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thinking, but not more general
mind-wandering
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For a large proportion of our daily lives, spontaneously occurring thoughts

tend to disengage our minds from goal-directed thinking. Previous studies

showed that EEG features such as the P3 and alpha oscillations can predict

mind-wandering to some extent, but only with accuracies of around 60%.

A potential candidate for improving prediction accuracy is the Steady-State

Visual Evoked Potential (SSVEP), which is used frequently in single-trial

contexts such as brain-computer interfaces as a marker of the direction

of attention. In this study, we modified the sustained attention to response

task (SART) that is usually employed to measure spontaneous thought to

incorporate the SSVEP elicited by a 12.5-Hz flicker. We then examined whether

the SSVEP could track and allow for the prediction of the stickiness and

task-relatedness dimensions of spontaneous thought. Our results show that

the SSVEP evoked by flickering words was able to distinguish between more

and less sticky thinking but not between whether a participant was on- or

off-task. This suggests that the SSVEP is able to track spontaneous thinking

when it is strongly disengaged from the task (as in the sticky form of

off-task thinking) but not off-task thought in general. Future research should

determine the exact dimensions of spontaneous thought to which the SSVEP

is most sensitive.
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Introduction

Frequently, when we try to engage with a specific task such
as reading an article, our thoughts may spontaneously shift to
other matters (Killingsworth and Gilbert, 2010). These thoughts
can remove us from the current space and time by means of
our imagination (McVay and Kane, 2012a). When spontaneous
thoughts arise during driving, for example, our attention may
shift from the act of driving to contemplating what to have

for dinner (Smallwood and Schooler, 2015). Such spontaneous
thoughts can be inconsequential, but when unexpected things
happen on the road the results can be tragic. Therefore, it would
be of great benefit if spontaneous thoughts could be tracked in
real time. One method for tracking spontaneous thoughts makes
use of electroencephalography (EEG), which has a very high
temporal resolution.

Spontaneous thought has been defined in recent decades
as a sequence of mental states, that arise relatively freely due
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to an absence of constraints on the contents of each state
and on the transitions from one mental state to another
(Christoff et al., 2016). Within this framework, there are two
dimensions of spontaneous thoughts that are commonly studied.
The first dimension is the task-relatedness, i.e., when we
deliberately shift our attention to a task-unrelated thought,
mind-wandering occurs (Figure 1). Mind-wandering has
been defined as self-generated thought, stimulus-independent
thought, or task-unrelated thought in the scientific literature
(Smallwood and Schooler, 2015). The second dimension of
spontaneous thought is one that is gaining more and more
interest and has been referred to by Christoff as the level
of constraints on thought. The level of constraints can be
measured in various ways, including by asking participants to
rate the degree to which thoughts are immersive or difficult to
disengage from, i.e., the subjective sense of “stickiness” of the
thoughts. For instance, poor performance in a job interview
might trigger a flow of thoughts which are difficult to let go
of such as “I am a failure, I am worthless.” We think of such
“sticky thinking” as a pre-clinical manifestation of ruminative
thinking—repetitive thoughts constrained on a single topic or
theme that are often negative and self-related. This mode of
thinking is common to clinical syndromes such as depression
(Christoff et al., 2016; Marchetti et al., 2016; DuPre and Spreng,

2018). Thus, tracking spontaneous thoughts, especially their
sticky form, could potentially contribute to the understanding of
the mechanisms underlying depression or the development of a
biomarker for rumination useful in depressive relapse detection.

It is worth noting that stickiness and task-relatedness
are two orthogonal dimensions of spontaneous thoughts, a
sticky thought can be either task-related or task-unrelated.
While mind-wandering is concerned with the direction of
spontaneous thought, the stickiness of thought is concerned
with the mode of spontaneous thought and its dynamics.
Despite substantial debates about the appropriate definitions of
spontaneous thought (Andrews-Hanna et al., 2014; Smallwood
and Schooler, 2015), the measurement of spontaneous thought
is based on quite some consensus. Specifically, spontaneous
thought is measured by inserting so-called “thought probes”
into psychological tasks—questions that ask the participant to
report on the nature and contents of their thoughts at the
moment the thought probe appears. The stickiness of thoughts
can be derived from participants’ responses on a Likert scale
to the question of how difficult it was to disengage from the
thought. In the task-focused situation, high stickiness reflects
a participant being completely engrossed in the task (van Vugt
and Broers, 2016), whereas in the mind-wandering situation,
high stickiness reflects a participant being completely absorbed

FIGURE 1

The framework of spontaneous thoughts and the examples, the horizontal axis shows the task-relatedness dimension of spontaneous thoughts
while the vertical axis shows the stickiness dimension.
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in task-unrelated thought, which are likely to be concerns or
worries (Marchetti et al., 2016). In contrast, mind-wandering is
always defined in terms of whether one is paying attention to the
task or to something else (McVay and Kane, 2012b; Smallwood
and Schooler, 2015).

A task that has been used frequently to assess off-task
thinking is the Sustained Attention to Response Task (SART).
The SART consists of thought probes embedded in a go/no-
go task, in which participants are asked to press the button as
quickly as possible for lower-case words (non-target “Go” trials)
while withholding the response for upper-case words (target
“Nogo” trials). Studies have found that task performance tends
to be worse prior to off-task reports compared to on-task reports
(Kam et al., 2011). Similarly, lower accuracy on the sustained
attention to response task (SART) has been associated with
off-task thinking (McVay and Kane, 2009, 2013). Performance
has also been shown to be worse prior to reports of more sticky
thought compared to reports of less sticky thought (van Vugt and
Broers, 2016).

Of relevance for tracking spontaneous thoughts in real time
is that this process tends to be accompanied by decoupling
from perceptual input: when attention is directed to internal
experiences, the processing of external input is reduced
(Smallwood et al., 2008; Schooler et al., 2011). Evidence for
such perceptual decoupling has been found in various neural
and physiological measures. In an fMRI study, mind-wandering
was associated with reduced activation of the occipital cortex,
which is likely to reflect a reduction in perceptual processing
as well (Gorgolewski et al., 2014). An fNIRS study found that
mind-wandering was characterized by significant activations
over the medial prefrontal cortex (Durantin et al., 2015), a
brain region within the Default Mode Network (DMN, which
further includes the posterior cingulate cortex and the medial
temporal lobe). The Default Mode Network is a set of brain
areas that commonly activates during periods of rest, but
also during mind-wandering. This DMN activation during
mind-wandering is thought to reflect the active generation
of trains of thought (Mantini et al., 2007; Hlinka et al.,
2010). Mind-wandering state has also been linked with a
smaller pupil response relative to when the person was on-task
(Mittner et al., 2014; Unsworth and Robison, 2016; Konishi
et al., 2017). Moreover, we have previously shown that when
thoughts are considered to be difficult to disengage from by
the participant, they are accompanied by greater reductions in
pupil size compared to when they are easier to disengage from
(Huijser et al., 2020).

Evidence for perceptual decoupling during spontaneous
thought is also visible in electrophysiological data. Studies using
EEG showed attenuated P1 and N1 event-related-potentials
(ERPs) during self-reported mind-wandering (Kam and Handy,
2013; Baird et al., 2014; Broadway et al., 2015; Denkova et al.,
2018). As both P1 and N1 components are usually considered
to be indicators of early sensory processing, the reduction in

P1 and N1 may reflect an attentional attenuation of sensory
input (Baird et al., 2014). The effect of mind-wandering was
observed not only in neural correlates of perceptual processing
but also in event-related potentials associated with a later stage
of processing, as demonstrated by studies that demonstrated
an attenuated P3 amplitude during mind-wandering (Kam and
Handy, 2013; Kam et al., 2015).

Apart from event-related potentials, EEG studies also have
reported changes in brain oscillations during mind-wandering.
During mind-wandering, there have been reports of higher
alpha oscillations (8.5–12 Hz) at posterior occipital sites (Jann
et al., 2010; Mo et al., 2013), lower theta oscillations (4–8 Hz) at
parietal sites (Jann et al., 2010) and decreased beta oscillations
(14–28 Hz) over parietal electrodes (Hlinka et al., 2010). These
brain oscillations have been found to some what correlated with
DMN activation observed in fMRI studies (Mantini et al., 2007;
Hlinka et al., 2010; Jann et al., 2010). It is worth noting that
there is to our knowledge no data yet on the electrophysiological
changes (including the ERPs and brain oscillations) caused by
the sticky form of spontaneous thoughts, despite the behavioral
and ocular evidence of increased sensory decoupling when the
thoughts are more sticky compared to those which are less sticky
(Huijser et al., 2020).

