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The human brain has been an object of extensive investigation in different fields. While

several studies have focused on understanding the neural correlates of error processing,

advances in brain-machine interface systems using non-invasive techniques further

enabled the use of the measured signals in different applications. The possibility of

detecting these error-related potentials (ErrPs) under different experimental setups on a

single-trial basis has further increased interest in their integration in closed-loop settings

to improve system performance, for example, by performing error correction. Fewer

works have, however, aimed at reducing future mistakes or learning. We present a review

focused on the current literature using non-invasive systems that have combined the

ErrPs information specifically in a reinforcement learning framework to go beyond error

correction and have used these signals for learning.

Keywords: error-related potentials, reinforcement learning, EEG, brain-machine (computer) interface,

electroencephalography, self-organization

1. INTRODUCTION

Reinforcement learning (RL) problems involve training a so-called agent by allowing it to interact
with the environment based on trial-and-error to learn the optimal policy (Sutton and Barto, 2018).
For each action taken, the agent receives a numerical reward, and its goal is to maximize its total
return. Hence, by collecting knowledge about the environment through interactions, the agent aims
at finding the sequence of actions, i.e., policy, for that environment which will lead to maximum
accumulated reward in the long term. Unlike the typical supervised and unsupervised learning
approaches, RL algorithms do not rely on available labeled or even historical data. Instead, they are
based only on evaluative feedback, and this framework has proven suitable for different kinds of
applications (Silver, 2015).

A challenge in specifying a reinforcement learning problem involves a meaningful reward
function definition. The reward function defines the RL goal and directly impacts learning
performance. However, defining a reward function is not a trivial task and might require expert
knowledge about both the task and environment. An intuitive alternative to the design of complex
reward functions has been proposed in the last years, using a specific neural activity signal generated
in the human brain upon erroneous events occurrence. These signals are time-locked to the error-
onset event and referred to as error-related potentials (ErrPs). It is possible to measure these signals
using non-invasive techniques such as electroencephalography (EEG), and several works have
demonstrated that different experimental tasks can elicit ErrPs. Moreover, ErrPs can be reliably
detected on a single-trial basis, which makes them suitable for online applications (for a review see
Chavarriaga et al., 2014; Kumar et al., 2019b).
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The use of error-related potentials as learning signal for
reinforcement learning setups brings several advantages to the
brain-machine interface setup. First of all, these error signals are
naturally generated in the human brain upon error occurrence,
without requiring an explicit action from the subject and
without imposing any extra mental workload (Kim et al., 2020),
which could also make the systems scalable without increasing
complexity for the participants (Iturrate et al., 2013a). Moreover,
an ErrP can also be present when defining a reward function is
not easy or correct behavior is relative (Iturrate et al., 2010a).
Finally, as the error is an intrinsic brain signal, it carries subject-
specific information that can move brain-machine interface
(BMI) development toward its personalized operation (Iturrate
et al., 2010a).

Hence, the purpose of this work is to provide the reader
with a summary of the available studies that applied error-
related potentials in a reinforcement learning-based framework,
focusing on the use of ErrP as learning signals. The wide
range of work published that integrates error-related potentials
in their interfaces demonstrates the feasibility of extracting
useful information from these signals. This review focuses on
non-invasive brain-computer/brain-machine interfaces that used
error-related potentials as learning signals in a reinforcement
learning framework. We aim at providing an overview of the
current state of development in this field and hope to contribute
to discovering unexplored possibilities, bringing the research
topic forward.

Chavarriaga et al. (2014) first introduced a 10-year collection
of works incorporating ErrPs in brain-computer interface (BCI)
systems. More recently, a review focused on brain-computer
interfaces for rehabilitation of motor-impaired patients was done
by Kumar et al. (2019b). The present work proposes to extend the
information collected in these works while exclusively focusing
on reinforcement learning-based applications of error-related
potentials. The motivation for this summary is that different
studies have already successfully shown the advantages of using
the ErrP information to undo or correct mistakes made by the
interface. However, future work should focus on task learning
and ready-to-use systems that do not require long calibration
phases and adapt to changes.

The organization of this work is as follows: Section 2 gives a
review of the error-related potential phenomenon, with a short
description of the different ErrPs reported in the literature.
In sequence, we present the reinforcement learning framework
in Section 3. Sections 4 and 5 shortly cover BMI applications
using ErrPs. Section 6 brings details on the current body of
works combining ErrPs and reinforcement learning. Finally, we
conclude this work with a brief overview and discussion in
Section 7.

2. ERROR-RELATED POTENTIALS AND
THEIR TAXONOMY

It was in the 1960s when the first study using implanted
electrodes reported evidence of an error-processing system
in the brain (Bechtereva and Gretchin, 1969). However,

research on error processing significantly increased only in the
early 1990s, when studies (Falkenstein et al., 1991; Gehring
et al., 1993) using non-invasive EEG devices showed that
the occurrence of errors when subjects performed a choice
reaction task elicited a specific event-related potential (ERP)
in the brain. This ERP signal expressed a fronto-central
negative peak that appeared around 50–200 ms after the
incorrect response and was named error-related negativity
(ERN or Ne) (Falkenstein et al., 2000). A centro-parietal
positive (Pe) deflection around 200–500 ms after response onset
usually follows the ERN (Falkenstein et al., 1991, 2000). Its
functional significance remains unclear, but this positivity seems
related to the subject’s awareness of the error (Falkenstein
et al., 2000; Wessel et al., 2011), and some works have also
suggested that it shares features with the P300 component
measured in oddball paradigms (Ullsperger et al., 2014).
This component might, however, not be present in every
error trial (Wessel et al., 2011). A positive peak around
-50 to 0 ms before response onset can also precede the
ERN (Ullsperger et al., 2014).

Miltner et al. (1997) later on described a component similar to
the ERN, referring to an ERP signal characterized by a negative
deflection appearing over medial-frontal scalp regions around
250 ms after the presentation of a feedback stimulus. Their
experiment consisted of a time-estimation task in which subjects
were supposed to produce a 1-s interval and signal it via a
button press. The feedback stimulus informed the subject about
the outcome of the performed choice, and the generated ERP
component was, therefore, named feedback-related negativity
(FRN) (or sometimes feedback-ERN or feedback negativity)
(Cohen et al., 2007; Ullsperger et al., 2014).

Another extensively investigated ERP component is the
N2, prominent negativity that occurs around 200–300 ms
after conflicting stimulus presentation. This stimulus-locked
component is common in protocols with stimulus mismatch and
has been associated with performance monitoring and cognitive
control (Yeung et al., 2004; Ullsperger et al., 2014). Often seen
together with the P300 component, e.g., in the oddball paradigm,
they are still often called the N2-P3 complex (but they can appear
independently of each other). In the context of ErrP-based BMIs,
these components are also reported as being part of the measured
error-related potential (Ehrlich and Cheng, 2016).

The origin of all these components (ERN/FRN/N2) is believed
to be the anterior cingulate cortex (ACC) with expected increased
modulations in theta frequency (Ullsperger et al., 2014), though
some works also report activity in delta or even alpha range (see
Yeung et al., 2004; Folstein and Van Petten, 2007 for a review).
Different theories such as the mismatch theory, the response
conflict monitoring, and the reinforcement learning theory of
error processing have tried to explain the ERN, Pe, FRN, N2,
and P3 components related to performancemonitoring and error
processing in the human brain. They aim at providing insight
into the functional meaning of each ERP component. To analyze
these theories is beyond the scope of this work. Therefore, for
details, we recommend the reviews from, e.g., (Falkenstein et al.,
2000; Yeung et al., 2004; Walsh and Anderson, 2012; Ullsperger
et al., 2014).
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In BMI systems, the term ErrPs commonly summarizes the
effects of these prominent event-related potential components
during performance monitoring, and the difference between
error and correct grand averages (averages over all subjects
and trials) is used to report the measured ErrPs (Chavarriaga
et al., 2014; Ehrlich and Cheng, 2016). This error-minus-correct
waveform is applied to isolate the differences between error- and
correct-related ERP signals, leaving in the corresponding ErrP
wave only those components specifically related to the differences
in processing the correct and erroneous events. The measured
ErrPs are then characterized by the ERP components found in the
difference grand average. One could argue whether every peak
in the resulting difference waveshape should be associated with
error processing. Indeed, the still not fully understood functional
meaning and relationship of the ERP components support that
one should be careful with conclusions. Nevertheless, we point
out that ErrP-based BMIs works adopt this approach. Most likely
because, for the proposed applications, the exact origin and
meaning of the difference wave components are irrelevant.

Several works have shown that different experimental
paradigms using BMI systems can elicit ErrPs. Seven different
ErrPs are commonlymentioned in the existing literature applying
non-invasive BMI systems. In sequence, we present a short
overview of each one of them.

Self-made errors generated when the subject has to respond as
fast as possible to a stimulus are commonly called response errors.
Attention (Blankertz et al., 2002) tasks, variations of the Eriksen
Flanker paradigm (van Schie et al., 2004; Penaloza et al., 2014;
Padrao et al., 2016), and the Go/NoGo paradigm (Wirth et al.,
2019) are commonly used to generate response errors, which are
characterized by the ERN/Pe components in the response-locked
ERP (Falkenstein et al., 1991; Gehring et al., 1993).

