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Brain imaging has had enormous promise for many decades now. Magnetic resonance imaging
was invented in the 1950s and rested on three Nobel Prizes and stunning engineering innovations.
By the 1990s, SIEMENS, GE and a handful of other vendors were shipping scanners all over the
world. Clinical applications provided immediate improvements in detection, surgical pre-screening
and diagnostics, replacing behavioral tests, and risky pre surgical probes. MRI has been a boon to
humanity. At the same time, basic research discoveries were not far behind, especially concerning
dynamics of brain activity (BOLD-blood oxygen level dependency—effectively blood flow through
the brain—which is a measure of neural transmission), but then it was clear that something else was
missing: how do we make sense of what we are looking at? We are now all familiar with colorful
brain activity in the New York Times and elsewhere, which often begs the question: what are these
colorful blobs and what are their functions? Is there an obvious connection with the cognitive tasks
typically used and brain blobs we record? Fundamentally, is there an epistemology of brain function
that can be mapped from psychological tasks to anatomical areas? This question would dominate
the field for the next 30 years.

There was an initial exuberance around brain imaging and many researchers felt they could
finally start mapping brain function given the ease and access to human brain and behavior.
Essentially, if you had access to a scanner, an IRB and willing volunteers, you were only limited by
your imagination and stimulus construction (Posner and Raichle, 1994). Visual areas were initially
mapped with basic psychophysical stimuli (checkerboard patterns, moving gratings...etc.). One
unfortunate example of this initial over excitement was Wally Schneider a prominent Cognitive
psychologist in the 1990s who was an early adopter of brain mapping and decided to bring visual
cognitive psychology methods to MR, as reported in the New York Times in 1993:

Dr. Walter Schneider, a psychologist who is using the technique <fMRI> to map human vision at the

University of Pittsburgh, said, “We have, in a single afternoon, been able to replicate in humans what took

20 years to do in non-human primates.”

I was one of the members of the advisory board for the McDonnell-Pew Foundation’s Cognitive
Neuroscience Program (which had invested millions of dollars into 10 Cognitive neuroscience
centers throughout the world over a 10 year period—effectively creating the field of Cognitive
Neuroscience), which ran from 1990 to 2000. In the early 1990s, Wally came by to give a talk
and defend his claims while seeking funding. Between the various clashes going on during his talk
between Wally and a conveniently Foundation-invited visual neurophysiologist (the Foundation
enjoyed debate and liked to engineer it, if possible), I noticed he was using t-tests to test each
voxel. And the p values were astronomically small (p < 10−27; e.g., Just et al., 1996). I asked “are
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you testing each voxel as a variable? If so, the false alarm rate
must be enormous, or depending on the conditioning your miss
rate must be enormous. Either case, what you are showing as a
brain map can’t be correct!” Wally responded, “Hmm. I see your
point. Well, clearly we need some better statisticians!” Indeed,
many folks thought better statisticians would be helpful and
consequently this was the beginning of the rise of the University
College London group (with K. J. Friston and R. S. Frackowiak)
and parametric brain mapping. This was also the beginning of the
normalization of brain mapping by an obscure Scottish Statistics
Department and software (SPM due originally to K. J. Friston),
which encapsulated the assumptions, the theory, and the models.
Researchers now had tools, inferential statistics and software
to analyze their data and to consequently create colorful blobs
corresponding to statistical significance (red = 0.001, orange =
0.01, white = 0.05) a sunny side up egg with a red center! This
was the rise of blobology.

