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Post-operative glioblastoma
multiforme segmentation with
uncertainty estimation
Michal Holtzman Gazit*, Rachel Faran, Kirill Stepovoy,
Oren Peles and Reuben Ruby Shamir

Novocure, Haifa, Israel

Segmentation of post-operative glioblastoma multiforme (GBM) is essential

for the planning of Tumor Treating Fields (TTFields) treatment and other

clinical applications. Recent methods developed for pre-operative GBM

segmentation perform poorly on post-operative GBM MRI scans. In this paper

we present a method for the segmentation of GBM in post-operative patients.

Our method incorporates an ensemble of segmentation networks and the

Kullback–Leibler divergence agreement score in the objective function to

estimate the prediction label uncertainty and cope with noisy labels and

inter-observer variability. Moreover, our method integrates the surgery type

and computes non-tumorous tissue delineation to automatically segment the

tumor. We trained and validated our method on a dataset of 340 enhanced T1

MRI scans of patients that were treated with TTFields (270 scans for train and

70 scans for test). For validation, we developed a tool that uses the uncertainty

map along with the segmentation result. Our tool allows visualization and fast

editing of the tissues to improve the results dependent on user preference.

Three physicians reviewed and graded our segmentation and editing tool

on 12 different MRI scans. The validation set average (SD) Dice scores were

0.81 (0.11), 0.71 (0.24), 0.64 (0.25), and 0.68 (0.19) for whole-tumor, resection,

necrotic-core, and enhancing-tissue, respectively. The physicians rated 72%

of the segmented GBMs acceptable for treatment planning or better. Another

22% can be edited manually in a reasonable time to achieve a clinically

acceptable result. According to these results, the proposed method for GBM

segmentation can be integrated into TTFields treatment planning software

in order to shorten the planning process. To conclude, we have extended a

state-of-the-art pre-operative GBM segmentation method with surgery-type,

anatomical information, and uncertainty visualization to facilitate a clinically

viable segmentation of post-operative GBM for TTFields treatment planning.

KEYWORDS

Tumor Treating Fields, glioblastoma multiform, MRI, segmentation, treatment
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Introduction

Glioblastoma multiforme (GBM) is the most frequent
and lethal malignant brain tumor in adults. Tumor Treating
Fields (TTFields) therapy was recently introduced as a novel
therapeutic modality that significantly extends GBM patients’
life. The treatment requires the chronic placement of transducer
arrays that generate alternating electric fields on the patient’s
head. Recent studies suggest that increased electric fields
intensity is associated with better treatment outcomes (Ballo
et al., 2019; Glas et al., 2022). TTFields treatment planning
requires the segmentation of GBM tissues on post-operative
MR images for evaluating the distribution of TTFields in the
tumor. Segmentation of post-operative GBM also facilitates
quantitative follow-ups of disease progression and treatment
efficacy evaluation. Manual segmentation of post-operative
GBM on a typical T1w Gad MRI image is time consuming, i.e.,
20–50 min for a highly skilled and experienced annotator.

A dataset of annotated pre-operative GBM MR images
is publicly available through computational-challenges and
other platforms (Menze et al., 2015; Bakas et al., 2018; Pei
et al., 2020). As a result, many studies have investigated
the segmentation of pre-operative GBM with results that are
comparable to those of human raters (Wadhwa et al., 2019).
However, annotated post-operative GBM MR images are much
less studied. Moreover, it is unclear if the methods that were
developed for pre-operative GBM work well on post-operative
datasets. Few investigators have developed methods for post-
operative GBM segmentation in the past decade (Cordova
et al., 2014; Meier et al., 2014; Henker et al., 2017; Chang
et al., 2019; Ermiş et al., 2020). Most of the studies focus on
extracting clinically relevant measures that can tolerate some
inaccuracies in the segmentation (Cordova et al., 2014; Henker
et al., 2017; Chang et al., 2019). A method for an automated
brain resection cavity delineation is presented in Ermiş et al.
(2020). Meier et al. (2014) demonstrate a method for fully
automatic semi-supervised learning for post-operative brain
tumor segmentation by fusing information from both pre-
and post-operative image data. The large amounts of data and
data annotations available today, result in noisy labeling, and
intra- and inter-observer variability. Thus, uncertainty has been
recently studied on natural and medical images (Egger et al.,
2013; Cordeiro and On, 2020; Karimi et al., 2020; Tajbakhsh
et al., 2020). For example, Egger et al. (2013) studied the
feasibility of incorporating 3D Slicer for reduced-time semi-
automatic segmentation of GBM to follow-up the tumor volume
and other treatment outcomes. They reported an average inter-
observer Dice coefficient of ∼88% (range 76–96%) and average
Hausdorff distance of 2.3 mm (range 0.31–3.7 mm). One
important conclusion is that since various annotators may
segment the same object differently, an intuitive tool for editing
the segmentation results is required. Moreover, visualization of
the segmentation uncertainty can be utilized to improve the