While several studies have demonstrated average differences
in the brain or physiological activity between mind-wandering
and on-task states, an important question is whether such
a signal can be used to predict mind-wandering, and more
generally the nature of spontaneous thought, on a single-trial
level. Bixler and D’Mello (2016) used a set of eye-gaze features
recorded by an eye tracker to predict mind-wandering episodes
within 4–10 s before the thought probes during a reading task,
and achieved an accuracy of 72% with a Bayes net classifier in
a post hoc analysis. This number reached 76% in another study,
which used oculometric measures including pupil size for the
classification of mind-wandering epochs defined as 10 s before
the thought probeduring a breath-focusing task (Grandchamp
et al., 2014). Combining off-line pupillary and brain activity
measures (including the activation of DMN derived from fMRI)
to predict single trials of mind-wandering (Mittner et al., 2014)
achieved an accuracy of 79.7%. Nevertheless, fMRI is very
expensive and not very usable in most real-world contexts. A
method that is lower-cost and less invasive is EEG. Jin et al.
(2019) used off-line EEG in combination with an SVM classifier
to predict mind-wandering trials which were six trials before the
thought probes (where for each trial a window of 400 ms before
stimulus onset until 1,200 ms after was used), and achieved
an accuracy of 60% (Jin et al., 2019). While this accuracy was
substantially lower than that of Mittner et al. (2014), it should
be mentioned that this classification was task-independent:
it could generalize from a SART to a visual search task. A
follow-up study showed similar accuracies, but for a classifier
that not only generalized across tasks but also across individuals
(Jin et al., 2020).
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Although the results discussed above show it is possible to
predict mind-wandering at an above-chance level using EEG,
the prediction accuracy is relatively low. One possible reason
for such low accuracy could be that previous studies have not
identified the optimal EEG biomarker of spontaneous thought. A
potential candidate for such an EEG measure that to date has not
been used in EEG studies of spontaneous thought is the steady-
state visual evoked potential (Joon Kim et al., 2007; Andersen
et al., 2008; Toffanin et al., 2009). This measure is interesting
because it is commonly used in brain computer interfaces (BCIs)
as a real-time marker of where a participant’s attention is directed
(Putze et al., 2019), and therefore is likely to be reliable enough
for single-trial prediction of whether a participant pays attention
to the task or not.

The SSVEP is the EEG response evoked by visual stimuli
that are presented at a specific frequency, which results in an
increase in the EEG at that same frequency. When participants
direct their attention to these stimuli, this increases the EEG
response at the stimulus frequency (Joon Kim et al., 2007).
This has been used in many studies of attention (Müller et al.,
1998a,b; Toffanin et al., 2009), and also in other studies that
sought to differentiate tasks and conditions (Işcan et al., 2011;
Wang et al., 2015; Evain et al., 2017; Işcan and Nikulin, 2018).
For instance, a study used the SSVEP to find where on the
screen a participant was looking by presenting 12 visual target
stimuli flickering at different frequencies; classifiers using spatial
filtering which was based on canonical correlation analysis
(CCA) achieved an average accuracy of 92.78% (Nakanishi
et al., 2015). In a visual divided-attention task with targets and
distractors presented simultaneously in the left and right visual
field, Toffanin et al. (2009) found that the SSVEP had the largest
amplitude in a focused-attention condition, intermediate in a
divided-attention condition and lowest in an ignored-attention
condition (Toffanin et al., 2009). Moreover, the SSVEP technique
has also been widely used to investigate high-level processes such
as face perception and working memory (Norcia et al., 2015).
For example, Ales et al. (2012) flickered their face stimuli that
were embedded in scrambled background at a specific temporal
frequency while their visibility varied progressively. Compared
to previous ERP studies which detected ERP components such
as the N170 on the basis of different subjective criteria for
the polarity, peak latency, and amplitude, and topography,
their SSVEP-based method provided a more objective and
quantitative way to measure face detection threshold in terms of
the SSVEP response at the flickering frequency (Ales et al., 2012).
In another study, stimuli with distinct presentation frequencies
were encoded in a working memory task and the SSVEP
amplitude was found to be larger for remembered than for
forgotten items (Peterson et al., 2014).

Further demonstrating its potential as a neural marker in
individual trials, the SSVEP is commonly used in BCI studies as
it tends to be robust to perturbations where the subjects were
speaking, thinking, or listening in different tasks (Işcan and

Nikulin, 2018) and is sufficiently specific in space and time to
control an avatar in a virtual environment (Faller et al., 2010).
Chen et al. (2015) designed an SSVEP-based speller, which
obtained reasonable spelling accuracy (91.04%) and speed (Chen
et al., 2015). The SSVEP has even been used in an online home
appliance control system, where the four SSVEP stimuli each had
their own frequency. This system reached an average accuracy of
92.8% in this online four-way classification (Park et al., 2020).

Taken together, these studies have demonstrated that SSVEP
can be used to classify the locus of attention, which by extension
suggests that they may be used to indicate the absence of
attention towards the ongoing task during mind-wandering,
as well as more generally spontaneous thoughts, occur. There
are indeed a limited number of studies applying the SSVEP to
distinguish between internal and externally directed attention
(Vortmann et al., 2021). Even more, virtually no previous
studies of the SSVEP have used self-report measures of mind-
wandering. The closest we could find was a single study that
assessed a concept somewhat related to mind-wandering, which
employed a rapid serial visual presentation detection task in
which participants were asked to monitor a stream of images
presented at 10 Hz for the occurrence of a target image
(Macdonald et al., 2011). After every trial, the experimenters
asked participants to rate their attentional state on a continuous
scale ranging from “fully absent” to “sure present”. The idea was
that attentional disengagement should be accompanied by an
increase in 10 Hz activity. Results suggested that the subjective
attentional state was related to the amplitude of pre-stimulus
alpha power (8–12 Hz) instead of the 10 Hz SSVEP. Specifically,
during attentional disengagement (presumably similar to mind-
wandering), alpha power was significantly higher (Macdonald
et al., 2011).

This single study by Macdonald and colleagues does not
allow us to draw strong conclusions about the relation between
SSVEP amplitude and mind-wandering for several reasons. First,
the subjective reports of attentional state in Macdonald may not
have reflected mind-wandering because the content of thoughts
was not explicitly reported. Hence, it is possible that the states
labeled as “low attention” reflected distraction by external stimuli
rather than internally-directed mind-wandering. Secondly, in
contrast to other studies measuring mind-wandering, including
measurements in daily life (34%–47%), educational environment
(33%–41%), and lab environment (over 40%; Killingsworth and
Gilbert, 2010; McVay and Kane, 2013; Seli, 2016; Wammes et al.,
2016; Groot et al., 2021), the occurrence of low attentional state
was relatively low (25% of the trials) in the study by Macdonald.
We speculate this could be due to the RSVP task they used is a
highly demanding task with limited periods to wait for a target,
and consequently, there is little time for the mind to wander
compared to the SART which has been typically used in previous
studies. This might be further compounded by the fact that
ratings were requested every trial, which could have brought the
participant back to focus.
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In summary, the electrophysiological difference between
more sticky and less sticky moments of thinking has so far
remained largely unexplored. In addition, while work with an
RSVP task suggests the SSVEP can contribute to the tracking
of mind-wandering, it is not clear whether that generalizes to
a more commonly-used SART task, and whether it can help to
track stickiness of thought. To fill these gaps, we will employ a
SART task—a low-cognitive control task that is commonly used
in mind-wandering research—in which we induce an SSVEP
by flickering the stimuli to explore whether the SSVEP can
contribute to detecting a sticky form of spontaneous thinking as
well as mind-wandering.

Method

Design

We used a within-subject design to examine whether the
SSVEP can be used to track spontaneous thoughts. This was
done by asking participants to perform a sustained attention
to response task, and comparing the amplitude of the SSVEP
between subjectively less sticky trials vs. more sticky trials, and
self-reported “on-task” trials vs. “mind-wandering” trials. These
self-reports were derived from thought probes that were inserted
into the task with intervals varying randomly between 30 and
90 s.