BLOBOLOGY AND THE SEARCH FOR

MODULARITY IN THE BRAIN

Blobology naturally led to the question: what are the blobs? A
natural answer is that they represented some type of localized
function, some type of module, an encapsulated structure. Part
of this question on locality, involves a statistical dimensionality
problem (too many voxels). And the solution to this statistical
problem was like most every other high dimensional data
problem in astronomy, geology, or ocean mapping: just smooth,
aggregate, and cluster, consequently reducing the effective
number of variables and therefore degrees of freedom (there
are other useful frameworks for controlling degrees of freedom
as well, including false discovery rates, Euler fields, etc.,). This
strategy could effectively shoehorn those p values to a Neyman–
Pearson (often called null hypothesis logic) (Neyman and Pearson,
1933) standard range (0.001, 0.01, 0.05), with, of course, some
loss of spatial resolution and with the increase of smoothed
local topology, not necessarily apparent in the non-smoothed
data. And for the next two decades, localization of function, no
matter how illogical or absurd, became “brain mapping.” With
a well-defined stimulus condition and an equally well thought
through contrast, one could identify new functional brain areas
every week1! This was dubbed “pure insertion.” It depended
on strong assumptions, like additive independence of the brain
function of the two conditions and therefore the lack of linear
interaction (not to mention non-linear; Friston et al., 1996).
But worse, it assumed the control condition, if simply “rest”
was a tonic, homogeneous background. This turned out not to
be true and in itself created a new field of studying “resting
state networks”, (Biswal et al., 1995), in effect the background
behavior of the brain. Although the absurdity of the discovery of
a “face area” [an area of the fusiform gyrus that was somehow

1One anecdotal example of this problem floating around in the 1990s, was the

peanut-butter and jelly study. The contrast was between high resolution pictures

of peanut butter sandwiches and peanut butter and jelly sandwiches, thus through

pure insertion, discovering the “jelly area” of the brain, and yes it was found in the

fusiform gyrus!

primarily responsible for face processing—fusiform face area
(FFA) (Kanwisher et al., 1997)] wasn’t sufficient reason to
abandon the blobology program, subsequent years showed how
bankrupt this phrenology (modularity) program had become.
Because functional localization like the “face area” has no
actual anatomical anchors in the brain, but was based on a
procedure, using another set or all the existing face stimuli in
the experiment to, unfortunately, create circular kind of evidence
for where the face area was to be found in the fusiform gyrus
(“localizer logic”, see Friston et al., 2010 who illustrates the
dangers of localizers). Because the procedure could vary across
labs, the brain coordinates of the FFA actually depended on the
laboratory doing the studies (Berman et al., 2010; reanalysis of
their data; LDA showed a significant “lab” predictor, this was
also anecdotally confirmed)! There were NIH brain coordinates
and MIT coordinates, typically differing in Z by 9–10mm, and
sometimes differing in the Y coordinate. The differences persisted
from legacy lab to legacy lab with postdoc and graduate students
trained in the FFA localization procedure from the lab in which
they were trained. Other work using machine learning classifiers
(support vector machines, neural networks, etc. Hanson et al.,
2004; Hanson and Halchenko, 2008; Hanson and Schmidt, 2011)
clearly showed that model-based conditional probability of brain
tissue given the “face” stimulus, although might be found in
fusiform gyrus, was actually more predictive in a number of other
areas, including lingual gyrus, inferior frontal gyrus, inferior
parietal lobule, etc. It was a cohort, a cluster, and, yes, most likely
a “face network” as Haxby had predicted some time ago (Haxby
et al., 2000). There is not sufficient space here to cover all the
other FFA counter- evidence2. But suffice it to say, based on
classifier evidence there is no “... fusiform face area, a blueberry-
sized region on the bottom surface of the posterior right hemisphere
that responds significantly more strongly when people look at faces
than when they look at any other stimulus class.” (Kanwisher,
2006) Mathematically, this simply cannot be concluded from the
GLM (unsupervised regression) or related tests.

Blobology also influenced the way networks were identified.
In macaque, three areas of the brain (f5 premotor, IPL, STS),
representing pre-motor, attention, and joint perception of the
same action, were dubbed the “mirror system.” Rizzolatti et al.
(1996) called it a mirror system, because the same neurons
responded when performing an action, like picking up a banana,
as when viewing a video of another macaque picking up
a banana. The neurons appeared tuned to perception-action
whether the individual was performing it or watching it. As
Rizzolatti and Craighero (2004) pointed out, using extremely
clever experiments with dozens of control conditions:

“In conclusion, the cortical mirror neuron circuit is formed by two

main regions: the rostral part of the inferior parietal lobule and

2One telling example, In 1998 Kanwisher had a postdoc who submitted a poster

to the McDonnell-Pew Foundation Cognitive Neuroscience workshop with not

only “FACE” areas, but “PASTA”, “CARS”, “NUTS” etc..about 9 or 10 new areas.