Similarly, the error-related activity recorded when feedback
informs the subject about the outcome of their choice is referred
to, specifically in the BMI literature, as feedback error. As
the response error, it is characterized by errors made by the
subject and exhibits the FRN component, sometimes followed
by a positivity (Miltner et al., 1997; Lopez-Larraz et al., 2010;
Chavarriaga et al., 2014). This error is more commonly studied
outside the context of BMIs, using paradigms applying either
the time estimation, gambling, guessing games, or reinforcement
learning tasks (Ullsperger et al., 2014). In such cases, researchers
are interested in understanding the mechanisms of outcome
evaluation processes in the brain, and the term FRN is commonly
applied (instead of feedback ErrP).

Apart from these two, according to Diedrichsen (2005),
a so-called target error should be elicited when unexpected
changes happen in the task being performed. Typically a reaching
(aiming) task is implemented as an experimental setup, and
changes in the task are realized by performing a target jump
at unexpected moments, such that the subject fails to reach the
target object (Diedrichsen, 2005; Krigolson et al., 2008; Milekovic
et al., 2013). Target errors are mediated within the posterior
parietal cortex and seem to generate a P300 component (relative
to movement onset) at the Pz electrode (Krigolson et al., 2008).
The P300 component has been associated with context updating
and learning.

A widely applied error in the context of BMIs is the interaction
error, which was first reported by Ferrez and Millan (2007).
Defined as the error expected when the subject gives a command
and the system executes another, it was measured using a 1D
cursor control with a keyboard when the cursor moved in the
opposite direction than commanded. Particular to this error is
that the erroneous event itself does not come from the subject but
the interface misinterpreting the subject’s intention. The detected
error exhibited a fronto-central activity with a first positive peak
200 ms after feedback onset, immediately followed by a negative
and a positive peak around 250 and 320 ms, respectively. Lastly,
a broader negative component around 450 ms followed (Ferrez
and Millan, 2008a).

Other works have evaluated the interaction error under
different experimental setups as well, including cursor control
together with motor imagery (Ferrez and Millan, 2008b, 2009),
BCI spellers (Margaux et al., 2012; Bevilacqua et al., 2020), and
simulated control of a car (Zhang et al., 2013). Figures 1, 2
show, for example, the interaction error reported in a human-
robot interaction task by Ehrlich and Cheng (2016). The authors
specifically highlight the N2-P3 complex is present in the
difference grand average (error minus correct trials).

A similar error named execution error, expected when the
current motor commands result in unexpected movement was
defined by Diedrichsen (2005). Spüler et al. (2015) have defined
an execution error as when the cursor in a game goes in
a different direction than the one received from the joystick
controller during continuous feedback. Modifications in the
cursor movement degree generated erroneous feedback that
triggered execution errors. From our perspective, this last
definition does not seem far from the setup used by Ferrez
and Millan (2008a) to elicit interaction errors. In both cases,
the system executed something other than the command given.
Therefore, one could argue that these errors could be the same,
despite the two names used. We do not want to infer that those
errors are the same thing. In fact, from our understanding, one
cannot exclude the possibility that the confusion arises from
a thin line between the definitions of these errors in specific
scenarios. This fact does not necessarily mean that they are
always the same. But we considered it relevant to mention
and catch attention for these interesting similarities or, at least,
apparently ambiguous situations. In addition, execution and
interaction errors showed similar waveshape and topographical
distributions. The execution error collected showed a first
positive peak around 229 ms followed by a negative peak
around 287 ms that, according to Spüler and Niethammer
(2015), is possibly related to the FRN. A positive peak around
367 ms followed this negativity, which the authors associate
with Pe. Finally, a broader negative deflection around 461 ms
was related to the N400. These components were maximum at
fronto-central electrodes FCz and Cz. Unlike interaction errors,
however, execution ErrPs have been often used under continuous
feedback (Lopes Dias et al., 2018, and involving misalignment or
displacement (Rakshit et al., 2016; Lopes-Dias et al., 2019).

Several works reported the execution error in parallel to
another error: the outcome error, expected when the desired goal
of a movement is not fulfilled (Krigolson et al., 2008). Outcome
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FIGURE 1 | The upper left plot shows the grand average ERPs for each trial class (error/correct) at electrode Cz (n = 12). The experimental setup considered a

human-robot interaction scenario in which the subject had to respond to a stimulus with a keypress (left, right, or up) indicating the target position, and a real robot

turned its head either in the given direction or not, eliciting interaction ErrPs. On the right side, the different ERP displays the N2-P3 complex measured. The

topographical distribution of the difference ERP shows that the N2 component is fronto-centrally located, and the characteristic P3 is also centrally located at around

300 ms. Results were reproduced from Ehrlich and Cheng (2016) using the publicly available datasets Ehrlich and Cheng (2019).

FIGURE 2 | R2-values showing the difference in power for the different frequency bands between correct and error trials show activity mainly in the alpha range for the

measured error.

errors are also present in the cursor game, in which the subject
controls the cursor via keypress or joystick, and collisions with
falling blocks elicit outcome errors (Spüler and Niethammer,
2015; Spüler et al., 2015). The authors have reported an outcome
error characterized by a negative component at 2 ms, which they
say is the ERN, followed by a positive peak around 268ms (the Pe,
according to them). A negative peak at 486ms (N400) and a small
positivity at 742 ms follow. These components were maximum at
fronto-central electrodes. Kreilinger et al. (2016) have applied a
similar approach using a car game where a collision could happen
with coins (correct) or obstacles (error). However, they have only
observed a positivity around 200 ms followed by a negative peak
around 400 ms after collision onset at Fz and Cz channels.

Last but not least, we have the by far most explored type
of error-related potentials in non-invasive BMI systems: the
observation error. In van Schie et al. (2004), authors have shown

that the same mechanisms for error processing in the brain are
active in response to errors committed by others, providing the
first evidence of this error. Using a modified Eriksen flanker task,
they measured an ERN peaking at 252 ms after response onset.
Since the latency, the scalp distribution, and the source of this
negativity resembles the ERN, this component is sometimes also
called observation ERN (oERN) (Ullsperger et al., 2014).

Given its implementation simplicity, the observation error is
widely used in BMI frameworks. Several studies have shown that
this type of error is elicited when the subject realizes an error
made by an external system over which they have no control in
different applications. Across these works, observation errors are
reported with different characteristic components. The observed
ErrP showed positive and negative peaks at 200 ms and 260 ms,
respectively, followed by an additional positivity at 330 ms in
a cursor observation task (Chavarriaga et al., 2007; Chavarriaga
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and Millan, 2010). On the other hand, only a positivity at 300 ms
followed by a negativity at 400 ms was found during robot
performance observation, with both simulated (Iturrate et al.,
2010a) and real robots (Iturrate et al., 2010b).

The different ErrPs and works listed in this section are
summarized in Table 1. Each work reports different peaks
and latencies, even when using similar experimental tasks.
Therefore, it is not possible to conclude that an ErrP will always
exhibit the waveshape as originally reported. We highlight this
because we have asked ourselves whether we could define which
components to expect in each ErrP type mentioned in the
literature. After reviewing the several works we list here, we did
not converge to a unique ErrP type-component specification.
Therefore, we restrict ourselves to indicating some reported
components across the reviewed works, such that it can help
build a first impression of the respective ErrP. We believe it is
especially relevant when analyzing data from new experimental
protocols to have a baseline for comparison. Otherwise, any
measured grand average might be wrongly associated with
an ErrP.

3. REINFORCEMENT LEARNING

The idea of learning from interaction has supported theories
on how we humans learn and how what we understand as
intelligence is defined (Sutton and Barto, 2018). Comprehending
the learning processes in humans and animals has been
the focus of different theories in psychology studies, e.g.,
in the law of effect learning (Thorndike, 1898), conditional
(Pavlovian) learning, and instrumental (operant) conditioning
(Skinner, 1965). Sutton and Barto (2018) developed the
concept of reinforcement learning as a computational
approach to learning from interaction. Their book presents
the theory that supports an uncountable number of works
available in the literature that involve reinforcement learning
approaches, including the ones summarized here. Therefore,
for a deeper understanding of the theory and concepts of
reinforcement learning, we forward the interested—and
especially new readers—to this relevant book. Additionally,
we reinforce that the definitions presented in this section
have the book as the principal source, and we focus on
the fundamental components of a classic reinforcement
learning framework.

Reinforcement Learning can be defined as learning how to
map situations to actions in order to maximize a numerical
reward signal (Sutton and Barto, 2018). To achieve its task, the
learner—here called agent—must use a trial-and-error approach,
since no information is given about which actions should be
taken in each step. For each action taken, the agent receives
an immediate reward that quantifies its choice, and its goal in
the reinforcement learning problem is to maximize the total
reward accumulated. The agent interacts with the environment
in a sequence of discrete time steps t = 0, 1, 2, . . . . At each time
step t, based on the information it receives from the environment
regarding its state s ∈ S , it takes an action a ∈ A(s). Then, one
time step later, as a consequence of the action chosen, it receives

a reward rt+1 ∈ R and moves to a new state st+1. This interactive
process is shown in Figure 3.

One challenge arising in RL that is not present in the
other types of machine learning is the so-called exploration-
exploitation trade-off. As time passes, the agent learns to
exploit the information collected about which actions generate
higher rewards. On the other hand, without the information
about which actions are the good ones, it has to explore
its possibilities to find them (Sutton and Barto, 2018).
Additionally, in more complicated cases, the chosen action
might not only affect the immediate reward received but
also the next situation and, consequently, future rewards.
Together, the trial-and-error approach and the delayed reward
problem form the core characteristics of reinforcement
learning (Sutton and Barto, 2018).