Participants

Forty participants (25 female and 15 male) with normal
or corrected-to-normal vision who were proficient in English
were recruited for the experiment through social media.
We recruited participants without a history of epilepsy to
reduce the possibility that seizures could be triggered by
the flickering stimuli embedded in our task. The research
proposal was approved by the Research Ethics Committee
(CETO) of the Faculty of Arts, University of Groningen.
Participants gave informed consent, and they were paid 24 euros
for their participation in the whole experiment which lasted
approximately 2.5 h.

Questionnaires

In an effort to investigate how the occurrence of
mind-wandering varies for people who show different
vulnerabilities to ruminative thought and depression, all
prospective participants were asked to fill out a number of
questionnaires. These questionnaires are irrelevant to the
current research question and will be elaborated on in a
separate report. The questionnaires we used to determine
vulnerability to ruminative thought are the Perseverative
Thinking Questionnaire (PTQ) measuring repetitive negative
thinking (Ehring et al., 2011), Rumination Response Scale
(RRS) for accessing depressive rumination (Nolen-Hoeksema
and Morrow, 1991), and the CES-D indicating the severity of
depression (Radloff, 1977). To be able to select participants
based on a single score, the total score (X) of the three
questionnaires was calculated as the sum of the separately
standardized score of each form: X =

∑ (xi−x̄i)
σi

, where x
was the raw score, σ was the standard deviation and i ranged
from 1 to 3. Participants within the top and bottom 25% of the
distribution of the total score were selected for the laboratory
experiment. The average and standard deviation of the PTQ,
RRS, and CES-D scores for the high and low depression groups
are shown in Table 1.

When they passed the screening, participants were
required to complete an additional set of questionnaires
online, approximately two days before the experiment:
(1) Cognitive Failures Questionnaire—Memory and Attention
Lapses (CFQ-MAL; McVay et al., 2009; McVay and Kane,
2013); (2) Personal Concerns Inventory (PCI; Miles Cox and
Klinger, 2008; McVay and Kane, 2013); (3) Adult ADHD
Self-Report Scale (McVay and Kane, 2013); and (4) Action
Orientation Scale (AOS; Kuhl, 1985). We used the PCI
to extract participants’ worries and concerns (McVay and
Kane, 2013). From the PCI, four of the most important
worries and concerns (according to the participants’ ratings)
were selected and converted into word triplets (e.g., if the
participant reported being worried about talking to strangers,
we converted this into “easy-communication-stranger”),
which were embedded in the SART task unbeknownst to the
participant to induce mind-wandering episodes (McVay and
Kane, 2013). The other three questionnaires were used as filler
questionnaires.

TABLE 1 The average and standard deviation (in brackets) of the scores across the high and low depression groups.

Group Questionnaires Writing manipulation1

PTQ score RRS score CES-D score Intensity Frequency

High depression 45.85 (4.70) 67.05 (7.34) 51.65 (6.47) 4.76 (0.97) 4.35 (0.86)
Low depression 25.10 (8.33) 41.75 (8.34) 35.45 (3.71) 4.11 (0.74) 3.84 (0.83)
Difference between groups t(38) = 9.70, p< 0.001 t(38) = 10.19, p< 0.001 t(38) = 9.71, p< 0.001 t(34) = 2.31, p = 0.027 t(34) = 1.81, p = 0.08

1Due to incomplete filling in of the writing manipulation, we are missing three data points in the high depression group and one data point in the low depression group.
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Procedure

Writing manipulation

To further increase the probability of mind-wandering,
participants were asked to complete a writing task about
a negative event in their life just prior to starting the
SART experiment. This task was chosen because it is known
that rumination about negative events tends to generate
mind-wandering (Miles Cox and Klinger, 2008), especially
thoughts of the sticky type. Participants were given 10 min
to describe this event (for the text of the instructions, please
refer to Appendix, derived from Banks et al. (2019). After the
completion of the writing assignment, participants were asked
to indicate on a 6-point Likert Scale how strongly this event
influenced them and how frequently it bothered them (Banks
et al., 2019). The average and standard deviance of the scores
(intensity and frequency) are also presented in Table 1.

SART

To measure the SSVEP, we developed a “flicker” version
of SART, in which all the stimuli except the thought probes
were presented while appearing and disappearing at a rate of
12.5 Hz (i.e., switching from “on” to “off ” every 80 ms). This
frequency was chosen to evoke a high level of SSVEP response,
which is known to be better for lower frequencies (Norcia et al.,
2015) while avoiding the contamination of alpha band oscillation
(8–12 Hz). A trial in the SART consisted of 320 ms flickering
words in the center of the screen following a flickering cross
of 200*200 pixels, which was itself presented for an average
duration of 1,800 ms (jittered with a period ranging from
1,480 ms to 2,120 ms to reduce expectancy effects in brain
and behavior). The words were followed by a flickering mask
for 880 ms, then an interstimulus interval (ISI) of 3,020 ms
without any flickering1, after which the next trial began (see
Figure 2 for the procedure of the SART). Word stimuli for each
trial were generated in a pre-defined order from a word list
derived from McVay and Kane (2013). Following McVay and
Kane, designated trials consisted of the words created on the
basis of participants’ answers to the PCI. Participants were asked
to press the button “N” as quickly as possible for lowercase
words (No-target “Go” trials, which made up 88.89% of the
trials) and to withhold their response for uppercase words
(Target “Nogo” trials, which made up 11.11% of the trials). The
word triplets were presented five trials before the target trial,
which was immediately followed by a thought probe. The SART
contained eight blocks, each block included 90 trials and six

1 We tried to maintain the flickering also during the ISI, but this majorly

bothered the participants, and for this reason we decided to abolish it.

FIGURE 2

(A) Stimuli and procedure of the SART—all stimuli were flickering
with a frequency of 12.5 Hz. A fixation cross was present firstly for
a variable duration (sampling from 1,480, 1,640, 1,800, 1,960, or
2,120 ms). Word stimuli were presented for 320 ms and a mask
presented for 880 ms followed. A trial ended with a 3,020-ms
blank screen. (B) Thought probe questions.

thought probes (self-report questions about the mental state of
the participant).

The task was presented on a computer, and administered
via Psychopy software (Peirce et al., 2019), with a viewing
distance of 65 cm away from the screen. The refresh rate of
the screen was set to 50 Hz which is four times the flickering
frequency, allowing us to generate 12.5 Hz flickers perfectly.
The visual angle of the word stimuli ranged from 5.72 degrees
to 36.39 degrees horizontally (depending on word length), and
5.55 degrees vertically.

The thought probe used to determine the content of
participants’ thought followed the format of our previous
studies on mind-wandering (Huijser et al., 2018; Jin et al.,
2019). Specifically, self-reported thought content was measured
with the question “What were you thinking about just now?”
Participants had to select among the options: (1) I was
completely focused on the task; (2) I was evaluating aspects of
the task. (e.g., how I was doing or how long the task was taking);
(3) I was thinking about personal things; (4) I was distracted by
my environment. (e.g., sound, temperature, my physical state);
(5) I was daydreaming or thinking about task-irrelevant things;
and (6) I was not paying attention and did not think about
anything in particular. To ensure a full understanding of the
thought probes, participants were asked to give an example of
each option to the experimenter and a practice session was
run before the experiment began where participants could have
any question answered. Consistent with our previous study, the
responses to the thought probes were designed to be categorical
instead of binary or a Likert scale ranging from on-task to
mind-wandering. This methodology allowed us to obtain an
impression of thought content while avoiding the acquiescence
bias inherent in the binary response (Weinstein, 2018). Trials
with a response of: (1) completely focused on the task and;
(2) evaluating the task were classified as “on-task” while trials
with a response of; (3) thinking about personal things and;
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(4) daydreaming or thinking about task-irrelevant things were
classified as “mind-wandering”. The answers of (5) distracted by
the environment; and (6) not thinking anything, in particular,
were not considered for further analysis as they could not be
clearly assigned to either mind-wandering or on-task.