Another postdoc in her lab eventually ran obvious visual controls ( bowl of wires

and a bowl of nuts in the sense of bolts.. etc..) and almost all newly found areas

disappeared except for the FFA. This is a testimony to the high quality folks in the

Kanwisher lab, but at the same time reveals a deep modularity bias.
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the ventral premotor cortex. STS is strictly related to it but, lacking

motor properties, cannot be considered part of it. ”

Now, this did not stop blobology from finding mirror areas by
showing dancers to non-dancers and dancers to dancers and
football players to non-football players... you get the idea. They
(Iacoboni et al., 1999; Molnar-Szakacs et al., 2006) consequently
found dozens more areas for the mirror system, because now
they were easy to find—with careful thresholding. And often
with the support of notable journals such as Science and Nature,
the blobologists found pretty quickly that most of the brain
was somehow involved in the mirror system. Rizzolatti, quite
reasonably, argued that anatomical constraints must at least be
the initial guidance on what the network might be, but this, like
the face area, was going to end up being a network, though it
has thus far only be dubbed a system (a network in waiting), in
contrast to a network, just a collection of areas. Nonetheless, as
there were many valid ways to cook a chicken, there turns out to
be many valid ways to find a network and some of them are in
fact, functional (mathematical) not just structural (anatomical).

THE NETWORK MUDDLE

Networks are formed by connections between regions of interest
(ROIs). So the first problemwas to find the right ROIs, and to find
a set that did not seem arbitrary or contrived. Then time series
could be measured over a so-called resting state, for example,
when the subject is asked to do nothing but rest and relax. Bharat
Biswal discovered resting states (Biswal, 2012) by a brilliantly
simple experiment showing that seeding a resting state condition
with one ROI time series of a previously executed motor task,
would result in activity in all the other ROIs. In effect, the same
motor network would pop out in the resting condition! It’s as if
the networks were latently present in the background, waiting
to be summoned forth. Conferences, workshops, and journals
became obsessed with resting state networks. Today the networks
that arise are some of the most studied networks in brain science,
and paradoxically with little agreement on what their function is
at this point (but see Mastrovito, 2019)!

But how to measure the connectivity between the ROIs? The
time series, once properly conditioned to remove drift, spikes,
and irrelevant periodicity, could be correlated. But how much of
the correlation is noise? Pearson correlation coefficient is subject
to many kinds of maleficence, especially since we have no ground
truth, not even simulation, that can guide us. Simulations in
particular, due to over-simplying assumptions can be terribly
misleading. For example, many assume white or gaussian noise
as an additive source and are simply wrong, thus producing
benchmarks that over-inflate goodness of fit andmake differences
small to statistically vanishing.

Worse was the unnecessary creative renaming and reinvention
of known metrics, matrices, and methods. Perhaps the most
egregious case was representational similarity analysis often
termed RSA (Kriegeskorte et al., 2008). The idea of this “method”
was to compute the “similarity” between brain ROIs and put
them in a matrix to analyze their similarity structure. Sound