Formally, RL handles the solution of a Markov Decision
Process (MDP). TheMDP framework is widely used as a classical
way to formalize sequential decision-making in scenarios
involving delayed rewards (Silver, 2015; Sutton and Barto, 2018).
It proposes that it is possible to reduce any problem of learning
goal-directed behavior to three signals exchanged between agent
and environment: state, action, and reward. The state carries
information about the environment status, but what it represents
depends on the problem. In simpler cases, it can be a finite
discrete set. However, more complex scenarios usually involve
continuous states. The same happens with the actions the agent
can perform. Together, they increase problem complexity. The
reward signal models the goal of the reinforcement learning task,
and the design of a meaningful reward function is not a trivial
task. In general, it is important to know that these three basic
components vary among tasks, and their definitions have a direct
impact on learning performance.

The learning task itself is goal-oriented and aims at learning
an optimal policy that defines the agent’s behavior. The policy
specifies which action should be taken in each state and therefore
directly influences the received reward. An optimal policy is a
policy that leads to the highest return in the long run, and more
than one may exist. This optimal policy can be determined via
value functions that estimate how good it is for the agent to be at a
specific state (state-value function) or how good it is for the agent
to take a specific action at a certain state (action-value function).
This estimation can be modeled as an iterative process, and both
the value function and the policy will converge to their optimal
values by the end of these interactions (for details see Sutton and
Barto, 2018). Therefore, many reinforcement learning methods
follow this formulation.

Thesemethods can be categorized according to their approach
to finding this optimal policy. If a model of the environment
is available, dynamic programming methods can be applied.
Otherwise, Monte Carlo or Temporal Difference ones can be
chosen. One can also distinguish between on-policy methods,
which use samples collected while acting according to the current
policy under evaluation, and off-policymethods that evaluate one
policy while acting based on another. The most popular example
of off-policy temporal difference methods is Q-learning, which
directly learns the optimal value function. Alternatively, instead
of learning the value functions, it is also possible to directly
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TABLE 1 | Summary of the error-related potentials defined in Section 2.

Error Task Stimulus #subjects Error rate

(%)

Electrodes Components Time-locking

event

References

Response Choice reaction

Go/NoGo

Eriksen flanker

Visual

auditory

91 healthy 5− 25 Fz, FCz, Cz,

Pz

Neg. 80 ms (Ne), pos. [200-500] ms (Pe) Response onset Falkenstein et al., 2000

Modified Eriksen flanker Visual 6 healthy n.a. Cz Neg. 100 ms (ERN) Gehring et al., 1993

18 healthy 7.9 Neg. 80 ms (ERN) van Schie et al., 2004

Feedback Time estimation Visual

auditory

somatosensory

18 healthy 50 FPz, Fz, Cz,

Pz

Neg. [230–330] ms (FRN) Feedback onset Miltner et al., 1997

Visual 5 healthy 50 FCz Neg. 320 ms, pos. 430 ms, Neg. 530 ms Lopez-Larraz et al., 2010

Target Manual aiming Visual 15 healthy n.a. Pz Pos. 341 ms (P300) Target jump onset Krigolson et al., 2008

Interaction Cursor control Visual 3 healthy 20 Cz Neg. 270 ms (Ne), pos. [350-450] ms (Pe), Neg. 550 ms Feedback onset Ferrez and Millan, 2007

5 healthy 20, 50 FCz Pos. 200 ms, Neg. 250 ms, pos. 320 ms, Neg. 450 ms Ferrez and Millan, 2008a

2 healthy 20 Pos. 200 ms, Neg. 270 ms, pos. 300 ms, Neg. 430 ms Ferrez and Millan, 2008b

6 healthy Pos. 230 ms, Neg. 290 ms, pos. 350 ms, Neg. 470 ms Ferrez and Millan, 2009

Robot control 13 healthy 35 Cz Neg. 200 ms (N2), pos. 300 ms (P3) Ehrlich and Cheng, 2016

BCI speller 16 healthy 38 Cz Neg. 350 ms, pos 480 ms Margaux et al., 2012

Visual, none 10 healthy 20 CPz Neg. 250 ms, pos. 500 ms Bevilacqua et al., 2020

Simulated car Visual 7 healthy 30 FCz, Cz Neg. 250 ms, pos.400 ms Zhang et al., 2013

Execution Cursor control Visual 10 healthy 55 FCz Pos. 229 ms, Neg. 287 ms (FRN), pos. 367 ms (Pe), Neg.

461 ms (N400)

Error onset Spüler and Niethammer,

2015

15 healthy 30 Neg. 246 ms, pos. 354 ms, Neg. 568 ms Lopes-Dias et al., 2019

Visual normal

Visual jittered

15 healthy 30 Neg. 196 ms, pos. 404 ms, Neg. 616 ms Lopes Dias et al., 2018

Robot control Visual 5 healthy n.a. Fz Neg.150 ms, pos.[300-500] ms Rakshit et al., 2016

Outcome Cursor control Visual 15 healthy n.a. Cz Neg. 268 ms (ERN) Movement end Krigolson et al., 2008

10 healthy 15 FCz Neg. 2 ms (ERN), pos. 268 ms (Pe), Neg. 486 ms (N400),

pos. 742 ms

Spüler and Niethammer,

2015

Car game Visual

auditory, none

10 healthy 22.7 Fz, Cz, Pz Pos. 200 ms, Neg. [400-500ms] ms Collision onset Kreilinger et al., 2016

Observation Modified Eriksen flanker Visual 18 healthy 9.1 Cz Neg. 252 ms (ERN) Response onset van Schie et al., 2004

Cursor control 3 healthy 20 FCz Pos. 200 ms, Neg. 250 ms, pos. 350 ms, Neg. 500 ms Feedback onset Chavarriaga et al., 2007

6 healthy 20, 40 Pos. 200 ms, Neg. 260 ms, pos. 330 ms Chavarriaga and Millan,

2010

Robot control 2 healthy 80 Pos. 300 ms, Neg. 400 ms Iturrate et al., 2010a

4 healthy Iturrate et al., 2010b

Please note that this table does not include an exhaustive list of available works. The ErrP components are presented in terms of the reported peak/latencies and the component name given by the authors, when applicable. Values

marked gray were inferred from available information, and n.a. indicates not available.
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FIGURE 3 | The agent-environment interaction process in an RL setup (Sutton and Barto, 2018).

search for the optimal policy, which is more suitable for high-
dimensional or continuous action spaces (Silver, 2015). Finally,
the so-called actor-criticmethods consider the advantages of both
value-based and policy-based methods and combine them by
learning both the value function and the policy simultaneously.

4. ERROR-RELATED POTENTIALS IN
BRAIN-MACHINE INTERFACES

Error-related potentials have been investigated under different
experimental setups using non-invasive BMIs. Several of these
works have focused on detecting such signals under the given
conditions. In such cases, the focus is on demonstrating that
ErrPs can be elicited using the proposed experimental paradigm.
As discussed in Section 2, ErrPs are generated in the brain not
only when the subject realizes a self-made error but also during
interaction or observation of an external system operation.

Self-made errors have been widely studied using attention
(Blankertz et al., 2002) and choice reaction tasks applying
for example the go/no-go (Wirth et al., 2019) or Eriksen
flanker paradigms (Gehring et al., 1993; Falkenstein et al., 2000;
Padrao et al., 2016). Chavarriaga et al. (2007); Iturrate et al.
(2010b) and Yousefi et al. (2018) have shown that ErrPs are
elicited when the subject has to engage in tasks that require a
high level of concentration (e.g., motor imagery or cognitive
task). The presence of an ErrP when the subjects evaluate the
actions of a robotic arm based only on individual subjective
criteria was addressed by Iwane et al. (2019). The possibility to
detect ErrP in a virtual reality environment has been evaluated

by Si-Mohammed (2020); Padrao et al. (2016); Singh et al.
(2018); Gehrke et al. (2019) and with projection systems in
Chavarriaga et al. (2012); Pavone et al. (2016); Yazmir and Reiner
(2017); Pezzetta et al. (2018). Lastly, Kumar et al. (2019a) have
investigated if an ErrP signal is evoked when stroke patients
are unable to perform a physical exercise. Since our goal is
not to provide a review of the detection of ErrP, these are just
some in a long list of available works that have only considered
error detection. For additional information, we recommend
seeing Chavarriaga et al. (2014) and Kumar et al. (2019b) for
other references.

Fewer works have gone further and proposed using these
error signals instead of just detecting them. Combaz et al. (2010);
Chavarriaga et al. (2010) and Zhang et al. (2018) have introduced
theoretical analysis of the potential benefits of applying an online
ErrPs detection to improve BMIs performance. The first systems
using the detected ErrPs were presented in Parra et al. (2003) to
correct human response errors based on the detected ERN and in
Ferrez and Millan (2008b) to stop cursor movement.

With more popularity, ErrPs have been extensively applied to
BCI spellers. Dal Seno et al. (2010) have shown the first attempt
at using a P300 BCI speller with an integrated error-correction
mechanism based on ErrPs, by canceling character selection upon
error detection. However, they measured no improvement in
their interface and attributed this to the low ErrPs classification
accuracy. With a similar approach, Schmidt et al. (2012) have
reported that false-positives in ErrPs classifier output influenced
overall system performance. Margaux et al. (2012) and Cruz
et al. (2018) have additionally proposed automatically replacing
characters with the second-best letter. Chavarriaga et al. (2016)
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have presented a novel BCI speller without the P300 component
in which the cursor moves in a matrix toward the most probable
character as inferred based on a language model and the
decoded ErrPs.