To index stickiness, we used an additional question: “How
difficult was it to disengage from the thought?”, scored on a scale
from 1 (very easy) to 9 (very difficult). Trials with responses
ranging from 1 to 4 on the 9-point rating scale were classified
as “less sticky” trials while responses ranging from 6 to 9 were
classified as “more sticky” trials. Trials with the intermediate
response of 5 were excluded from further analysis because
they could not be assigned to either category. This concerned
19.38% of the responses. We think it is justified to dichotomize
responses in this way because participants were instructed that
the response “5” was neither non-sticky nor sticky, and therefore
clearly bisects the scale. Dichotomization was necessary since
considering each point of response independently would result
in too few responses per category. This was compounded by the
fact that more often than not, the participants did not use every
single ordinal response which made the conclusion limited when
comparing the SSVEP for each point of response.

Apart from this, we followed previous mind-wandering
studies by asking participants to report on the degree of self-
focus, which was measured with the question “To what extent
were your thoughts self-focused?”, scored on a scale from 1
(completely not self-focused/about others) to 9 (completely
self-focused). The valence of the thoughts was measured with
the question “How positive or negative were your thoughts?”,
scored on a scale from 1 (very negative) to 9 (very positive).
All the self-reported labels derived from the thought probes
(task-unrelated thoughts, self-focus, positiveness, and stickiness)
were assigned to the five trials preceding the thought probe for
the subsequent statistical comparison and classification. In this
study, only the task-relatedness of self-reported thought and the
stickiness of the thoughts will be reported.

It is worth noting that the task-relatedness and the stickiness
of the thoughts are separate dimensions of self-reported
thoughts, each trial is marked with both labels separately in this
study. In case the participants were on-task and unsure about
how to rate their current level of stickiness, they were instructed
to rate their thoughts as neither “very difficult” nor “very easy” to
disengage from (corresponding to a medium level of stickiness
which was around 5 in a 9-point rating scale, and these labels
were excluded from further analysis).

EEG Recording

EEG was recorded with a sampling rate of 512 Hz by a
Biosemi 32-channel system (BioSemi, Amsterdam, Netherlands)
with six individual electrodes to measure eye movements and
mastoid signals. An electrode near the vertex was used as

the on-line reference. We ensured that for all participants, all
impedances were kept below 20 k�.

Before entering the session of SART, a 5-min resting state
EEG was recorded (not reported in this manuscript). The
instructions for the resting state were the same as in a previous
study on mind-wandering (Diaz et al., 2014). During these
5 min, participants were asked to stay relaxed and quiet, to keep
their eyes closed, and not fall asleep. The resting period started as
they pressed the space button and immediately closed their eyes.
A short sound was played by a speaker indicating the end of the
5-min resting phase. Participants were told that if they failed to
follow the instructions and opened their eyes before the phase
ended, they would be asked to restart the resting state recording.
No participant failed to follow these instructions.

EEG Analysis

EEG pre-processing

The EEG data were pre-processed with the EEGLAB
toolbox (Delorme and Makeig, 2004) and MATLAB (The
MathWorks, Inc., Natick, MA). EEG signals were band-pass
filtered (0.5–40 Hz), followed by epoching the continuous data
into trials from 500 ms before stimulus onset to 4,300 ms
after. The EEG data were baseline-corrected to the time period
from 500 ms before the onset to the stimulus onset time.
Following this, the period from −500 ms before stimulus onset
time to 1,300 ms after was used for further analysis. Trials
with artifacts due to head and muscle movements as well
as those containing slow drifts were removed from further
analysis by visually inspecting all the trials. Bad channels
were detected for two participants via visual inspection and
replaced through interpolation of adjacent electrodes, and for
each of these participants, only one electrode was replaced. Data
were re-referenced to the average signal from all electrodes.
An independent component analysis (ICA) was performed to
remove ocular artifacts. Due to the interpolation of bad channels
and the average referencing, the rank of the data was detected
and adjusted automatically by the pop_runica function when
running the ICA. The independent components that were
considered to be related to eye blinks, muscle activity, and
horizontal saccades were removed after visual inspection by an
experienced rater (a maximum of five out of 38 components
were removed). Time points from 200 ms before the stimulus
and 900 ms after the stimulus was further selected for each
trial, followed by a baseline correction to ensure that the EEG
waveforms were centered on zero again after the data had
been segmented from longer epochs. The time window of the
segmentation was decided based on the moment when the ERP
returned back to baseline, which was at 900 ms (see Figure 4).
The pre-processing removed an average of 12.72% (ranging from
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FIGURE 3

Boxplot of behavioral performance differences between less sticky trials (red) and more sticky trials (blue). (A) Accuracy for Nogo trials is
significantly higher for less sticky trials (“*” indicates a p value which is lower than 0.05). (B) and (C) No significant differences between more
and less sticky trials were observed in RT and cvRT of Go trials.

2.14% to 43.59%) of the trials that were used in the subsequent
analysis because they were part of the five trials before thought
probes. The trials were labeled (as mind-wandering/on-task
and more sticky/less sticky) after the pre-processing to avoid
subjective bias during the manual artifact removal. Among a
total of 240 trials per participant, an average of 88.15 trials of
on-task and 77.35 trials of mind-wandering remained after the
pre-processing, while an average of 87.65 more sticky trials and
76.68 less sticky trials were retained.

Event-related potential (ERP) analysis

After obtaining clean data, the on-task and off-task trials
were averaged separately. The P1 and N1 component was
investigated in P7 and P8 electrodes as was done in other
ERPs studies (di Russo et al., 2019), while the P3 component
verbed in Pz and Fz electrodes; following (Denkova et al., 2018;
Gonçalves et al., 2018; Maillet et al., 2020). A time window of
50–200 ms was selected for detecting the peak amplitude of P1,
100–250 ms for N1, and 250–600 ms for P3. The time windows
were decided based on prior studies but slightly enlarged after
checking the ERP plot for all participants to make sure the peak
latencies were within the time window range (Jin et al., 2019).
The peak amplitudes were calculated as the highest (for P1 and
P3) or lowest (for N1) amplitudes during the corresponding time
windows.

Frequency analysis

The oscillatory power analysis for single trials used the
same methodology as our previous study (Jin et al., 2019). EEG
epochs in electrodes P7, P8, Pz, and Fz were filtered using a
filter kernel constructed with firls in MATLAB (The MathWorks,
Inc.), and decomposed into alpha (8–12 Hz) and theta (4–8 Hz)
frequency bands. The four electrodes were selected based on

FIGURE 4

Grand average ERPs in electrodes P7, P8, Fz, Pz, and Oz
comparing more sticky trials (red) and less sticky trials (blue).
The time windows for detecting peaks of ERPs components
are shown in the rectangles: P1 (50–200 ms in light green),
N1 (100–250 ms in light purple), and P3 (250−600 ms in light
yellow). There were no significant differences between more and
less sticky trials.

the fact that they showed effects of mind-wandering in alpha
and theta bands in previous studies (Jin et al., 2019): the filter
order was set as EEG sampling rate divided by the lower bound
of the frequency band, i.e., four for theta and eight for alpha.
The finite response filter was defined as a plateau-shaped vector
[0 0 1 1 0 0] where 1 reflects the frequency range in the band
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and 0 reflects the surrounding frequencies (Cohen, 2014). A
transition width of 0.2 was used for the kernel, which is a
somewhat intermediate trade-off between time- and frequency
resolution. After applying the filter with the filtfilt function, the
EEG signal was Hilbert-transformed to obtain the phase angles
in the complex plane. These complex numbers were transformed
into estimates of the power spectral density (PSD) using pwelch
function. Power estimates were computed for the pre-stimulus
and the post-stimulus intervals separately. The power value was
calculated as the square of the absolute value of PSD.

Inter-trial coherence analysis

To measure the EEG response to the flickering stimuli
across frequencies, inter-trial coherence (ITC) was computed.
The ITC is also known as “phase locking value”, ranging from
0 which represents completely random activity across trials, to
1 which represents completely phase-locked activity across trials.
The calculation of ITC and event-related spectral perturbation
(ERSP) was implemented in EEGLAB and MATLAB (The
MathWorks, Inc.) with the newtimef function which used a
frequency spacing of 0.5 Hz in the frequency range from 8 to
30 Hz for time-frequency decomposition. The number of cycles
used by the wavelet decomposition varied from 5 cycles at the
frequency of 8 Hz to 9.375 cycles at the frequency of 30 Hz. As
the SSVEP has commonly been observed in the occipital region
of the brain (Kastner-Dorn et al., 2018), the Oz electrode was
used to track the ITC value in this study. A time window from
500 ms to 900 ms was selected since the SSVEP requires some
time (around 500 ms) to reach its maximum after the onset of the
flicker, and the SSVEP waveform at Oz takes around 900 ms to
return to baseline level (Müller et al., 1998b). To evaluate the ITC
at the flickering frequency (12.5 Hz) and its harmonics at 25 Hz,
we computed the mean ITC of 12–13 Hz and 24.5–25.5 Hz
separately.