trust of annotators in the quality of the methods (Nair et al.,
2020; Mehta et al., 2022).

In this study, we present a novel method for post-operative
GBM segmentation. Our method includes the surgery type,
the cerebrospinal fluid (CSF) segmentation, and calculates
segmentation uncertainty. We incorporated the uncertainty
model in a custom intuitive segmentation editing tool and
gathered feedback from three physicians. Then, we compared
the accuracy of the proposed method to that of the current
state-of-the-art. Last, we evaluated the usability of our method
for TTFields treatment planning. The results indicate that the
proposed method can significantly reduce the processing time
of GBM segmentation while achieving a clinically acceptable
segmentation model of the tumor. In addition, the uncertainty
model may assist in studying the variance between experts’
annotations and developing a method that adjusts to the
specific expert segmentation preferences. For example, if
an expert consistently prefers over-segmentation that is less
accurate, an adaptive method may adjust the segmentation
results accordingly.

Materials and methods

Patients and data

In this study, we evaluated the results of 340 GBM patients’
scans treated with TTFields. TTFields treatment planning was
based on T1 gadolinium MRIs with a typical voxel size of
1 ×1 × 1-2 mm3. A trained team of annotators manually
segmented the GBM tumor tissues on the MRI into three labels:
(1) Enhancing tissue; (2) Necrotic core, and (3) Resection cavity
(Figure 1). Note that we unify enhancing tumor and other
enhancing appearance that may not be related to the tumor.
For example, after a resection, the surface of the resection
cavity appears as enhancing. Generally, we leave this decision
to the expert physician. We were unable to delineate edema
since it is much less prominent after surgery in the T1 imaging
modality. A radiologist validated the labels and revisions were
made as needed. An analysis of three experts’ annotations of
10 GBM MR images was performed in order to estimate inter-
observer variability. Average Dice score of 0.72 (SD = 0.12;
N = 30) was measured for the whole tumor segmentation
between our annotators. Lower Dice values were observed on
the specific tumor’s substructures. Resection was associated with
0.54 (SD = 0.07; N = 30) Dice coefficient, necrotic core with
0.57 (SD = 0.08; N = 30), and enhancing with 0.58 (SD = 0.08;
N = 30). The observed Dice score is comparable, but somewhat
lower than those reported in other studies (Lee et al., 2019). In
other words, the Dice differences reported above represent the
upper bound for Dice scores between the model’s prediction and
ground truth. Better scores may be explained by a bias in the
algorithm toward certain annotators.
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FIGURE 1

An example of annotated data. The glioblastoma multiforme
(GBM) tumor as observed on MR T1 gad images (Left) along with
annotators’ segmentation (Right). Enhancing tissue (red),
necrotic core (yellow), and resection cavity (blue) are segmented
for Tumor Treating Fields (TTFields) treatment planning.