In the position control of a robotic arm, ErrPs have been used
as a feedback response to undo action when the robot moved in
the wrong direction (Bhattacharyya et al., 2014), to change to the
other possible direction (Salazar-Gomez et al., 2017), as well as
to compensate offset errors at end position (Bhattacharyya et al.,
2014, 2017; Rakshit et al., 2016). In other applications, the system
replaced the wrong selection with the second-best alternative
(Penaloza et al., 2014). In gesture-based BCIs, Putze et al. (2015)
have used error signals in different ways: to only undo a wrong
gesture, to select the second-best one, or to wait for the user to
perform a manual correction gesture.

Lastly, in the rehabilitation context, Rotermund et al. (2006)
have proposed an online adaptation scheme to control a
prosthetic arm. However, they provided only simulation results
using a hypothetical error signal. More recent work has analyzed
the application of ErrPs as a feedback signal to cancel a command
sent to a lower-limb exoskeleton (Zhang et al., 2018). However,
they do not seem to have applied their idea to a real exoskeleton.
Perrin et al. (2010) have introduced a novel semi-autonomous
navigation strategy for an intelligent wheelchair. Their system
recursively proposes an action until the user accepts it.

These are only some of the available works that have
proposed using the ErrPs information to improve their systems
by applying an error correction strategy. For an overview, please
see Supplementary Table 1.

5. ERROR-RELATED POTENTIALS-BASED
LEARNING

In this section, we summarize the works that have explored
using ErrPs as learning signals but that have not applied a
reinforcement learning framework as defined in Section 3. The
learning approach applied is shown in Figure 4 and consists
of using the ErrP information to update probability values. An
overview is also given in Table 2. A flow diagram of the review
process applied in this work to define the studies to report in this
and in Section 6 can be found in Supplementary Figure 1.

To provide the reader with an overview of what has been
done in the field we present the experimental setup employed
in each work together with the task to be learned based on the
error information. An additional focus lies on how the error
information has been applied. For that, we describe the learning
framework used and how each work has included the error
information. We highlight existing similarities (e.g., regarding
the learning task) among these works and points that have
been further investigated. To demonstrate to what extent the
proposed approaches have been evaluated, we emphasize the
total number of subjects and the experiments performed. We
also considered it relevant to provide details on the measured
ErrP. By mentioning the component-latency information and
the electrode used, we hope to help build a first impression of
the respective ErrP shape. Finally, further tests and comparisons

associated with error decoding or learning performance are
also reported.

A first attempt to use the detected ErrPs to improve system
performance by learning how to commit fewer errors in the
future has been proposed by Chavarriaga et al. (2007). Their
approach considered a 1D cursor control task with three fixed
positions: two possible targets and one current cursor position.
The subject had to observe and evaluate the system performance
considering that the task goal was to bring the cursor to the
highlighted target position. At each timestep, the cursor moved
toward or away from the target. The cursor followed a sub-
optimal control policy with an error rate of 20%.

Experiments with three subjects showed that an observation
ErrP could be measured and reliably detected on a single-trial
basis with an average accuracy of 76%. The measured error
showed the characteristic peaks at channel FCz (pos. 200 ms, neg.
250 ms, pos. 350 ms, neg. 500 ms, latencies approximated from
the provided plot) and was applied in a reinforcement learning
alike framework. The optimal control strategy to be learned was
expressed in terms of probabilities, and the ErrPs were used
to update the likelihood of performing each action given the
target location. Essentially, upon error detection, the probability
of performing action At at time t given target location Tt was
decreased. Offline learning analysis showed that the optimal
control policy was learned in about 40 trials. This same approach
has been further evaluated with six subjects in a larger working
space with twenty possible cursor positions and random targets
(Chavarriaga and Millan, 2010). A similar learning performance
has been observed, with the probability of performing the correct
action converging to 1 after 50 trials. However, once again,
only offline analysis has been performed. In this experiment, the
error grand average only displayed three prominent peaks (pos.
200 ms, neg. 260 ms, neg. 330 ms). Why the later negativity was
not observed in this case has not been investigated. How and
why such small changes in the experimental protocol can already
highly affect the ErrP shape needs clarification.

The 2D cursor control experimental protocol specified by
Iturrate et al. (2013a) (described in Section 6) has been further
used to create a framework to learn not only the task (i.e., the
reaching goal) but also the ErrP decoder itself in a new approach
for self-calibration of BCI systems. This is because a requirement
for ErrP-based learning applications is the possibility of reliable
single-trial-based detection of such signals. Hence, experimental
protocols usually start with a calibration phase with trials under
controlled error rates (usually around 20–30%). These trials are
later on used to train a subject-specific ErrP decoder. However,
calibration is a time-consuming task that takes precious minutes.
Aware of this limitation, Iturrate et al. (2015b) have shown that
it is possible to learn both simultaneously in an unsupervised
manner by exploiting known tasks constraints (i.e., the finite
number of reaching positions).

By assuming that the user always followed an optimal policy,
given a set of all possible goals, based on the observed EEG
data, the learning algorithm identified the intended task. The
expectation was that actions that agreed with the optimal control
policy for the user’s current intended task would not elicit ErrP
signals. Accordingly, tasks coherent with the measured brain
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FIGURE 4 | Error-based learning framework concept: upon EEG data classification, the error information can be used to update the likelihood of, for example,

performing each action, decreasing it upon error detected or increasing, otherwise. This approach has been used by Chavarriaga et al. (2007, 2010). Iturrate et al.

(2015b), on the other hand, have used the error information to update the likelihood of each possible position being the desired goal.

signals received a higher likelihood, and a planning algorithmwas
applied to choose among these tasks.

After identifying the task with high confidence, the system
followed the greedy control policy to reach the goal. In online
experiments performed with eight subjects, they measured a
characteristic fronto-central ErrP with significantly large positive
and negative peaks at 400 and 600 ms, respectively. While
comparing with a standard calibration approach, they have found
no significant differences in the measured ErrP. Moreover, they
have calculated the online decoder accuracy based on ground
truth labels and the percentage of correctly identified labels.
The overall online decoding accuracy was significantly similar
for both calibration approaches, suggesting that the proposed
framework did not decrease classification performance.

Using this same supervised calibration method, simulations
for all eight subjects using incremental learning resulted in an

average ErrP decoding accuracy of 68.4% ± 6.69, with 202 ± 75
trials required for calibration. Decoding accuracy obtained with
the self-calibrating approach was significantly similar. However,
the ErrP-based control achieved significantly better results in
terms of the number of correct trials reached (6.88 vs. 3.97) and
the number of steps until the first target (165.25 vs. 305.72), which
demonstrates the power of the proposed method. On the other
hand, it also reached more incorrect targets (1.50 vs. 0.10). We
agree with the authors that this might be because of the low
initial accuracy of the classifier. They have additionally suggested
that the system’s attempt to reduce uncertainty in the signals
instead of moving toward the target might have confused the
subjects. The decreasing trend observed in error ratio in the last
ten trials until reaching the first target provided further evidence
that the system learned the task already with the first target. One
limitation of this approach is that it relies on the existence of task
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constraints to generate all possible task outcomes. On the other
hand, authors have argued that the proposed approach could be
applied as an extension to a supervised method for improved
results instead of being a replacement.

6. ERROR-RELATED POTENTIALS IN
RL-BASED BRAIN-MACHINE INTERFACES

The purpose of this review is to summarize the existing literature
on the application of ErrPs as learning signals in reinforcement
learning-based setups. Therefore, this section describes in more
detail works dealing with this topic. For better understanding, we
grouped them based on the error applied. The learning approach
is mostly based on the use of the ErrP as a reward for the RL agent
(Figure 5). An overview is also given in Table 3.

6.1. Learning While Observing
Iturrate et al. (2010a) have proposed learning a new task based
on the observation ErrP. In their experiments, two subjects
observed a virtual robot with two degrees of freedom (DOF)
perform a reaching task with five possible positions. To verify
the possibility of detecting different types of errors in terms of
magnitude and direction, the subjects were instructed to evaluate
the system considering that the central target position was the
correct one, positions right next to the center were a small error,
and targets far from the center should be considered a large
error in execution. The measured observation ErrP showed a
positivity at 300 ms followed by a negativity at 400 ms. Moreover,
they classified the different error directions (left/right: ∼90%
and >80% for each subject, respectively) and the magnitude
(large/small:∼70% and∼60%) with accuracies above the chance
level for both subjects.

To demonstrate that the measured error signals can be
discriminated and applied in an RL scenario to learn a similar but
different task, they have used the standard Q-learning with an ǫ-
greedy strategy to learn the optimal policy for determining the
correct target. This time, however, the target was freely selected
by the subject. The reward for the RL agent was defined based
on the different error levels. With a freely chosen target position,
the error severity definition changed slightly. However, they have
used transfer learning and applied the ErrP-classifier trained
previously with pre-defined targets. This approach decreased the
detection ratio and affected learning convergence. A problem we
believe was accentuated by their reward definition. Therefore,
they report the results of 20 executions. For subject 1, 92% of
the runs converged to the correct selected target (in around 70
steps), whereas for subject 2, the performance was around 75%
(100 steps required). They have not further analyzed why the
performance for the second subject was so low. We suppose it
is due to the target choice since subject 2 chose the left-most
position as the target, and subject 1 chose the position exactly to
the right of the center target used during training. The decrease in
performance while transferring an error classifier between similar
yet different tasks requires further investigation because other
works, on the contrary, achieved significantly similar good results
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FIGURE 5 | Error-based reinforcement learning framework concept: the ErrP is used as a reward to guide the RL agent as it learns the optimal policy to achieve the

desired task. The error-based reward functions penalize wrong actions and reinforce those evaluated as the correct expected behavior by the subject.

while including new targets (e.g., Iturrate et al., 2015a, described
in Section 6).