familiar? In 1972, Shepard and Kruskal (1974) introduced novel
theory andmethod tomodel rank-order data, in effect, inducing a
distance space–interval/ratio data type of the similarity measures.
This was multidimensional scaling which is used as input rank-
order data (although it would work with any sort of distance or
more generally association data from human similarity decision
judgments. The theory of scaling was originally framed by
Thurstone in the 1920s and was expanded and re-framed in
the 1950s and 1960s. Suffice it to say that representational
similarity analysis is a thinly veiled version of the original scaling
framework and data theory (to be fair they do cite Shepard but
then miss the point of finishing the analysis with either MDS,
tree-fitting or clustering); Besides renaming matrices and then
using multidimensional scaling, principal component analysis,
independent component analysis, or the myriad of multivariate
methods existent, this fad also spread to brain connectivity
analysis. In this case, researchers use raw (or slightly conditioned)
correlation matrices for analyzing brain connectivity. There are
many problems with this strategy, not the least of which was
arbitrary thresholding, inducing as many or as few clusters as one
would like to find. Researchers began examining the correlation
matrix directly, as if raw correlation matrix was itself a type of
analysis rather than way-station to some valid testable inferential
model! Although eliminating the thresholding issue, it turned the
whole brain correlation connectivity exercise into a Rorschach
test. Ok maybe I am too negative: What exactly is wrong with
correlation or association or similarity?

1. Correlations are associations not influences. consequently, they
cannot orient edges.

2. Correlations fail to detect structure: most recent work in brain
networks involving “functional connectivity,” often estimated
using correlations of bold time series, have been shown to miss
actual causal structure in known time series simulation tests
(Hanson and Glymour, 2010; Ramsey et al., 2010).

3. Correlations are unstable. test-retest of resting state data in
individuals reveals that correlation graph dissimilarity increases
with sample size whereas bayes network estimated graph
dissimilarity decreases with sample size as it should (Hanson
et al., 2018).

4. Correlations across individual differences are statistically
heterogeneous. resting state correlation matrices based on 235
rois over 70 subjects (pairwise) all tests fail a null hypothesis
chi-square test, indicating that the correlations are rife with
averaging artifacts (Hanson et al., 2018).

It was simply astonishing that functional connectivity researchers
using ROI correlations, did not also use latent analysis
methods (principal component analysis or factor analysis or
MDS) to model the correlation matrix, as most statisticians
would have recommended. The patterns would have shown
the same results and the model’s assumptions would have
been properly conditioned and rationally modeled even if
there were millions of ROIs instead of a handful. Once
again, It’s like they read the first half of a narrative,
fell asleep and missed the punchline (but see Reid et al.,
2019).
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THE INFERENCE MUDDLE: EVEN

NEYMAN AND PEARSON WOULD HAVE

BEEN CONFUSED

It became fashionable to attack brain imaging in the 21st
century. We could start with the Dartmouth study that showed
susceptibility artifacts in a dead fish, confusing the unwashed
popular press to this day... but let’s not. If you are confused about
thermal noise, then you are probably living in it. And although
there has always been a bit of self-doubt in neuroimaging
folks, especially early on in panels with neuroscientists studying
real neurons, the more serious inference troubles began
when researchers began thinking independent samples meant
something other than independent. Ironically, Nancy Kanwisher,
the discoverer of the now dubious FFA, worked with a student,
Ed Vul, who had noticed, with others, odd statistical anomalies
(e.g., high correlations between brain activity and the walking
speed with which subjects left the scanner room!) concerning
brain imaging results, especially in social-neuroscience (Vul and
Kanshisher, 2010). This problem is at least partly due to the
weak correlation between theoretical constructs in much of
social psychology and independent variables. Of course, having
thousands or tens of thousands of independent variables (e.g.
voxels) makes this problem more opportunistic. But, once again,
this was nothing new. It was not unique to neuroimaging
data and was well known in statistical theory, due to the
work of statisticians like Efron and Tibsharani (1993) in
regularization and machine learning (split half training/testing
more specifically). In fact, once again this is not a serious flaw
in brain imaging, but rather, and sadly, it was just unintentional
maleficence. If the task is identification and categorization, you
must keep test samples from being contaminated with training
or model samples, and you can not use the training samples for
testing! You must do N-fold cross validation. This is even more
muddled once you realize all the fMRI time series are highly
correlated, especially within an ROI (but that of course makes
sense). Between ROIs the correlation is lower, but still driven
by a large noise component in the BOLD signal, often used
to define effective connectivity. Once again, like MVPA, which
Haxby used to call “multi-VOXEL pattern analysis”, before he
was reminded by his postdocs, that Multivariate pattern analysis
(although even this phrase is redundant) was actually a thing.
Kreigiskorte creatively introduced “double dipping” as a novel
name for testing with the training set—i.e. no cross-validation.
Better to use the original names with the original concepts—
keeps things tidy.