Neural network model design and
implementation

We used nnUnet (Futrega et al., 2022), a model derived
from Unet (Ronneberger et al., 2015) and tuned to segment
brain tumors in MRI scans. This model demonstrates state-
of-the-art results on pre-operative GBM segmentation tasks
(Menze et al., 2015). Unlike the multi-modalities available
in public datasets for pre-operative GBM segmentation such
as the Brain Tumor Segmentation Challenge (BraTS) (Menze
et al., 2015), only T1 enhanced MRI is usually available for
post-operative GBM TTFields planning. The baseline-model
performs poorly in this case (see the Section “Results”). Based on
recent studies (Tajbakhsh et al., 2020), the model performance
was improved by including meta-data such as tumor type.
A post-processing step was developed to integrate surgery type
into our segmentation pipeline. In general, there are three types
of surgery: (1) total resection of the tumor; (2) partial resection;
and (3) biopsy of the tumor. In cases where the type of surgery
cannot be determined, partial resection is used. Moreover, since
both: the resection cavity and the ventricles contain CSF and
are associated with the same image intensities, distinguishing
the boundary between them also poses a challenge for human

annotators. Hence, we decided to incorporate segmentation of
the ventricles into the model to resolve this ambiguity. By co-
segmenting the ventricles, we expect the mislabeling of resection
cavity voxels to be reduced.

Inspired by Wei et al. (2020), we include a segmentation
agreement loss to cope with noisy labels and to facilitate an
interactive visual review of the segmentation result (Figure 2).
As in Wei et al. (2020), we jointly train two networks
simultaneously. These networks share an identical architecture
but differ in their parameters. Each network has its own
segmentation loss with respect to the ground truth labels.
Moreover, we calculate the divergence loss between the
predictions of the two networks, so that the entire system can
be jointly trained and updated. The proposed loss function for a
given computed segmentation set xi and ground truth one yi is
defined as follows:

Ltotal = (1− λ) Lseg
(
xi, yi

)
+ λLdiv (xi) (1)

where λ is a parameter that balances between the individual
segmentation loss, Lseg , and the divergence loss, Ldiv. λ is
set to 0.1. In our implementation, the segmentation loss is a
combination of Dice coefficient and Cross Entropy as follows:

Lseg =
K∑

k = 1

[(1− α) LDice
(
pk (xi) , yi

)
+ αLCE

(
pk (xi) , yi

)
]

(2)
where K is the number of baseline models, currently set to 2.
pk is the prediction output of each baseline model. α is used to
balance between Dice and cross entropy loss, currently set to 0.3.
We empirically tested a few values of these hyper-parameters,
training a model with a different set, and used the one that
generated the best results. We did not conduct a thorough
sensitivity test on these values.

As described in Wei et al. (2020), the two different networks
tend to agree on prediction in the correct labels and disagree
on incorrect ones. Therefore, this co-regularization term can
guide the networks to a more stable model. The divergence loss
measures the match between the two networks’ predictions and
co-regularizes both networks. As proposed in Wei et al. (2020)
we use a symmetric Kullback-Leibler (KL) Divergence loss as
follows:

Ldiv = DKL(p1|
∣∣p2
)
+ DKL(p2|

∣∣p1
)

(3)

In addition, to properly handle noisy labels, we follow the
small-loss criterion proposed in Han et al. (2018), Ren et al.
(2018), and Wei et al. (2020). This criterion is based on the idea
that small loss samples are more likely to be correctly labeled.
Therefore, in each mini-batch we sort the voxels according to
their joint loss Ltotal, and average over a part of the voxels with
smallest values. This way, the noisy labeled voxels have a lesser
effect on the total loss and the back-propagation update. In this
study we presumed 90% as the percentage of correctly labeled
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FIGURE 2

Our model architecture incorporating uncertainty as computed by the divergence loss.

samples in the dataset. The small-loss criterion is utilized for the
divergence and cross-entropy losses that are calculated voxel-
wise.