Also important to mention is that other works have not been
so successful in detecting error severity. Iturrate et al. (2010b)
have instructed four subjects to observe a 5-DOF robotic arm
performing a reaching task to five color-coded areas (red—
large error, green—target, and yellow—small error). They have
explicitly told the subjects to evaluate the robot’s motion based
on the defined levels of severity. Even though error and correct
trials could be differentiated, with an accuracy of 80%, they could
not classify between small and large errors. Similarly, Spüler and
Niethammer (2015) have attempted to identify different levels
of execution error severity in a cursor control task by applying
different angles (45◦, 90◦, or 180◦). Their results did not confirm
their hypothesis that a higher error amplitude would be observed
for higher deflections. Authors have argued that using smaller
angles (e.g., 15◦, 30◦, and 45◦) could generate different results,
especially if the degrees of errors are made very clear to the
subject. But the previous study shows that explicitly instructing
the subjects might still not be sufficient.

While also working with a cursor control task, but this time
on a 2D setup, Iturrate et al. (2013a,b) have demonstrated the
possibility of using ErrPs in an online system to learn to reach a
goal location, either fixed or freely chosen by the subject, within
a 5 × 5 grid from any starting position. In their approach, error-
based learning consisted of two parts. First, the optimal policies

for all possible targets in the grid were computed offline using
Q-learning. Then, during online cursor control, the probability
of having the goal location on each possible state was updated,
based on EEG classification result, until a convergence criterion
was satisfied.

Results of the reaching task show that the desired target could
be reached within 25 and 21 steps for fixed and freely chosen
goals, respectively. A random walker would require 150 steps
in this grid. Moreover, there was a negative correlation between
the time required to reach the target and the ErrP classifier
accuracy. This result was expected and confirms that the effective
use of ErrPs as reinforcement signals is highly dependent on
their accurate classification. As the authors have mentioned,
their approach exploits the structure of the optimal policies for
each possible target location to compensate for the low ErrP
detection rates and enable learning. They have also argued that
their shared-control strategy could be applied to more complex
scenarios. Because (i) it does not require extensive exploration
of all possible trajectories and goals, and (ii) it does not impose
extra workload on the user, who still only needs to monitor the
system. On the other hand, a complete performance assessment
of this approach requires a study with a representative number
of subjects.

The proposed shared-control strategy has been extended to
the continuous control ofmobile robot navigation in a discretized
5×5 arena with continuous action and state-spaces (Iturrate et al.,
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TABLE 3 | Overview of brain-machine interface systems that use error-related potential-based reinforcement learning frameworks.

Application Task References #subjects User task RL task ErrP signal Reward function State space Action space RL agent

Cursor control 2D reaching

task

Iturrate et al.,

2013a

Iturrate et al.,

2013b

4 healthy Observe

cursor

Learn optimal policy to

reach target (offline) and

learn user’s chosen target

and reach it (online)

Observation ErrP Not mentioned 25 grid positions 5 actions [left,

right, up, down,

reach]

Q-learning

and

likelihood

1D reaching

task

Iturrate et al.,

2015a

12 healthy Observe

cursor

Learn user’s chosen target

and optimal policy to reach

it (online)

Observation ErrP R =







−1 if error detected

+1 if no error
9 target

positions

2 actions [left,

right]

Q-learning

Robot control 1D reaching

task

Iturrate et al.,

2010a

2 healthy Observe

virtual robot

Learn user’s chosen target

and reach it (online)

Observation ErrP R =















−1 if large error

−0.5 if small error

+1 if no error

5 target

positions

5 actions [one for

each target]

Q-learning

2D reaching

task

Iturrate et al.,

2015a

12 healthy Observe

virtual robot

observe real

robot

Learn user’s chosen target

and optimal policy to reach

it (online)

Observation ErrP R =







−1 if error detected

+1 if no error
13 grid positions 4 actions [left,

right, up, down]

Q-learning

2D reaching

task

Kim et al., 2017 7 healthy Make

gesture and

observe

robot

Learn to recognize human

gestures and map them into

robot commands (online)

Observation ErrP

interaction ErrP

R =







0 if error detected

+1 if no error
palm normal

vector and grip

strength

3 actions [left,

right, forward]

LinUCB

Guessing

game

Ehrlich and

Cheng, 2018

16 healthy Observe

robot

Adapt gazing policy to

subject’s guessing policy

(online)

Feedback ErrP R =







−1 if error detected

+1 if no error
4 gazing options

[3 objects,

human]

4 actions [gazing

options]

Policy

gradient

2D reaching

task

Schiatti et al.,

2018

8 healthy Observe

robot

Learn user’s chosen target

and intended strategy to

reach it (online)

Observation ErrP R =







0 if error detected

+1 if no error
25 grid positions 4 actions [left,

right, up, down]

Modified Q-

learning

2D reaching

task

Kim et al., 2020 8 healthy Make

gesture and

observe

robot

Learn to recognize human

gestures and map them into

robot commands (online)

Observation ErrP

interaction ErrP

R =






−0.25 if error detected

+1 if no error

palm normal

vector and grip

strength

4 actions [left,

right, forward,

upward]

LinUCB

2D reaching

task

Akinola et al.,

2020

7 healthy Observe

robot

Learn to navigate in

environment with obstacles

to reach a target position

(online)

Observation ErrP R =














+100 if target is reached

−100 if collision occurs

−1 otherwise

13 values [laser

range data,

target

displacement

and robot yaw]

3 actions [forward,

turn left, turn right]

PPO

Binary

selection

Luo et al., 2018 12 healthy Observe

robot

Learn to solve RL problem

(four different problems)

Observation ErrP Not specified Not specified Not specified Not

specified

Rehabilitation

device

Open/close

hand

Roset et al.,

2014

1 healthy

1 SCI

patient

Perform

hand

open/close

Learn to classify motor

potentials into device

commands (online)

Interaction ErrP R =

{

−1 if error detected

+1 if no error
12 normalized
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2013b). A policy matching algorithm for inverse reinforcement
learning to learn the desired target position used the error
information to compute the likelihood1 values, differentiating
rotation and linear actions. The error detection was based on a
fixed high threshold value, penalizing targets in front or toward
which the robot was turning when an error was detected. For
the ErrP decoder calibration, they first collected trials with the
subject pressing a button upon correct/wrong events (separately
for each class). During the continuous evaluation of the system’s
performance, they have overcome the lack of a clear cue onset
for the error detection with a classification based on overlapping
windows of fixed length in an asynchronous fashion.

Only one subject participated in this preliminary experiment
(no follow-up studies found) with freely chosen initial and target
positions. Upon error detection, the navigation stopped for a
second, and a new target was selected. Results over two runs
show that the robot reached the goal positions within 60 and
121 s. Most erroneous events detection occurred during rotation
motions, which allowed the robot to follow straight lines for
most of its trajectory. Additionally, the proposed control strategy
can recover from false positives and still reach the goal, as
demonstrated along their second run (EEG data analysis has not
been provided).

Focusing on neuroprosthetics control for real-life
applications, Iturrate et al. (2015a) have evaluated three
different BMIs under a new paradigm for learning the desired
control command (i.e., motor behavior) to reach the target
location. The motivation behind the proposal is to overcome the
limitations imposed by systems that require learning to modulate
specific brain signals (e.g., in motor imagery applications) to
generate the corresponding motor commands for the prosthetic
device. The tested BMI systems included a 1D cursor control
with nine possible positions and targets on either extreme and a
real and a simulated 2D robot control scenario with four possible
target positions. The subject had to monitor each system acting
to reach the defined goal position. Targets remained fixed within
each run, and a new initial position was sampled every time the
cursor reached the target. The detected ErrP was included in the
reward function for an RL agent to learn the optimal control
policies for reaching each of the predefined targets. The RL agent
was based on iterative Q-learning starting with a random policy
with updates upon EEG signal classification.

Data collected with twelve subjects show a difference
waveform for the ErrP with larger positive and negative peaks
at 300 and 500 ms at channel FCz, respectively. Interestingly,
latency and magnitude differed significantly across experiments
(cursor or robot), but classification accuracies were similar for all
three (∼73.5%). Online learning showed that, after four targets,
the device achieved close to optimal, steady behavior and could
reach the desired target from any starting position. On average,
12.38 ± 5.66, 12.46 ± 5.40, and 12.75 ± 6.63 targets were
reached per run (a random walker would achieve 2.27± 1.56 and
2.32± 1.54, for cursor and robot scenarios, respectively).

1The learning framework used is described in Figure 4. This work is a follow-up,

and to connect it to its previous work, we have chosen to keep it in this section.

The normalized number of actions required to reach the
target converged to 1.19 ± 0.52 in the cursor experiment
and 2.00 ± 0.76 and 1.97 ± 0.75 for the two-dimensional
setups (optimal behavior would be 1). The system achieved
above chancel level results after 10 and 15 actions, respectively,
and the high correlation found between time and number of
optimal learned actions suggested that performance improved
continuously. Moreover, there was an increasing trend in the
number of targets reached over time. The performance of
experiments with the 2D environments that included two new
target positions previously unavailable during ErrP calibration
was significantly similar to the results for the practice targets.
This result indicates that a re-training of the ErrP decoder is not
required for unseen targets. Interestingly for the simulated robot,
the number of optimal actions learned reached above chance
level after only 4 actions while, in the real robot scenario, it took
14. Both paradigms had the same design. Why such a difference
existed has not been further investigated.

