated
with the correct ratio. In addition, the correlation between
metacognitive measures and the correct ratio contradicted the
definition of relative metacognition (Maniscalco and Lau, 2012).
Nevertheless, experiment 2’s results replicated the results of
experiment 1. Among different participants and different tasks,
the discriminant validity of our model was fulfilled. Particularly,
the applicability of our metacognitive model was demonstrated
even for a task that was not undertaken.

Lastly, our metacognitive model fulfilled the criterion
of Maniscalco and Lau (2012) from the perspective of
discriminant validity. In our model, metacognitive ability did
not correlate with cognitive performance in four different
tasks, in line with prior research on metacognition (Nelson
and Narens, 1990; Koriat and Goldsmith, 1996; Georghiades,
2004; Akturk and Sahin, 2011; Maniscalco and Lau, 2012;
Yeung and Summerfield, 2012; Fleming and Lau, 2014). That

is, metacognitive ability is the divergence between objective
cognitive performance and subjective evaluation (e.g., confidence
estimation). Moreover, in our model, the probability of a correct
response or Q value indicates participants’ estimated cognitive
performance, while confidence is obtained from the distribution
centered on these cognitive performances. The precision of
confidence distribution is assumed as the metacognitive ability.
Accordingly, metacognitive ability has a high precision when the
variance of the distribution is small. As individuals’ confidence is
close to their estimated performance, it can be said that objective
performance can be accurately evaluated. Lastly, the parameter
recovery and simulation reflect these processes; hence, our model
is considered to be an accurate model of metacognition.

Another advantage of our model is its high interpretability.
Prior researchers have argued that the cognitive model should
be simpler and more interpretable (Wilson and Collins, 2019).
In the model illustrated by Maniscalco and Lau (2012),
the metacognitive ability was calculated as meta-d’/type-1
d’. Therefore, independence is ensured by dividing absolute
metacognitive ability by objective performance. However, this
operation is difficult to interpret as a cognitive parameter.
Thus, our model was designed so that metacognitive ability is
expressed more directly. We simply consider that the higher
the metacognitive ability, the more congruent the cognitive
ability and confidence ratings. As such parameters are defined
directly in our model, it is also easy to interpret that the
degree of metacognitive ability influences the variation of
confidence rating.
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FIGURE 9 | (A) Correlations between the correct ratio and meta-d’/d’ in the memory task, (B) correlation between the correct ratio and meta-d’/d’ in the reversal
learning task, (C) correlation with meta-d’/d’ between tasks.

The superiority of our model over the standard SDT model is
not only shown by its ease of interpretation but also by empirical
data. The experimental task used in experiment 2 was a 2AFC
task to which the SDT model was applicable. Therefore, we
conducted the same analysis for the SDT model in experiment
2. The results showed that the metacognitive ability estimated
by the SDT model (meta-d’/d’) was correlated with the correct
ratio. This means that the definition of relative sensitivity was
not met and that the SDT model did not provide appropriate
estimates for metacognitive ability. Further, the correlations
between tasks were not sufficiently high, while the stability of the
estimates was threatened.

It may be difficult to apply the SDT model to confidence
data measured using a VAS. The relative sensitivity estimated in
the SDT model was developed to quantify metacognitive ability,
which is not correlated with objective cognitive performance,
but was not characterized in this study. This may be due to
the fact that the range of confidence ratings was too fine.
As documented in https://github.com/metacoglab/HMeta-d, a
matrix of confidence × stimulus × response was created as
data for the estimation of meta-d’ (Fleming, 2017). Referring to
the example given in Fleming (2017), if the confidence ratings
comprise three levels, nR_S1 = (100, 50, 20, 10, 5, 1). In this
case, the first group (100, 50, 20) represents the confidence counts
for response A to stimulus A, while the second group (10, 5, 1)

represents the confidence counts for response B to stimulus A.
For one participant, we created such vectors for each stimulus,
A and B, and included them as data. In this study, confidence
is measured using a VAS from 0 to 100, which means that it
is measured with a 101 level of confidence rating. Therefore,
creating vectors as described above will generate a very large
number of 0 cell counts. This may have made the estimation of
the meta-d’ difficult and, consequently, unsuccessful. Mazancieux
et al. (2020) asked the participants to rate their confidence on a
scale of 0 to 100, divided into sections of 10 (e.g., 0–10 and 11–
20). This suggests that it may be difficult to apply the SDT model
if there are too many cells for confidence ratings.