Our method averages the softmax operator on the
predictions of the K baseline networks to compute the
segmentation. According to Weijs et al. (2010) the KL
divergence–considered as the relative entropy between two
probability distributions, can be viewed as the uncertainty
between these models. To visualize the uncertainty, we calculate
the KL divergence between the baseline networks predictions.
We normalize the uncertainty values over the dataset, such that
the maximum uncertainty is set to 1 and the minimum is set
to 0. We then present the uncertainty map as a heat map on
top of the segmentation. Finally, we can utilize the uncertainty
map to remove voxels that are associated with high uncertainty
from the segmentation map, with a user defined threshold
(Figure 3). Recent surveys (Gawlikowski et al., 2021) claim that
there are multiple possible sources for uncertainty which, can
be classified into: variability in real world situation, error and
noise in the measurement system, and errors in modeling and
training. By fixing the model and training method, we focus the
uncertainty-estimate to the real-world situation variability and
measurement system errors.

Experimental setup and validation

We divided the set of 340 labeled T1 enhanced MRI brain
scans of post-operative GBM patients to 270 training images
and 70 images for test. All the images were resampled to
1 × 1 × 1 mm3 voxel size. As a pre-process we apply a bias
field correction and a custom skull stripping method using the
Advanced Normalization Tools (ANTs) (Tustison et al., 2010;
Avants et al., 2014). During training we used a patch size of

FIGURE 3

It is possible to edit segmentation results by throttling the
uncertainty values. Compare the results for low (Upper row) and
high (Lower row) uncertainty thresholds.

128 × 128 × 128 voxels and apply the following augmentation
on the data samples to increase the variability and improve
model robustness: intensity normalization, random shift up to
0.1, random scale up to 10% of intensity values, and random flip
of the image patch. We ensure a balance between patches that
contain the tumor and those without it. We implement and train
our model using PyTorch (Paszke et al., 2019) and MONAI1 with
Adam optimizer (Kingma and Lei Ba, 2015) and 200 epochs.
The learning rate was initially set to 1e-4 and gradually reduced
whenever the metric comes to a plateau of 10 epochs.

In this study, we compared five models that were trained
on the post-operative GBM training set: 1.a baseline nnUnet
network (Futrega et al., 2022) trained on three labels: (a)

1 https://monai.io/
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TABLE 1A A comparison of average Dice coefficient values for three glioblastoma multiforme (GBM) tissues and for the entire tumor segmented as
one tissue.

Resection Necrotic core Enhancing Whole tumor

Baseline 0.59 (0.29) 0.55 (0.30) 0.66 (0.19) 0.8 (0.12)

Above + surgery type 0.64 (0.27) 0.6 (0.27) 0.66 (0.19) 0.8 (0.12)

Above + CSF 0.7 (0.23) 0.62 (0.27) 0.67 (0.2) 0.81 (0.11)

Above + auto uncertainty 0.7 (0.25) 0.63 (0.26) 0.67 (0.2) 0.81 (0.11)

Above + user def uncertainty 0.71 (0.24) 0.64 (0.25) 0.68 (0.19) 0.81 (0.11)

Each row extends the previous row model with another feature.

TABLE 1B A comparison of mean surface distance (mm) for three glioblastoma multiforme (GBM) tissues and for the entire tumor segmented as
one tissue.

Resection Necrotic core Enhancing Whole tumor

Baseline 6.8 (8.4) 5.12 (11.84) 3.46 (3.98) 2.64 (4.44)

Above + surgery type 6.45 (8.01) 6.61 (11.67) 3.46 (3.98) 2.63 (4.44)

Above + CSF 5.39 (8.18) 5.96 (12.26) 3.04 (4.2) 2.27 (4.88)

Above + auto uncertainty 4.95 (7.74) 5.42 (11.38) 2.97 (3.44) 2.19 (4.31)

Above + user def uncertainty 4.22 (6.13) 5.32 (11.04) 2.99 (3.57) 1.97 (2.62)

Each row extends the previous row model with another feature.

TABLE 1C A comparison of Hausdorff distance (mm) for three glioblastoma multiforme (GBM) tissues and for the entire tumor segmented as one
tissue.