Schiatti et al. (2018) have proposed to improve upon the
approaches described so far and evaluated an online framework
to learn both policy and target simultaneously as a robot
performed a reaching task in a 2-D grid. The RL agent,
implemented as a modified version of the Q-learning algorithm,
directly received information about the target position and the
output of the ErrP classifier as a reward to learn the optimal policy
for each of the two possible targets. Afterward, the agent had
to learn the intended target based on information on the routes
and the decoded ErrPs. While Iturrate et al. (2015a) applied fixed
values for the learning rate and the discount factor parameters,
Schiatti et al. (2018) have applied different values in different
learning phases.

To analyze the applicability of the proposed methods, the
authors have performed offline simulations of both route and
target learning for different ErrP detection accuracies (1.0, 0.8,
and 0.6). Even for the lowest accuracy, including the ErrP
information as reward proved more efficient than simple Q-
learning. The ErrP-based reward formulation resulted in fewer
steps necessary to reach the target during the first iteration (from
80 to 20) and generated routes of slightly smaller length at
the beginning of the learning. During target learning, a similar
learning behavior has been observed. Fewer steps were required
to reach the current target (3 − 5, 7, and 15, for each simulated
accuracy, respectively), and over 70% of the steps had a correctly
identified target.

Eight subjects participated in online experiments, with half of
them undertaking the experiment with only visual feedback and
the other half receiving visual-tactile feedback. They have used
different modalities to investigate their effect on ErrP decoding
accuracy. The measured ErrP exhibited a significant negative
peak around 270 ms, followed by another negativity around
650 ms after feedback onset for both feedback modalities. Other
prominent peaks differed between the two conditions. The visual-
tactile condition also usually generated larger peaks. However,
ErrP classification accuracy did not vary significantly between
feedback conditions (60 vs. 59%).

The learning performance also did not present any significant
differences based on the type of feedback used. However, for
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the visual-tactile modality, corrections did happen in earlier
steps during route learning (5–8th vs. 8–11th iteration). During
target learning, the authors have reported a more uniform
average number of correct steps (even though it ranges from
60–80%). Generally, learning performance seems coherent with
the simulated results for a 60% error detection. One contribution
of this work, from our perspective, is the simulation performed.
We believe that performing such simulations for the learning
approaches will help us establish boundaries for error-based
learning/adaptation in different applications. Moreover, it could
facilitate the comparison of approaches.

Learning to identify the desired target and the optimal policy
to reach it was analyzed in the works so far revised in this
section. Unlike (Chavarriaga et al., 2007; Chavarriaga andMillan,
2010) and Iturrate et al. (2015b) (listed in Section 5) that applied
an offline likelihood-based framework for learning the optimal
policy for reaching the desired target in the 1D cursor control, the
works described in this section have used an RL-based framework
for both offline (Iturrate et al., 2013a,b) and online (Iturrate et al.,
2015a) policy learning as well as for online target learning. In the
robot control setup, Iturrate et al. (2013b, 2015a) and Schiatti
et al. (2018) have expanded the setup used previously (Iturrate
et al., 2010a to a 2D configuration. Tables 2, 3 summarize the
problem definition in each work.

In recent work, Akinola et al. (2020) have indirectly applied
the ErrPs to accelerate robot skill learning in an RL setup
with sparse rewards. First, the ErrP information drove the
online training of a human feedback policy. A neural network
trained using supervised learning to map state-action pairs to
the human label given by the ErrP classifier, and that learned
the probability of positively rewarding each action. In a second
step, this policy guided exploration at the beginning of learning.
As time proceeded and the actual RL policy became able to learn
despite the sparse rewards, the human policy application stopped,
and policy learning continued in an on-policy fashion, using
the PPO algorithm (Schulman et al., 2017). The motivation for
their approach was that, while previous works have successfully
demonstrated the viability of using brain signals as feedback for
learning, none of the systems achieved an autonomous operation
with the same performance once the human feedback was no
longer available.

Akinola et al. (2020) have performed experiments using
simulated robot navigation in an environment with obstacles
and a fixed target position. They have modeled the RL problem
with a discrete action space to facilitate the subject’s assessment
and defined three actions: moving forward and turning (left
or right). The state-space considered remained continuous and
was given in terms of laser range measurements, displacement
to the goal in polar coordinates, and the yaw angle of the
robot. The sparse reward function for this navigation problem
specified punishments for each action not leading to the target
reached and collisions and a reward for reaching the target. They
have additionally considered an informative reward function
extending the sparse formulation with the euclidean distance
from the goal and the orientations.

The learning algorithm performance has been tested under
two experimental conditions with a fixed and a variable starting

position. Simulation results show better learning performance
for higher ErrP accuracies (0.7, 0.6, 0.55) in the proposed
algorithm extending the sparse reward with the human policy,
in the beginning, to guide exploration toward the goal. Either
with a fixed or variable starting position, learning based only
on the sparse reward function presented worse performance
[given in terms of success weighted by normalized inverse path
length (SPL)]. An expected result, since the agent only rarely
stumbled on the target, receiving a positive reward that would
be informative enough to learn the given task. The complex
reward function also guided task learning, as predicted, but not
significantly better than the proposed algorithm, which has the
advantage of not requiring expert knowledge.

Seven subjects participated in an online experiment under the
variable start condition. Results are reported for five participants
only, for whom the ErrP decoding accuracy was high enough
to guide policy learning. Recorded neural data analysis has not
been provided. Results are similar to the simulations, showing
comparable performance between the proposed method and the
richer reward function. Nevertheless, the authors show that five
runs with the proposed method achieved less variation.

Limitations of the approach are the discretized action space
and the single target. Future work should focus on approximating
realistic applications. It would also be interesting to further
analyze how the ErrP decoding accuracies affected online
learning. Finally, one could examine the usability and advantages
of training a human feedback policy and consider, for example,
the relevance of such an approach for BMIs.

The same approach of using the error signal to train a reward
predicting function to replace the human observer has been
tested by Luo et al. (2018), who used it to guide learning in
four difficult RL environments that are well-known in robotics
applications: Cheetah, Reacher, Hopper, and Ant (Christiano
et al., 2017). The environment specifications (state/action spaces
and reward functions) have not been reported. Twelve subjects
took part in the experiments, three per environment. With 70%
error detection accuracy, learning based on the rewards provided
by the error-based reward function trained did not achieve
good performance, reaching lower reward values than the ones
obtained by what the authors called human and synthetic queries
for all subjects and environments. The authors have claimed that
collecting more trials improved the results. However, it is unclear
how they have performed the comparisons.

6.2. Learning While Interacting
All works mentioned in the previous section have used
observation ErrPs to improve brain-machine interface
performance. However, it is also relevant to study whether
such a reinforcement learning framework can be applied when
the subject actively interacts with the system. Such conditions
could represent a more realistic application scenario for BMIs,
especially when dealing with patients. The works summarized in
this section have analyzed such conditions.

Roset et al. (2014) have proposed an adaptive BMI as a proof-
of-concept system for augmented rehabilitation involving hand
grasp/open movements. The system implements an actor-critic
architecture wherein the actor decodes the motor potentials to
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determine the desired hand movement, and the critic relies on
its ability to detect ErrPs to provide feedback to the actor. The
ErrP decoder was trained using supervised learning with an error
rate of 50%, and the weights for the actor’s neural network were
randomly initialized in the first closed-loop session, updated after
each trial, and used as initial values for the subsequent session.

Results over four sessions on different days show that the
actor’s cumulative classification accuracy increased over time
from chance level and approached the classification accuracy of
the critic (68.8% and 64.2%, for control and SCI subjects). This
successive improvement over sessions suggests that the subjects
resumed their rehabilitation progress. The authors report that the
updates on the actor’s neural network weights reduced after the
second session and continued throughout the trials, suggesting
that performance would not worsen over time and instead could
further improve. For comparison, with static weights trained
using data from the previous session, the accuracy is initially
above the chance level. But it decreases over time to below 60%.

The measured ErrP at the Cz electrode was consistent
with results reported in other interaction tasks. Unlike other
studies, this setup has also been tested in a patient with spinal
cord injury (SCI). Though significantly above the chance level,
the performance was slightly worse when compared to the
control subject, which could be explained by the lower ErrP
decoding accuracy.

The proposed setup seems interesting for everyday use of
rehabilitation systems since it does not require daily initialization
and seems able to improve over time. To fully address its
advantages, it is necessary to expand this setup to a study with
a representative number of subjects and include quantitative
analyses of the adaptation observed.

Kim et al. (2017) have also focused on more realistic
applications in which the subject not only observes the system
but actively interacts with it. They have implemented a human-
robot interface that allowed subjects to freely choose between
three hand gestures to control a robotic arm. The robot had no
prior information about the meaning of each gesture and learned
it based on gestures features extracted from a Leap Motion
Controller sensor (LeapMotion, 2021). In other words, the
system simultaneously learned how to recognize human gestures
and the correct gesture-action mapping (compare with Roset
et al., 2014).