Our metacognitive measure also satisfies convergent validity.
In experiment 1, the correlation with both tasks indicates that
our metacognitive model reflects similar concepts. Subsequently,
our measure represents metacognition independently of the task
selected. These results are replicated in experiment 2, which
exhibited a positive correlation between tasks. On the other
hand, these indicators were only estimated for different tasks and
should reflect the same capabilities. Nevertheless, the correlation
coefficient is moderate and not high. This could be because
metacognitive ability is domain-specific (McCurdy et al., 2013;
Baird et al., 2015). Furthermore, in McCurdy et al. (2013),
the correlation between metacognitive ability in perceptual and
memory tasks was r = 0.47. Given that we are measuring the same
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concept, this correlation was not high. The same study in Baird
et al. (2015) was also examined, but the correlation coefficient was
low (r = 0.15). This is presumably due to domain specificity.

In recent years, many studies have researched the relationship
between metacognitive ability and other psychological measures
(Koren et al., 2004; Bruno et al., 2012; Fleming et al., 2014). In
these cases, it is necessary to measure only metacognitive ability.
This measure may not correlate with cognitive performance;
however, our metacognitive model meets this criterion. For
example, the contribution of metacognitive ability might
be more clearly seen by considering the study by Koren
et al. (2006), who examined the association between mental
illness and metacognitive ability. Moreover, in this research
context, it would be imperative to measure metacognitive
ability with a more interpretable measure. In our model,
metacognitive ability refers to the precision of confidence in
cognitive performance. In other words, high metacognitive ability
means that confidence levels more accurately capture cognitive
performance. Hence, such ease of interpretation is another
benefit of our model.

In existing frameworks for metacognitive measures, we can
also situate the metacognitive abilities that we estimate in our
model. For example, Maniscalco and Lau (2012) distinguish
between absolute and relative sensitivity for metacognitive
measures. In this regard, as mentioned in the introduction,
our model corresponds to relative sensitivity. On the other
hand, in the framework of Schraw (2009), it is considered to
correspond to an index called absolute accuracy. Schraw (2009)
classified metacognitive measures into five categories: absolute
accuracy, relative accuracy, bias, scatter, and discrimination. In
this framework, absolute accuracy is represented by the absolute
difference between cognitive performance and confidence.
It is similar to our model in that it directly deals with the
discrepancy between cognitive performance and confidence.
Relative accuracy, on the other hand, is represented by the
correlation between cognitive performance and confidence.
Therefore, it is stated that these two indices do not necessarily
coincide, and each reflects a different aspect of metacognitive
ability. Although relative sensitivity can be said to represent
high metacognitive ability, it differs from our model because it
does not necessarily deal directly with the discrepancy between
cognitive performance and confidence. Bias is determined by
an equation roughly analogous to that of absolute accuracy,
representing whether the average level of confidence is
high (overconfidence) or low (underconfidence) relative to
performance. On the other hand, modeling with Schraw (2009)
does not clearly distinguish between metacognitive ability and
bias. Scatter is not necessarily a measure of metacognitive
ability; it is expressed as the difference between the variance of
confidence in correct and incorrect trials. In other words, it is
positive if the variance of confidence in the correct answer trials
is relatively large, and negative if it is small. It can be regarded an
indicator of metacognitive judgment in the sense that it expresses
one aspect of confidence, but it does not express the level of
metacognitive ability. Thus, our model is a metacognitive model
based on the discrepancy between subjective evaluation and
cognitive performance as expressed by absolute accuracy.