Event-related spectral perturbation (ERSP)
analysis

The ERSP of the single trials was computed on the
same frequency ranges as the ITC: the flickering frequency
(12–13 Hz), the harmonic frequency (24.5–25.5 Hz), and the
alpha band frequency (8–12 Hz) within the time window
ranging from 500 ms to 900 ms after the stimulus onset.

Single-trial ERP analysis

In previous studies, ERPs components including N1, P1,
and P3 were associated with mind-wandering and they were the
potential predictors of mental states (Braboszcz and Delorme,
2011; Broadway et al., 2015; Baldwin et al., 2017). To allow
for reliable estimates of these ERPs on single trials, which is

particularly important for our classifier, we computed single-trial
ERPs using methods used in our prior studies (Jin et al., 2019,
2020). The essence of this method is template matching. First,
it builds an ideal ERP template with a pre-defined Mexican hat
function (Bostanov and Kotchoubey, 2006) and then computes
its cross-covariance with the single trial EEG. After detecting
the local extrema of the points that best match between the
signal and the template in the time domain, the resulting features
are the amplitude W, the time lag t, and the scale s for each
component in each trial. A more detailed description of the
single-trial ERP methodology can be found in Bostanov (2015)
and Jin et al. (2019).

Apart from the single-trial ERP components, the alpha and
theta oscillations, as well as the ERSP, were also obtained for
every single trial using the methods described above in section
“EEG Analysis”. These features were fed to the classifier for
prediction.

Classifier of spontaneous thought with
neural data

After obtaining all the features, we were interested in
whether the SSVEP would contribute to the accuracy of
classification. Two classifiers built on the basis of all the above-
mentioned features with and without the SSVEP were designed,
using the same methods as Jin et al. (2019). We deliberately did
not search for additional features but instead restricted ourselves
to EEG features that had previously been related to mind-
wandering, and that had been reported in our prior studies in
which we classified mind-wandering. The latter was important
so we could compare our results of the experiment that included
the SSVEP to these previous studies that did not include the
SSVEP.

To classify whether the participant was mind-wandering
or on-task for each trial, an SVM was implemented with
caret package (Kuhn, 2008) in R. Before starting classification,
features were normalized by calculating Z-scores across trials for
training and testing datasets separately within each participant.
The whole dataset was randomly divided into train and test
datasets, for which the proportion of mind-wandering and
on-task trials remained the same as in the original dataset (70%
of the data was allocated to training and 30% was allocated to
testing). We used 10-fold cross-validation to train the classifier
(Fushiki, 2011). Since there were unequal numbers of trials in the
on-task and mind-wandering states, an oversampling method
was implemented for each fold in an effort to make sure the
number of mind-wandering and on-task trials was equal in
the training dataset (Gosain and Sardana, 2017). A radial basis
function (RBF) was used as a kernel on the SVM classifier, as it
has been shown to be suitable for classifying high-dimensional
data including EEG (Subasi and Ismail Gursoy, 2010; Li et al.,
2018) and was effective in our previous mind-wandering study
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(Jin et al., 2019). Kernel parameters that could be adjusted were
the cost C of the radial kernel which controls the complexity
of the boundary between support vectors, and the smoothing
parameter sigma (also known as gamma). Both parameters were
tuned for each participant using grid search optimizing accuracy
with sigma ranging from 0.001 to 10 and C ranging from
0.00001 to 0.1 (Liu et al., 2012; Ravi Kumar et al., 2020). Tune
length, i.e., the amount of granularity in the tuning parameter
grid, was set to 9 for all participants. To evaluate whether the
SSVEP improved the classifier, we compared the accuracies of
the classifiers including and not including the SSVEP. In addition
to reporting accuracy, we report sensitivity and specificity to be
able to assess bias. Sensitivity and specificity were calculated as
follows: sensitivity = TP / (TP + FN); specificity = TN / (TN + FP)
while TP represents the true positives, TN represents the true
negatives, FP represents the false positives and FN represents the
false negatives (van Stralen et al., 2009).

Statistics

The comparisons across conditions (mind-wandering vs.
on-task, more sticky vs. less sticky) over the behavioral
results, ERP components, alpha and theta oscillations, ITC
and ERSP of 12.5 Hz and 25 Hz were done by means of a
paired t-test (using the t.test function in R; R Core Team,
2020) as well as by means of the calculation of pairwise
Bayes factors (using the ttest BF function in the BayesFactor
package; Morey et al., 2011). Our motivation for adding Bayes
Factors (BF10) is that in the case of null results, those allow
us to distinguish between general uncertainty in our data
and evidence for the null hypothesis (0) over the alternative
hypothesis (1). In general, a BayesFactor BF10 between 0.3 and
3 indicates that the data do not allow us to draw any definitive
conclusion (i.e., uncertainty), while a BayesFactor BF10 larger
than 3 indicates evidence in favor of the alternative hypothesis,
and a BayesFactor BF10 smaller than 0.3 indicates evidence in
favor of the null hypothesis (Morey et al., 2011). To correct
for chance level in the classification with small a sample
size, the binoinvfunction in MATLAB was used to compute
the statistically significant threshold: St(α) = binoinv(1−
α, n, 1

c )×
100
n , where α is the significance level, n is the sample

size and c is the number of classes for prediction (Combrisson
and Jerbi, 2015). The code for our data analysis can be found at
https://github.com/hankyoung1324/FlickeringSART.

Results

Behavioral results

We first examined behavioral performance during the
SART. Go-trial accuracy was 99.11% (with a standard

deviation, SD of 1.31%), while Nogo accuracy was
67.66% (SD 17.87%). Participants performed significantly
worse for Nogo trials than for Go trials [t(39) = 11.27,
p < 0.001, BayesFactor (BF10) = 9.61*1010 in a paired
t-test]. The average response time for Go trials was
471 ms (SD 84 ms). Here we firstly report the results
of stickiness in sections “Behavioral results”–“Tracking
Stickiness on Single Trials”, followed by the results of the
mind-wandering vs. on-task in section “Tracking Mind-
Wandering”.

Among all the 720 trials of the experiment, a total of
236 trials that comprised the five trials before each of the
thought probes were selected for further analysis. Of these,
an average of 36.58% labeled trials were marked as less
sticky while 43.80% trials were marked as more sticky. There
were also 19.38% of the trials reported as neutral stickiness
and 0.20% with no responses and were not included in
the analysis. Nine participants did not use the full range
of stickiness ratings, which had the consequence that there
were no trials in one of the two categories (more sticky
or less sticky). For this reason, these participants were
not included for further analysis. The proportions of more
sticky/less sticky trials as well as mind-wandering/on-task
for each participant are reported in the supplementary
Supplementary Table A1.

To examine the validity of the thought probe responses, we
firstly asked whether there was a difference in task performance
between different responses on the thought probes (see Figure 3
for the boxplot and Table 3 for the descriptive results). We
found that the level of stickiness of thoughts was indeed
associated with changes in behavior: accuracy for Nogo trials
was lower when thoughts were judged to be more sticky
(M = 0.58, SD = 0.2) compared to less sticky (M = 0.68,
SD = 0.22) moments (t(30) = 3.06, p = 0.005, BF10 = 8.54),
yet the stickiness did not affect RT (More sticky: M = 0.47,
SD = 0.10 and less sticky: M = 0.48, SD = 0.11, t(30) = 0.18,
p = 0.86, BF10 = 0.19), nor did it affect the coefficient
of variation of RT (cvRT, i.e., standard deviation of RT/
mean RT):More sticky: M = 0.26, SD = 0.25 and less sticky:
M = 0.27, SD = 0.27, t(30) = 0.23, p = 0.86, BF10 = 0.20;
see Figure 3 for the boxplot and Table 3 for descriptive
results).