As a learning algorithm, the proposed system implements a
contextual bandit approach (Li et al., 2010), which considers the
context provided by the gestures to choose the appropriate action
at each interaction trial. The action selection strategy improves
with time, based on the information from the ErrP classifier. To
further improve learning robustness, positive feedback received
higher weights by using a data augmentation approach in which
the ErrP classifier made two decisions for the same trial. With
the application of two overlapping windows around the same
feedback event, the detection of positive events became more
reliable since only when the classification for both windows
was correct positive feedback was generated. This design also
helped overcome the low number of erroneous events to train
the ErrP classifier. Additionally, they speeded up calibration with
a classifier transfer approach from observation to interaction

ErrPs. Performance slightly decreased but achieved a high-
enough accuracy during online experiments tomoderate effective
learning. To reduce the number of errors at the beginning of the
learning, the RL agent was pre-trained, for each subject, using up
to three gesture-actions pairs.

Experiments were performed with seven (nine) subjects with
simulated and robot scenarios. EEG data analysis revealed ErrPs
with positive and negative peaks at fronto-central electrode FCz
with slightly delayed latencies of 332 and 540 ms (real robot)
and 504 and 584 ms (simulated robot). Between scenarios, the
peaks amplitudes did not differ significantly. But the positive
peak latency was significantly larger, and the negative peak
was also significantly enhanced and had lower latency for the
simulated robot scenario. The authors have attributed the delayed
latencies and different results to the action execution speed,
which was much faster with the simulated robot. Since the error
detection used the action onset, subjects might have only detected
it at the end of the action execution. Still, online balanced
ErrP classification accuracies reached ∼90% over all subjects for
both scenarios. Further analysis of the robot behavior learning
progress showed that false negatives on ErrP detection had a
higher impact on learning than false positives. This observation
is a direct consequence of the proposed framework favoring
true positives.

Learning performance in terms of the number of accumulated
errors made throughout the experiment showed similar results
for simulated and real robot scenarios (9.57 ± 0.32 over 90
actions vs. 4.86 ± 1.21 over 60 actions). For the simulated
robot, two subjects experienced a higher number of errors
and, consequently, a slow stabilization during online learning.
However, accumulated errors were fewer for the second part of
the experiments. Statistical tests showed significant differences
in the total number of errors between the first and second
half, meaning that the agent committed fewer errors as learning
proceeded, and it reliably mapped gestures into correct actions
according to the subject’s assessment. For the real robot, the
same behavior has been observed but only descriptive results
are provided because of the reduced number of trials in the
second phase.

According to the authors, the proposed learning framework
has the advantage of not being limited by the number of possible
actions. Nonetheless, further studies are required to evaluate
learning convergence when too many options (i.e., a large action
space) are available. Moreover, one could consider applications
involving asynchronous ErrP detection and continuous control.
As the late ErrPs components indicate, it is hard to precisely
knowwhen the subject realized the error after the robot started an
action. Therefore, reliably detecting such signals in asynchronous
setups could bring the approach closer to more complex and
realistic interaction scenarios, in which a clear event onset might
not be possible.

Another interesting aspect of this proposal is the possibility
of re-learning if the subject changes the gesture meaning during
learning. The authors have not tested this concept, but they have
investigated the possibility of incorporating new gestures in a
follow-up work (Kim et al., 2020). In this case, the authors have
only focused on the real robot application with essentially the
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same experimental setup. They have analyzed the effect of adding
a new gesture on online learning by instructing the subjects to
perform only three gestures, and after an acoustic signal, add the
new one. Subjects performed experiments under two conditions:
with a pre-trained model (warm-start) and without pre-training
(cold-start) (please note that results were reported based on
different total number of trials: 90 and 120, respectively).

Comparisons showed that pre-training the model with one or
two gesture-action pairs significantly improved online learning
(∼30 vs. ∼10% mapping errors over all trials for no- vs. pre-
training conditions. The values were approximated from the
provided plot). The accumulated errors reduced over time, even
though a slight increase was observed immediately after adding
the new gesture. On the other hand, with the untrained model,
the number of errors was high in the first third of the experiment,
and significantly reduced with time, even after including the new
gesture. This result suggests that collecting more information
about the three initial gestures somehow compensated for
the lack of pre-training and contributed to accumulated error
reduction. In line with this observation, the slight performance
decrease in the last part of the experiment also led the authors
to conclude that increasing learning accuracy after inserting
the new gesture would require more trials. Finally, the authors
have also investigated the correlation between ErrP-classification
performance and learning performance. It is not surprising that
they have found a high correlation and that the cold-start model
was more sensitive to error detection performance. An analysis of
the effect of poor gesture recognition remains an open question.

In another work implementing an error-based learning
scenario while subjects interact with the environment, Ehrlich
and Cheng (2018) have applied the ErrPs as mediating signal
for human-robot co-adaptation. While the subject adapted his
actions by reflecting the robot’s behavior, the robot itself also
adapted its actions based on the subject’s choices.

Their experimental setup consisted of a guessing game
involving objects positioned between subject and robot. The
robot chose one object and gazed at all three plus the subject, who
had to observe the pattern and guess which object was the robot’s
choice, without hints of what to look for. The proposed idea
was to show that a robot-human co-adaptation can be mediated
by the ErrP generated when the subject wrongly guesses which
object was chosen by the robot. Based on this negative feedback,
the robot should adapt online its gazing policy to enable correct
guessing from the human in the future, as both try to achieve
a consensus.

Policy adaptation used policy gradient methods and was
mediated by the error information. This way, to compute the next
policy, the algorithm combined the parameters of the current
policy with the weighted empirical distribution information of
the current trial. They expected that the more common state-
action pairs would be more relevant for correct or wrong subject
guesses. Hence, with this formulation, information about the
gazing policy the subject has observed could be considered while
updating the policy.

Thirteen participants participated in the experiments. The
measured ErrP showed an N2-P3 complex with a fronto-
central distribution and could be classified online with an

average accuracy of 81.8%, which sufficed to drive co-adaptation.
Successful adaptation reported in terms of the guessing accuracy
during each adaptation run shows that it increased over time
from the chance level to up to 70–90% within 10–40 trials.
Moreover, the number of gazing actions the robot took before
the subject informed the guess decreased 15–27%. This reduction
indicates that adaptation of robot’s behavior based on the
subject’s information brings along a more efficient human-robot
interaction, as subjects could respond faster and more accurately.
Analysis of policy convergence in terms of the difference between
subsequent policy iterations was in line with the previous
results and showed a decreasing trend, indicating convergence
over time.

A comparison of the learned policies with and without
explicit human feedback via keypress provided no indications
that this feedback is required. However, given the limited data
for successful adaptation in this single run, the authors have not
reported further analysis from this data. They have also analyzed
the generated policies and identified two types: what they defined
as fixation and nodding behavior. Following the fixation policy,
the robot tended to focusmore often on the desired object. On the
other hand, the nodding policy made it gaze more often between
the human and the selected object only. The convergence to two
policies seems to be a direct consequence of the experimental
setup used, which did not expect a specific behavior from the
robot or the human. The authors hypothesize that future studies
that analyze why only two strategies appeared could provide
insights into how we process information and learn.

Similar to the works that used the ErrPs to guide robot skills
learning, the results show that a significant positive correlation
exists between co-adaptation performance and ErrP decoding
accuracy. Interestingly, however, some cases of unsuccessful co-
adaptation have been observed even with a high (> 75%)
ErrP decoding accuracy. According to the authors, it could
be related to subject attention and motivation or the setup
itself. As they have explained, the proposed strategy focused
on quick learning convergence, but not necessarily to a global
optimum. It provided flexibility to the setup, allowing learning
to be somehow robust against chances on the subject’s strategy
on the run. On the other hand, authors hypothesized that
this might have caused instabilities and even promoted quick
unlearning. They suggest using an adaptive learning rate based
on ErrP detection, under consideration that such control of
the learning process is recommendable. A deeper investigation
should also be performed considering longer co-adaptations runs
than the 50 iterations considered in this study. Authors claim
that, because of the gradient-based method for policy learning,
the proposed setup should generalize and scale to more complex
HRI scenarios.

7. DISCUSSION

We presented a review of studies that utilize the detection
and classification of error-related potentials in a reinforcement
learning framework to go beyond error correction and use these
signals directly for learning. These works report improved BMIs’
performance and demonstrate that the RL framework is capable
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of learning and adapting related mappings based on error-related
potential in a self-organized manner. Nevertheless, there is still
room for improvement, and future research should address
specific issues.

As expected and reported bymany of these works, the effective
use of ErrPs as feedback signal highly depends on their reliable
detection on a single-trial basis. Therefore, many experimental
protocols usually start with a calibration phase to collect trials and
train a subject-specific ErrP decoder under very controlled error
rates (usually around 20–30%). Calibration is a time-consuming
task that usually takes between 20 and 30min since a considerable
number of trials for each class (error and correct) have to be
collected. Also critical is that error trials usually happen less often
than correct ones, resulting in an imbalanced training set and a
class bias in the error classifier.

Many works have proposed a calibration-free setup by
applying classifier transfer between subjects. Schonleitner et al.
(2019, 2020) have shown that the generalized model achieved
acceptable performance, and further using supervised or
unsupervised adaptation strategies could additionally boost
performance. Lopes-Dias et al. (2020) have proposed a generic
classifier that achieved comparable performance to the subject-
specific model, and Lopes-Dias et al. (2021) have transferred
a generic classifier between healthy subjects and subjects with
spinal cord injury. But, even though their model achieved
acceptable performances in all these setups, performance still
decreased after transfer. Kim et al. (2017) have shown that it is
also possible to transfer classifiers between different error types.
The advantage, in this case, is that using an observation error for
calibration enables collectingmore trials since less time per trial is
required than when the subject is also interacting with the system.