In a metacognitive general knowledge task, positive
correlations with metacognitive ability and bias were shown.
In Fleming and Lau (2014), it appears that metacognitive
ability and bias are assumed to have independent effects on
confidence. Some studies suggest that metacognitive ability and
bias independently affect confidence (e.g. Boldt et al., 2017),
but they do not examine direct correlations and are therefore
insufficient in terms of the robustness of the findings. However,
since no study has empirically demonstrated this, that may be
interrelated and have an effect on confidence. If we assume
that there is a correlation between metacognitive ability and
bias, then the structure of the metacognitive model would also
change. When the correlation between metacognitive ability
and bias is explicitly incorporated into the model, the following
modification is a possible formula for generating confidence.

confidencest ∼ SkewNormal
(
µst,

1
metas

, biass

)
(10)

In the above equation, the confidence generation process is
represented by a skew normal distribution. The skew normal
distribution is a probability distribution that expresses the
skewness of the distribution by adding a skewness parameter
to the normal distribution, where µst means the value that the
confidence should take, and in this research, it is expressed by
the probability of a correct response and a regression model
using the Q value. Further, by assuming the skewness parameter
to be a bias, we can represent a phenomenon in which the
confidence is rated biased in one direction. If the bias parameter
takes a large value, either positive or negative, then the fringe
of the distribution will extend to the right or left, resulting in
lower precision.

The main limitation of our study is that we did not examine
the validity of experimental manipulation. It is difficult to
accurately portray actual metacognitive processes in a cognitive
modeling approach. Particularly, whether our model parameter
truly reflects metacognitive ability should be explored by future
research, as this was not possible during this study. To solve
this problem, experimental manipulation is needed (Wilson and
Collins, 2019). For instance, a comparison between situations
where metacognitive ability is limited (e.g., dual tasks) should
prove beneficial. If the metacognitive parameter is altered
employing this manipulation, the reflection of metacognition by
this parameter would be corroborated. As a best practice, we have
to conduct experiment manipulation on metacognitive ability
and confirm its responsiveness (Busemeyer and Diederich, 2010;
Wilson and Collins, 2019).

Moreover, metacognition may be related to working memory
(Fleming and Frith, 2014). Accordingly, a dual-task situation
may restrict metacognitive ability. Conversely, the metacognitive
evaluation was influenced by reward and punishment conditions
(Hacker et al., 2008; Arnold et al., 2016). Similarly, punishment
feedback allows us to gauge the accuracy of metacognitive
evaluation and reveals other ways to test whether metacognitive
training (MCT) produces improvements in metacognitive ability.
Notably, Moritz and Woodward (2007) developed MCT for
patients with schizophrenia, who were tasked with reasoning
under conditions of uncertainty and were promoted to shift
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their faith and estimate the more correct direction. If we
can manipulate the metacognitive ability parameters in our
metacognitive model via MCT, the validity of our metacognitive
model will be enhanced.

Our contribution to metacognition research lies in developing
a novel measure for metacognitive ability. The advantages of
our model are that (1) it is less restrictive in its measurement
of cognitive performance and confidence, (2) it can be applied
to various cognitive tasks encompassing learning and memory,
and (3) it is easy to interpret. Lastly, our model has potential
applications in a variety of research contexts where measuring
metacognitive ability is required.
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ENDNOTES
1Participants responded to the following items. The order in which the questionnaire and the experiment were administered was
counterbalanced.
• Age
• Sex
• Grade
• FLANDERS Handedness Questionnaire
•Metacognitions Questionnaire-30
• Cognitive Failure Questionnaire

2Participants responded to the following items before experiment tasks.
• Age
• Sex
• Grade
• Generalized Anxiety Disorder-7
• Patient Health Questionnaire-9
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