REPLICATION CRISIS? OR INDIVIDUAL

DIFFERENCES?

A well known kind of maleficence can occur due to individual
differences in which averaging (smoothing) produces aggregates
that misrepresent sub-group or individual differences. This
problem is called Simpson’s paradox. It is likely there is little
homogeneity of activity throughout the brain, in that one
group of subjects may have relatively sparse activity, and in

another activity may be densely distributed. Worse, given the
spatial distribution of activity in the brain, the topological
properties may vary in terms of both the convexity and the
amount of diffusion of activity (as in a Gaussian density or
as an otherwise non-central set of spindles). In any case,
individual differences in these patterns can lead to different
“modes” which maximum likelihood averaging can result in
non-representative group-wise clusters. Given different levels
of smoothing at the hands of different research groups, very
different densities of activity and locations can emerge. In
some cases, there may be an easy way to mitigate this
diversity: use better and more appropriate clustering methods—
of which there are dozens of possibilities (Everitt, 1980 not
just single linkage!). In other cases, the lack of a common
topology of brain activity would make this challenging. In
that case, individual differences are critical to understand—not
just smooth into an aggregate brain pattern. The blobology
maleficence was initiated on the assumption that inference in
brain imaging should look like any other psychology task using
1-D measures like RT or accuracy. In that case, we would at
least assume the BOLD distribution is substantially Gaussian.
Unfortunately, it is not (Hanson and Bly, 2001; Wink and
Roerdink, 2006).

IT’S THE PIPELINE, STUPID! BLOBLOGY IS

FINE

Botvinik-Nezer et al. (2020) recently published a clever
paper on something neuroimaging researchers already knew:
Interpretations of fMRI results depend on decisions in the course
of data workflow that can vary widely among researchers. In
this study, using an identical data set (Botvinik-Nezer et al.,
2019) and common preprocessing software, 70 independent
groups of researchers produced surprisingly little agreement
on 9 binary hypotheses about regions of the brain activated
during a decision task. Although the number of active voxels
varied from zero to tens of thousands over hypotheses, the
overlap between group maps was very low. This primed
the researchers’ biases and top down visual clustering to
identify map outcomes to be most consistent with the ROI
hypothesis they may have favored. To be fair to the 70 groups,
the measure of agreement=yes or no– is also a source of
the divergence across the 9 hypotheses. If we assume, quite
reasonably, that the assessment concerns the consistency of
the whole hypothesis set, then the research groups had 29, or
512, possible configurations to choose from. The probability
of any given configuration by chance is (1/2)9 or 0.0002,
which might also have fairly high variation in the distribution
across all hypotheses—some well below and some above 1/2.
Surprisingly, the actual hypothesis configuration they observed
(0.371∗0.224∗0.229∗0.329∗0.843∗0.329∗0.057∗0.057∗0.057 =

0.0000003) is well below chance with only one case (#5,0.843)
above chance. To be frank, this vector of outcomes is shockingly
unlikely (700x below chance), and although apparently further
supporting the conclusion of the authors, its anomalous nature
urges one to scrutinize the entire exercise.
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SO SOME GOOD NEWS!