EEG

ERPs

We then asked whether—even though there were no
behavioral differences between more sticky and less sticky
trials—there were significant differences between more sticky
and less sticky trials in the amplitude of the P1, N1, and P3 event-
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TABLE 2 The accuracy, sensitivity, and specificity of the support vector machine model with and without the ERSP value included.

Comparison With or without ERSP Accuracy Sensitivity Specificity

More sticky vs. less sticky trials Without ERSP 0.73 0.32 0.68
With ERSP 0.73 0.35 0.66

Mind-wandering vs. on-task trials Without ERSP 0.64 0.42 0.57
With ERSP 0.64 0.45 0.54

TABLE 3 Task performance of the “Nogo” trials as a function of responses on the different thought probes.

Thought probe Types Accuracy RT (seconds) cvRT (seconds)

Task-relatedness Mind-wandering 0.62 (0.21) 0.41 (0.04) 0.17 (0.09)
On-task 0.69 (0.23) 0.51 (0.59) 0.14 (0.10)

Self-focus More self-focused 0.61 (0.21) 0.43 (0.12) 0.20 (0.24)
Less self-focused 0.62 (0.26) 0.42 (0.08) 0.13 (0.09)

Positive or negative Positive 0.69 (0.27) 0.45 (0.14) 0.21 (0.29)
Negative 0.52 (0.21) 0.41 (0.07) 0.20 (0.24)

Stickiness More sticky 0.59 (0.20) 0.43 (0.07) 0.16 (0.08)
Less sticky 0.69 (0.22) 0.53 (0.67) 0.16 (0.25)

The bracket includes the standard deviation (SD).

TABLE 4 Pairwise t-tests comparing oscillatory power in alpha and theta band at the P7, P8, Fz, and Pz electrodes between different groups of trials.

Comparison Frequency band Electrode t value (t) Degree of freedom (df) p value (p) Bayes Factor (BF10)

More sticky vs. less sticky Alpha P7 1.26 30 0.22 0.39
trials P8 1.14 30 0.26 0.35

Fz 0.81 30 0.43 0.26
Pz 1.36 30 0.19 0.44

Theta P7 1.51 30 0.14 0.53
P8 1.18 30 0.25 0.36
Fz 0.23 30 0.82 0.20
Pz 1.06 30 0.30 0.32

Mind-wandering vs. Alpha P7 1.68 38 0.10 0.62
on-task trials P8 2.48 38 0.02 2.53

Fz 2.67 38 0.01 3.74
Pz 2.16 38 0.04 1.37

Theta P7 0.03 38 0.97 0.17
P8 0.13 38 0.89 0.17
Fz 0.37 38 0.71 0.18
Pz 1.40 38 0.17 0.42

Bold font indicates a significant contrast.

related potentials (ERPs) as prior studies have shown those to
be sensitive to mind-wandering. The average ERPs waveforms
from −200 ms to 900 ms were plotted for more sticky and less
sticky trials separately as shown in Figure 4. Note that these
ERPs exhibit strong periodicity occipitally due to the flickering
of the stimuli. To compare more sticky and less sticky trials,
we focused on the peak amplitude of the ERP components P1,
N1 and P3. For many of these ERPs, their amplitude was the
same in trials in which the spontaneous thoughts were more
sticky compared to trials that were less sticky (P1 component
measured at the P7 electrode: more sticky (M = 4.59, SD = 2.59)
and less sticky (M = 5.03, SD = 2.26), t(30) = 1.01, p = 0.32,
BF10 = 0.30; N1 components at the P8 electrode [more sticky
(M = −4.97, SD = 2.86) and less sticky (M = −4.98, SD = 3.00),
t(30) = 0.16, p = 0.87, BF10 = 0.19]; P3 component measured
at the Pz electrode [more sticky (M = 6.34, SD = 2.77) and
less sticky (M = 6.36, SD = 2.48), t(30) = 1.15, p = 0.26,

BF10 = 0.35]. At some electrodes, the difference was unclear
[N1 component measured at the P7 electrode (more sticky
(M = −5.92, SD = 2.63) and less sticky (M = −6.52, SD = 2.62),
t(30) = 1.67, p = 0.11, BF10 = 0.66)] and P3 components measured
at the Fz electrode [more sticky (M = 1.34, SD = 1.43) and
less sticky (M = 1.86, SD = 1.57), t(30) = 2.02, p = 0.05,
BF10 = 1.13].

Oscillatory power

We then asked whether alpha and theta power differed
between more sticky and less sticky trials, since previous
studies associated those with the occurrence of spontaneous
thought especially mind-wandering. Data were too uncertain
to determine whether there was an effect of stickiness on
the alpha band power spectrum on posterior electrode
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Pz [more sticky (M = 0.33, SD = 0.70) and less sticky
(M = 0.24, SD = 0.44), t(30) = 1.36, p = 0.19, BF10 = 0.44,
Table 4 gives a complete overview of statistical results for
all electrodes]. In contrast, frontal electrode Fz showed
no difference in theta power between more and less
sticky trials [more sticky (M = 0.13, SD = 0.25) and
less sticky (M = 0.10, SD = 0.28), t(30) = 0.23, p = 0.82,
BF10 = 0.20].

SSVEP

Next, we examined whether the SSVEP could distinguish
between more sticky spontaneous thoughts and those which
were less sticky. The peak SSVEP amplitude was firstly assessed
in occipital sites (Oz), the usual locus of the SSVEP. One
measure that has been used to quantify the magnitude of the
SSVEP is the inter-trial coherence (ITC) at the SSVEP frequency.
Figure 5 shows that, as would be expected based on the fact
that our stimulus flickers at 12.5 Hz, the peak ITC values occur
around 12.5 Hz and 25 Hz in the Oz electrode (where 25 Hz
is a harmonic of the flickering frequency). Indeed, the SSVEP
measured by means of the ITC showed that less sticky trials
showed a slightly higher peak ITC value compared to more
sticky trials around 12.5 Hz [more sticky (M = 0.39, SD = 0.16),
less sticky (M = 0.42, SD = 0.15), t(30) = 2.34, p = 0.026,
BF10 = 1.99] while around 25 Hz no clear pattern emerged
[more sticky (M = 0.40, SD = 0.20), less sticky (M = 0.43,

SD = 0.19), t(30) = 1.41, p = 0.17, BF10 = 0.47]. Meanwhile,
no difference was found between more and less sticky trials
in the ERSP around the flickering frequency and harmonic
frequency of the SSVEP [12.5 Hz: more sticky (M = 51.58,
SD = 2.60), less sticky (M = 51.58, SD = 2.71), t(30) = 0.04,
p = 0.97, BF10 = 0.19; 25 Hz: more sticky (M = 48.30, SD = 3.39),
less sticky (M = 48.26, SD = 3.46), t(30) = 0.27, p = 0.79,
BF10 = 0.20].

Tracking stickiness on single trials

Despite the ambiguous statistical differences between low-
and high-stickiness trials, it was on a single-trial level possible
to predict with an individual-participant classifier based on a
multivariate EEG signal whether the participant was engaged
in a thought that was sticky or not with accuracies that
ranged from 40.90% to 94.00% and an average accuracy of
72.60%. This accuracy did not differ much when ERSP was
included, in which case accuracies ranged from 42.22% to
96.00% with an average accuracy of 73.35%. Figure 6 shows
the accuracy of the classifiers of the stickiness of thoughts with
and without the SSVEP signal, separately for every participant.
Both of these accuracies were significantly higher (p < 0.01)
than the corrected chance level (59.12%) for our sample size
(n = 159 on average, ranging from 68 to 218 across participants)
and the number of classes (2; Combrisson and Jerbi, 2015).

FIGURE 5

(A) The average ITC across frequencies for less sticky and more sticky trials. (B) Boxplot of the ITC at the frequency of 12.5 Hz and 25 Hz for less
sticky and more sticky trials, each dot represents one participant. (C) The average ERSP ((log)dB) across frequencies comparing less sticky and
more sticky trials. (D) Boxplot of the ERSP at the frequency of 12.5 Hz and 25 Hz for less sticky and more sticky trials, each dot represents one
participant. Significant differences are indicated with an *.
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FIGURE 6

Performance of the classifiers predicting stickiness on the basis of EEG for all participants. The gray horizontal dashed line indicates the chance
level of 50% accuracy while the blue and red dashed lines indicate the accuracy of classifiers with and without the ITC, respectively.