More recent works have also focused on the application of
convolutional neural networks as an alternative to the widely
used Support Vector Machine or Linear Discriminant Analysis
models (Behncke et al., 2018; Swamy Bellary and Conrad, 2019;
Gao et al., 2020). Results show a slightly increased accuracy,
which is again a strong indicator that it is not the machine
learning techniques that determine the limits of accuracy in
the error-related potentials classification problem. The relation
between the provoking event and the related measured signal
(occurrence, amount, time course, etc.) in the brain has to be
better understood and precisely determined.

The error rate used during the calibration phase also seems to
affect error amplitudes and, as a consequence, the decoding, as
shown by Chavarriaga and Millan (2010), who have compared
20% and 40% error rates, with less prominent peaks for the
second condition. On the other hand, Pezzetta et al. (2018) have
shown that ErrPs are also generated when the error rate is higher
(80%), but they have not reported classification comparisons.
Therefore, future systems design should also analyze which other
interface factors might affect error-based learning.

However, an interesting question is how accurately does the
error classifier actually have to be? Sutton and Barto (2018)
have shown that reinforcement learning algorithms can learn
optimal policies even with reward uncertainties. Chavarriaga
et al. (2014) and Iturrate et al. (2015a) also claim that the ErrP
decoding on a single-trial basis does not have to be perfect.

According to them, an above chance level accuracy is enough to
teach the system the correct motor behavior, provided that the
initial system performance is already acceptable to the subject.
Considering this aspect can model the efforts to increase ErrPs
classification accuracy.

On the other hand, one might also consider addressing the
uncertainties around the error generation in the brain itself
and how they propagate through the learning pipeline. Error-
related signals should be generated in the brain even when
the subject is not actually conscious of them (Nieuwenhuis
et al., 2001). However, what if it is also possible that, on a
single-trial basis, a distinguishable error signal is, in fact, not
generated at all? If this would be the case, improvements on
BMI interfaces would already be fundamentally limited. In terms
of learning, considering such uncertainties might help develop
more robust systems. In this work, we have only focused on the
existing non-invasive-based literature. Exploring available data
and findings provided by studies using invasive techniques might
also contribute to better establishing the boundary conditions
for the reliable detection of such signals on the scalp. Moreover,
especially since the applications focusing on using such signals
rely on their single-trial detection, it could be interesting to start
looking at the single-trial characteristics of the ErrPs. We believe
that understanding the conditions under which such signals are
generated can also guide the specification of a more suitable
preprocessing pipeline and an accurate classifier.

In the studies reviewed, the measured ErrP has been
commonly reported by means of the grand average ERP as it
is part of the fundamentals of the ERP theory. Still, there is no
standard in the studies for reporting the averages. The difference
grand average (error minus correct) over all trials and subjects
is widely used and provides information about the shape of
the elicited ErrP. It has, however, the limitation of masking
the inter-trial and subject variabilities, which are particularly
pertinent since the applications require the single-trial detection
of such signals. On the other hand, only a few studies have
provided an additional statistical comparison for the significance
of the observed differences. The grand averages for the error
and correct trials have also not always been reported. Additional
ERP analyses such as topographical scalp distribution and source
localization have in some cases been covered. Such analyses
could help the further characterization of the ErrP and provide
additional means for comparison across experiments. None of
the studies considered have attempted to analyze the properties
of the respective ErrPs in the frequency domain to characterize
the frequency range modulations. This information could also be
used, e.g., to tailor frequency-domain-based classifiers.

Moreover, as it can also be seen in the works listed here,
the errors waveshape exhibit differences in terms of components
observed, as well as their respective latencies, even when using
very similar tasks. How well these waveforms generalize across
subjects, tasks, experimental protocols, and feedback modalities
have to be better understood. Aspects such as subject attention,
engagement, motivation, and fatigue have to be systematically
investigated under the described protocols to quantify how they
affect the modulation of the ErrPs and influence decoding and
learning performance.
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The ErrP-based BMI systems summarized here have
consistently reported that the ERP components associated with
error processing and performance monitoring generally show
a fronto-central distribution, with the anterior cingulate cortex
(ACC) as their most likely source. Future BMI research should
also focus on the underlying cognitive processes that generated
the measured components. Analyzing the connection between
measured ERP components and corresponding cognitive sources
can not only improve our current understanding of the neural
correlates of performance monitoring, error processing, and
learning in the brain but also contribute to the development of
robust BMI systems that intend to use such signals.

Evaluation metrics for the ErrP classification performance
also vary among the studies reviewed. We also believe that
using only the overall classification accuracy as metrics is not
suitable considering that the ErrP classification constitutes a
highly imbalanced binary classification problem. At least the
true-positive and negative rates should also be provided, and
other metrics such as the balanced accuracy, the F1 score, or the
precision-recall AUC score could also be considered.

Apart from the consistently reported correlation between
the error classification accuracy and the learning performance
over the summarized works, another common aspect is that
the adopted experimental protocols considered error-related
potentials time-locked to discrete feedback events. As a
consequence of this choice, the experimental paradigms used
were also limited to discrete tasks and action spaces.

Most of the works have chosen a simple 1D or 2D reaching
task of similar dimensions as the target application. However,
even though the task setups were quite similar, comparing
their results is somehow limited because they have focused
on trying different modifications of these simple setups under
different conditions. This emphasizes how research on the use
of error potentials as reinforcement learning signals is still in
its initial phase and has so far mostly focused on demonstrating
the feasibility of using ErrPs to learn a simple, well-defined
task within a very controlled scenario. Hence, future work
should further explore each different possibility and provide
comparable frameworks.

As for the discrete feedback limitation, future work should
also attempt to expand these paradigms to continuous setups.
Different works have already shown, for example, that ErrPs
can also be detected under continuous feedback in combination
with discretized events for error decoding (Spüler et al., 2015;
Kreilinger et al., 2016). Alternatively, one could also consider
asynchronously detecting such signals. This approach does not
require a defined time-locking event and can expand error-based
BMIs to more complex scenarios. Omedes et al. (2015a) have
shown, for example, that errors in the start or middle of a target
reaching trajectory could reliably be detected asynchronously
when the subject observed the cursor on the screen. Later, authors
compared error signals after sudden and gradual changes in the
cursor trajectory but were not able to distinguish between both
types of errors as no discernible error pattern could be identified
for the gradual changes (Omedes et al., 2015b). However, they
have shown that it is possible to train an asynchronous detector
for sudden errors and use it to detect gradual errors.

More recently, Lopes Dias et al. (2018) have used a continuous
cursor control task with a joystick to analyze the error signals
generated under two continuous feedback conditions: a normal
and a jittered. Both errors could be classified against the no
error condition, but it was not possible to distinguish between
them. In any case, asynchronous detection of error events
(including both feedback conditions) was still possible. These
results suggest that their approach could be reliable, for example,
if brain signals are directly used to control the devices. The same
authors have demonstrated that online asynchronous detection
of execution ErrPs during interaction with a real robot is possible,
not only for healthy (Lopes-Dias et al., 2019) subjects but also
for spinal cord injured patients (Lopes-Dias et al., 2021). This
observation shows the feasibility of also using such systems in
more realistic applications.

In summary, this paper reviews the current studies applying
error-related potentials to improve brain-machine interface
performance. Most specifically, we have focused on the use
of such brain signals in reinforcement learning frameworks.
Starting from a top-down perspective, we have systematically
discussed different types of ErrPs, how to detect them, and
considered all relevant contributions within the outlined focus,
describing strengths and weaknesses and assessing the limitations
of the approaches. Furthermore, we tried to answer the question
of which accuracy is sufficient to trigger a learning process
utilizing ErrPs. However, it becomes clear that the field is still
dealing with very fundamental open questions that make a
rigorous comparison between the different studies quite difficult.
It is still unclear whether a significant and prominent ErrP
occurs every time, what is the ratio between occurrence and
detection and the resulting maximum bound for classification,
and what accuracy limit is needed to successfully drive the RL
process. We have attempted to highlight these open questions
and, to the best of our knowledge, describe the current state of
the research.

The studies evaluated have demonstrated that ErrPs provide
relevant information that can be used to guide agent behavior
learning. Nonetheless, future work is necessary regarding higher
error decoding accuracies to increase the reliability of the
feedback signal. A comprehensive performance assessment of
the proposed approaches additionally requires studies with a
representative number of subjects and the establishment of
comparable and meaningful performance measures to support
the evidence of learning/adaptation under these paradigms.
Although the studies used suitable metrics to evaluate the
respective learning processes, which are sufficient to measure
performance, the problem of not knowing precisely the
relationship between occurrence and detection of ErrPs remains
and provides an inherent uncertainty with respect to the
evaluation of the overall RL process. It would be helpful, e.g.,
to systematically evaluate the learning process with simulated
ErrPs. This would not only provide a relative measure for
the learning process but also make it possible to calculate
the minimum threshold for the occurrence-to-detection ratio
needed to learn. Experimental setups should also be extended to
larger state/action spaces and continuous feedback scenarios with
asynchronous detection.
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Last but not least, BMI systems were originally thought for
subjects with different disabilities, and are still mainly focused
on them. Hence, future work should consider extending error-
based reinforcement learning frameworks to applications focused
on this target group.
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