But before we do that, it’s worth clearing up at least one grievous
misinterpretation due to this paper and others, that in some
larger way, fMRI research is somehow fundamentally flawed or
just so subjective as to be uninformative about brain structure
and its mapping to cognitive and social function. Of course this
is not true. Nor, in fact, do the authors imply that the lack
of replication-based Neyman–Pearson (null hypothesis) testing
across these 70 groups relates to the fMRI signal itself or to MR
in general. Their clever demonstration highlights other problems
with human brain mapping: in particular, I will argue, the
presumed data structure, the lack of model-based analysis, and
the focus on “real estate inference”. Neyman and Pearson would
agree: part of the conclusions in this headline grabbing paper
are merely based on conditioning from the specific hypotheses
they gave the researchers (are there more than nine? Of course.
Did they stack the deck? Maybe.). On the other hand, there
is nothing wrong with what they did, since researchers make
hypotheses all the time and expect activity or lack of activity in
a specific ROI as a null hypothesis (although somebody must
peek sometimes!). But if we simply look at the group agreement
independent of the hypotheses—that is, we allow the research
groups to effectively accept the null of each hypothesis or not—
the agreement increases to 80%! The whole thing is a bit of
a hat-trick. And in the larger context, this begs the question,
again, why are we doing Neyman–Pearson hypothesis testing
(null hypothesis logic) on 100s of thousands of voxels? This was
the source of the astronomically low p-values we discussed in the
beginning of this essay. What was the neuroscience, statistical
theory, or logic that suggested this would be a productive thing
to be doing? Botvinik-Nezer et al. (2020) focused in on this flaw,
then prescribed better pipelines (fMRIPrep/BIDS?) and giving
your data to a public repository to fix the problem. Nothing
wrong with blobology, it’s just the pipelines.

HOW TO FIX THE NETWORK

MUDDLE?....STUDY NETWORKS!

It is well known that the functional nature of an ROI depends
on the cohort and context of other ROIs—in effect, a network
(McIntosh, 2000). In fact, the problems revealed here are less
likely or not likely at all to arise if the fMRI time series from ROIs
(found by the general linear model or otherwise) are modeled as
a network (although depending on the specific model, similar
problems may arise). After all, the various hypotheses clearly
involve multiple areas and, as any general linear model will
reveal, are a larger set of cohort areas underlying various decision
supporting functions (e.g., working memory, risk assessment,
reward evaluation and so on; Poldrack et al., 2009). It is

clear that the reliability of the fMRI result would increase if
modeled as a network or a graph, not just because the data
structure requires more weight of evidence, but because, with the
correct type of graph search, individual differences can be more
naturally accommodated.

Some 10 years ago, our fMRI collaboration group developed
a graph (oriented edges) search method called (effective
connectivity) IMaGES (Ramsey et al., 2010) for combining fMRI
time series together across subjects while avoiding Simpson’s
paradox. This method takes as input the raw time series from all
subjects/ROIs and finds the most likely graph (nodes and edges)
that best represents all subjects as estimation is dynamically
updated. Instead of averaging, it produces a graph that is a
high probability compromise from constraint satisfaction over
all sets of subject ROI time series, taking into account the
heterogeneity of the individual differences in subjects and ROI
time series. In the last decade network neuroscience has been on
the ascendance, nonetheless the GLM and regularization for risk-
minimization still forms the foundation of much of the research
still being done.

Tangled up with this analysis muddle is this tenacious grip
that specific identification of “real estate” has had this community
from the beginning (Hanson and Bunzl, 2010). In effect, point
estimation was considered to be the essential statistical problem
and one that would eventually be informed by known ROIs that
could be based on either theoretical or anatomical considerations,
or both. In the 1990s, some 30 years ago, this seemed plausible.
Now, given the advent of data science and the now conventional
workflow involving full brain analysis and high-end computing,
is a disastrous recipe for more malfiecance and muddle.

It has always been believed that transparency and wide
public access to everyone’s data sets would eventually clarify
the functional and structural nature of the brain. Each research
group could codify and share their pipelines, and all would in
the end be valid and proper. Well, maybe. But, transparency and
sharing is not going to necessarily increase reliability or validity
of the result, since the individual differences are left as a random
variable in the workflow and the underlying model is unspecified.
This kind of muddle is an invitation to further confounding good
science with bad science, good methods with bad methods. I
propose, instead, it’s time tomove on, abandon the obsessionwith
point estimates and blobology more generally, and embrace the
ubiquitous networks in almost every neuroimaging study which
will organically increase not only the reliability of the results, but
their validity.
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