FIGURE 7

Comparison of the behavioral performance between mind-wandering (MW, blue) and on-task (OT, red) trials. (A) Accuracy for Nogo trials. (B) RT
for Go trials. (C) cvRT for Go trials. No clear differences on these three measures were found between self-reported on-task and mind-wandering
trials.

The accuracies of the model with and without the ERSP
included did not differ from each other (t(30) = 0.98, p = 0.33,
BF10 = 0.30).

Tracking mind-wandering

We then examined whether we could predict
mind-wandering on a single-trial level. A proportion of
37.92% of the trials was marked as mind-wandering (thinking
about personal matters or daydreaming) and 41.80% were
focused on the task (completely focused or evaluating aspects of
the task), while the remaining 19.73% of the trials were reported

uncertain, distracted by the surroundings or the thought was
not anywhere specifically. There were also 0.55% of the trials
excluded for further analysis as no responses were indicated.
One participant was excluded from further analysis as no
mind-wandering episodes were reported.

Unfortunately, the self-report data were unrelated to task
accuracy (see Figure 7 for the boxplot and Table 3 for the
descriptive results). Specifically, accuracy on Nogo trials did
not differ between mind-wandering (M = 0.62, SD = 0.21) and
on-task (M = 0.68, SD = 0.23) trials (t(38) = 1.71, p = 0.096, BF10

for the paired t-test is 0.65 indicating insufficient evidence for
any difference). Also RT did not differ between mind-wandering
(M = 0.47, SD = 0.13) and on-task (M = 0.46, SD = 0.07) trials
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(t(38) = −0.93, p = 0.36, BF10 = 0.26). The same applied to the
coefficient of variation of RT (cvRT), which also did not differ
between mind-wandering (M = 0.27, SD = 0.27) and on-task
(M = 0.25, SD = 0.22) trials (cvRT; t(38) = 0.39, p = 0.70,
BF10 = 0.19).

Alpha power for mind-wandering trials (M = 0.41,
SD = 1.23) was found to be somewhat higher compared to
on-task trials (M = 0.35, SD = 0.97) at posterior sites (alpha in
P8: t(38) =2.48, p = 0.02, BF10 = 2.53, Pz: t(38) = 2.16, p = 0.04,
BF10 = 1.37), as is shown in Table 4). In the theta band, the
oscillatory power for mind-wandering (M = 0.12, SD = 0.23)
was not found to be significantly different from on-task trials
(M = 0.09, SD = 0.20) in the theta band at the frontal sites
(Fz: t(38) = 0.37, p = 0. 71, BF10 = 0.18). Figure 8 shows there
was also no significant difference between mind-wandering and
on-task trials in the amplitude of N1, P1, and P3 [P1 component
on P7 electrode: mind-wandering (M = 4.86, SD = 2.35)
and on-task (M = 4.88, SD =2.31), t(38) = 0.08, p = 0.94,
BF10 = 0.17; N1 component on P7 electrode: mind-wandering
(M = −6.10, SD = 2.78) and on-task (M = −6.18, SD = 2.54),
t(38) = 0.34, p = 0.74, BF = 0.18 and P8 electrode: mind-
wandering (M = −4.97, SD = 3.05) and on-task (M = -4.87, SD
= 2.95), t(38) = 0.47, p = 0.64, BF = 0.19; and P3 component on
Fz electrode: mind-wandering (M = 1.80, SD = 1.80) and on-task
(M = 2.05, SD = 2.19), t(38) = 1.02, p = 0.31, BF10 = 0.28 and Pz
electrode: mind-wandering (M = 6.24, SD = 2.75) and on-task
(M = 6.22, SD = 2.96), t(38) = 0.12, p = 0.90, BF10 = 0.17)]. It is
too uncertain to tell the difference between mind-wandering and
on-task on P8 electrode: mind-wandering (M = 5.76, SD = 2.94)
and on-task (M = 6.10, SD = 2.69), t(38) = 1.50, p = 0.15,
BF10 = 0.47.

Yet, the ITC of these frequencies did not differ between
trials in which participants reported to be focused on the
task compared to trials in which they were mind-wandering
[12.5 Hz: mind-wandering (M = 0.40, SD = 0.17), on-task
(M = 0.41, SD = 0.18), t(38) = 0.27, p = 0.79, BF10 = 0.18;
25 Hz: mind-wandering (M = 0.38, SD = 0.2), on-task (M = 0.39,
SD = 0.2), t(38) = 0.37, p = 0.71, BF10 = 0.18; see Figure 9 for the
ITC and ERSP of on-task and mind-wandering trials].

Interestingly, the mind-wandering trials showed a somewhat
weaker ERSP than on-task trials around the harmonic frequency
[25 Hz; mind-wandering (M = 47.88, SD = 3.22), on-task
(M = 48.13, SD = 3.27), t(38) = 2.06, p = 0.046, BF10 = 1.16].
No such difference between mind-wandering and on-task
was found for the ERSP at the flicker frequency [12.5 Hz;
mind-wandering (M = 51.70, SD = 2.39), on-task (M = 51.69,
SD = 2.55), t(38) = 0.068, p = 0.95, BF10 = 0.17].

As before, even though there are limited differences between
mind-wandering and on-task manifest in both brain and
behavior, we still examined whether the signal is usable by a
classifier, which may be able to combine multiple sub-threshold
signals to make reliable predictions about behavior. Figure 10
shows the accuracy of the mind-wandering classifiers with

FIGURE 8

The grand average ERPs on electrodes P7, P8, Fz, Pz, and Oz for
mind-wandering trials (MW; blue) and on-task trials (OT; red). The
time windows used for detecting the peaks of the various ERP
components are shown in different rectangles: P1 (50–200 ms
in light green), N1 (100–250 ms in light purple), and P3 (250
−600 ms in light yellow). The electrodes and time windows were
selected on the basis of previous studies on mind-wandering.

and without the SSVEP signal, separately for every participant
(except one participant who reported no mind-wandering
trials). Overall, the classifier is able to predict mind-wandering
with an average accuracy of 64.44% (ranging from 39.29% to
91.18% across participants) when the SSVEP signal is in the
form of the ERSP at the frequency of 12.5 Hz and 25 Hz is not
included. The accuracy was significantly higher (p < 0.01) than
the corrected chance level (58.68%) considering the sample size
(167 on average, ranging from 82 to 217 across participants)
and the number of classes (2). When ERSP is included in the
classifier, the accuracies range from 40.00% to 90.91% (average
accuracy is 63.99%). Yet, there is no significant difference in
prediction accuracy between the classifiers that did and did not
include ERSP (t(38) = 0.52, p = 0.61, BF10 = 0.20).

Discussion

In this study, we examined whether the SSVEP triggered by
flickering stimuli of a SART could help to determine the extent
to which an individual is distracted with sticky or more generally
task-unrelated spontaneous thoughts. Consistent with existing
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FIGURE 9

(A) The average ITC across frequencies comparing the trials in which participants reported being on-task (OT) vs. mind-wandering (MW). (B)
Boxplot of the ITC at the frequency of 12.5 Hz and 25 Hz for OT and MW trials, each dot represents one participant. (C) The average ERSP
((log)dB) across frequencies for on-task (OT) and mind-wandering (MW) trials. (D) Boxplot of the ERSP at the frequency of 12.5 Hz and 25 Hz
for OT and MW trials, each dot represents one participant. The only observable difference (indicated with *) is found between on-task and
mind-wandering in the ERSP at 25 Hz, which is significantly higher for on-task.

FIGURE 10

Performance (Accuracy) of the SVM in the SART for all participants: prediction of whether a participant is mind-wandering or on task on the basis
of various EEG features. The gray horizontal dashed line indicates the chance level of 50% accuracy while the blue and red dashed lines indicate
the mean classifier accuracy with and without the ITC, respectively.

studies, we found reduced behavioral performance when the
spontaneous thoughts were found difficult to disengage from
(“sticky”) compared to when it was easy to let go. There was weak
evidence for the SSVEP evoked by flickering being reduced in

amplitude during more sticky spontaneous thought. Moreover
a machine learning classifier achieved a decent accuracy at
predicting the stickiness of thoughts on the basis of EEG features
including single-trial P1, N1, and P3 alpha and theta oscillations
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and the ERSP at the SSVEP frequency although the SSVEP did
not improve the classification of more vs. less sticky spontaneous
thoughts (without the SSVEP: 72.60% and with the SSVEP:
73.35%).

Our observation of differences in SSVEP and behavior with
sticky thought is interesting because this stickiness of thoughts
may be related to depressive rumination which is a maladaptive
form of thinking (Ottaviani et al., 2013, 2015; Marchetti et al.,
2016). As such, the stickiness-related SSVEP signal may have
interesting applications in future studies of depressive thinking.
More specifically, these findings may be usable in clinical
settings in the future. For example, if indeed sticky thinking
is a light form of rumination, then the detection of sticky
thinking may be helpful to catch a depressive relapse at an early
stage. In other words, this biomarker—if it is verified in future
studies of depressive patients—could potentially contribute to
the diagnosis and an early intervention for depression.

In contrast to previous studies, we did not find a difference in
behavioral performance between mind-wandering and on-task
trials. In addition, we failed to find differences in ERPs between
mind-wandering and on-task performance. However, we did
find slightly increased alpha-band EEG oscillations while a
participant was mind-wandering, which also in previous studies
have been shown to be the most consistent indicator of mind
wandering (Jann et al., 2010; Mo et al., 2013; Jin et al.,
2019; Arnau et al., 2020). We failed to find a difference in
the SSVEP evoked by flickering words between subjectively-
rated mind-wandering and on-task states. The SSVEP also did
not improve the classification accuracy of a machine learning
classifier set up to distinguish mind-wandering from being
on-task on single trials. It is possible that our failure to find an
effect of SSVEP is due to limitations in signal processing. In
a separate analysis we used a more state-of-art spatial filtering
technique, namely canonical correlation-based spatial filtering
to extract SSVEP features from five occipital electrodes (PO3,
O1, Oz, O2, and PO4 electrode; Chen et al., 2014). This method
removes noise by finding a transformation that maximizes the
correlation between the original EEG signal and the evoked
potential (which is presumably a signal with less noise, since
it has been averaged out). Despite this noise reduction, our
conclusion remained the same: the accuracy for predicting
stickiness reached 74.16% while the accuracy for predicting
mind-wandering reached 65.24%. The SSVEP did not contribute
to the prediction of either stickiness or mind-wandering.

Since the SSVEP is a well-known indicator of where on
the screen attention is directed (Müller et al., 1998a; Gulbinaite
et al., 2019), one may wonder how it could be the case that
it fails to detect the attentional disengagement associated with
mind-wandering. One possible reason is that in the current
study, attention need not be localized to a particular spatial
location, but instead just generally at the center of the screen.
In other words, the SART can be completed without detailed
visual processing. It could therefore be the case that attention

was partly directed inwardly to spontaneous thoughts while
some global level of attention on bottom-up visual stimuli
remained. Specifically, in the task we are studying, there are
at least three different possible foci of attention: (a) the visual
flickering without processing the letters; (b) the actual letter
cases and; (c) endogenous thoughts. It is therefore possible
that participants were paying some rudimentary attention
to the flickering stimulus without actually processing the
letters—leading to a relatively low SSVEP signal that would
not change when a participant disengages their attention
further during mind-wandering. This is supported by the
attenuated SSVEP attend-vs.-unattended effect during covert
attention compared to overt attention, i.e., when the eyes are
focussed to the center of the screen instead of directly gazing
at the stimulus, the difference in SSVEP amplitude between
attended and unattended stimulus was significantly lower
(Walter et al., 2012).

Another possible explanation for our failure to find SSVEP
being reduced during mind-wandering may come from the
nature of the task: as the word stimuli kept flickering all
the time, participants’ attention was constantly directed to the
flickering words. The salience of the flickers may have reduced
the occurrence of mind-wandering and made it more difficult
to decouple attention from the stimuli. Indeed, the average
rate of mind-wandering in the current task is 37.60%, which
is lower than in previous studies, which reported rates of 42%
and 44% given exactly the same content of thought probes
(McVay and Kane, 2013; Jin et al., 2019). This relatively low
rate of mind-wandering occurred despite our efforts to increase
mind-wandering by priming concerns with a writing task at the
start of the experiment and including concern-related works in
the task itself (McVay and Kane, 2013). Unlike the degree of the
stickiness of spontaneous thoughts, the degree of being on-task
was not associated with differences in behavior. Compared
to previous studies using the same SART paradigm without
flickering stimulus, we could speculate that the flickering might
be the major factor why we missed the difference in behavioral
performance between mind-wandering and on-task.

Although we started our study with the intention to improve
the prediction of spontaneous thought by using the SSVEP, in
fact, we found continued challenges in predicting spontaneous
thought on a single-trial level. The machine learning classifiers
yielded only a moderate level of accuracy, and it is worth noting
that the sensitivity of the classifiers is still low (see Table 2),
which means the models are biased when classifying the two
classes. This bias occurred despite the fact that similar to the
study of Jin et al. (2019), we used a practice of oversampling
to balance the size of the two classes in the training dataset.
The bias in the classifier could be due to the imprecision
of the labels based on self-reported thought probes—in other
words, participants may not be very good at estimating their
own mental states (Weinstein, 2017). This would result in high
levels of label noise, which makes it more challenging for the
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classifier to learn the proper mappings between EEG signal
and mind-wandering judgments, and increases the chances of
biases. As such, our results should be treated with caution and
replicated in larger samples. Moreover, it may be worth the effort
to improve label quality by training participants on reporting
their own thoughts, as is done for example in studies using
microphenomenology (Petitmengin et al., 2019) or Descriptive
Experience Sampling (Hurlburt and Akhter, 2006). Another
intriguing direction for future research is to complement the
subjective labels with more advanced data features. For example,
Zanesco (2020) has developed methods to quantify the dynamics
of behavior based on autoregressive methods. It could be
interesting to examine whether such fluctuations in behavior
are related to subjective ratings such as stickiness (see also
Irrmischer et al., 2018 for similar ideas).

In this study, we had to dichotomize the continuous rating
scales to have sufficient statistical power for comparisons. While
we assumed trials within each category to be homogeneous,
it remains possible that this dichotomization has affected
the results. Future research may explain more continuous
classification methods. Another limitation is that the statistics
were not corrected for the number of comparisons in this
study although multiple comparisons including the ERPs, alpha
oscillations, and SSVEP were made. Moreover, the effect of ITC
between less sticky trials and more sticky trials did not survive
after correction using a false discovery rate. The robustness of
this effect needs further consolidation by future studies on sticky
thinking.

In summary, we examined whether the SSVEP could
track subjective judgments of spontaneous thought including
mind-wandering and sticky thought. We found the SSVEP
was able to track another dimension of spontaneous thought,
namely the difficulty of disengaging from this thought.
Moreover, the classification of the stickiness of thoughts with
EEG features achieved a moderate accuracy. Surprisingly,
it did not distinguish between mind-wandering and being
on task. Future studies should elucidate the boundary
conditions under which the SSVEP operates—for example,
what dimensions of thought it is most sensitive to and in what
paradigms.
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Işcan, Z., Özkaya, Ö., and Dokur, Z. (2011). “Classification of EEG in a steady
state visual evoked potential based brain computer interface experiment,” in
Adaptive and Natural Computing Algorithms. ICANNGA 2011. Lecture Notes in
Computer Science, Vol. 6594, eds A. Dobnikar, U. Lotrič, B. Šter (Berlin, Heidelberg:
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Appendix: Writing instruction

Before starting the SART experiment, participants were
given a short writing assignment, using the instructions below.
The objective of this assignment was to trigger self-related and
ruminative thinking.

You will now have ten minutes to write about the event
that you just nominated. In your writing, I’d like you to
really let go and explore your deepest emotions and thoughts
about this specific issue. You may write about more than one
aspect of the event. Some people find it best to explore their
emotions and then try to come to an understanding of the
event(s). Do your best to try to “tie it all together” at the
end of your writing. We ask that you do not include any
information that could identify you as we want this writing
to remain confidential and for you to feel free to be able
to write things you would not want tied to you. Only the
researchers involved in this project will have access to read
your essays. Therefore, your confidentiality is assured and
your name will never be linked to anything you write. The
important thing is that you really let go and dig down to your
very deepest emotions and thoughts about the negative event
and explore them in your writing. You have ten minutes to
write about the nominated event. Following the ten-minute
writing task, the EEG experiment began.
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