Resection Necrotic core Enhancing Whole tumor

Baseline 51 (44.7) 19.49 (18.27) 38.71 (35.81) 33.63 (40.24)

Above + surgery type 51 (44.8) 34.42 (30.33) 38.71 (35.81) 33.63 (40.24)

Above + CSF 56.87 (45.89) 29.37 (31.14) 37.25 (33.68) 38.05 (40.99)

Above + auto uncertainty 39.9 (38.98) 28.65 (27.51) 36.4 (33.54) 32.25 (38.34)

Above + user def uncertainty 33.63 (35.17) 28.61 (27.03) 35.54 (32.9) 29.56 (35.94)

Each row extends the previous row model with another feature.

resection; (b) necrotic core, and (c) enhancing; 2. the baseline
nnUnet network including surgical information as a post-
process; 3. using the model in 2, and segmenting CSF as
an additional label; 4. our full model with two baseline
nnUnet networks incorporating the surgical type, the CSF
and uncertainty regularization as described above, and 5. our
full model as in 4, but incorporating a user defined certainty
threshold. To this end, we developed a graphical user interface
in 3D Slicer (Fedorov et al., 2012) that allows the physician
to choose the level of certainty in each case separately. Note
that the certainty map is computed on the entire brain, but
masked in the application to reflect the certainty in the tumor
region. The threshold is determined by an interactive visual
inspection in a trial-and-error process. We guided the experts
to select a threshold to the GBM segmentation for the specific
application of TTFields treatment planning. We observed that
the experts tended to prefer over-segmentation results that cover
the entire tumor over results that under-segment parts of it.
Three experts rated the quality of the segmentation with respect
to the clinical application of TTFields treatment planning on 12
patients MR T1 Gad images.

In addition, we evaluated the relevance of the suggested
uncertainty measure with respect to accuracy. Note that the
accuracy measures are per image, while the uncertainty values
are per voxel. To compare the values, we suggest two uncertainty
values that are computed per image: (1) the percentage of voxels
that are assigned an uncertainty that is above zero from the
voxels that reside in a tumor’s tissue, and (2) the median value of
uncertainties of the voxels that reside in the tumor’s tissue.

Results

Table 1 summarizes the Dice coefficient, Hausdorff and
mean surface distances that were measured between the ground
truth and the proposed method. We compared this model with
the baseline model and other models that incorporate some
or all features of our method (Figure 4). The Dice coefficients
between our results and the ground truth are similar to the
results observed between annotators. This indicates that our
method achieved the inter-observer variability. Furthermore,
although the baseline model achieved this state-of-the-art result
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TABLE 2 Rate of mislabeling comparison.

CSF as
resection

Necrotic
core as
resection

Resection as
necrotic
core

Baseline 0.45 0.34 0.48

Above + surgery type 0.09 0.05 0.07

Above + CSF 0.04 0.06 0.07

Above + auto uncertainty 0.04 0.06 0.07

Above + user def uncertainty 0.03 0.05 0.06

The baseline model demonstrated a reoccurring error between cerebrospinal fluid (CSF),
resection, and necrotic core. Using our method reduces this error.

FIGURE 4

Glioblastoma multiforme (GBM) tumor as appeared on MR T1
gad images (Left) along with results of five models and the
ground truth. The methods segment the resection cavity (green),
necrotic core (yellow), and enhancing tissue (orange). Red
arrows point to some of the visible errors in the segmentation
results. These errors are reduced with our full method. The
baseline model fails to distinguish between necrotic core and
resection cavity, misconstruing some necrotic core areas as
resection. By integrating surgery type, this issue is resolved. By
segmenting the cerebrospinal fluid (CSF), some errors in labeling
CSF as resection or necrotic core can be avoided. Our full
model incorporating the uncertainty and simultaneous
co-training of two models further reduces the visible errors.

on the whole tumor and the enhancing tissue, it was less accurate
for the resection cavity and the necrotic core in comparison to
our results. Table 2 illustrates the rate of mislabeling between
different segmented structures. Our results show that the
utilization of the surgery type and the segmentation of CSF
dramatically reduce the confusion between CSF, resection cavity,
and necrotic core. Fine tuning of the segmentation uncertainty
further reduces the rate of mislabeling values.

According to the physicians’ ratings, 72% (26 out of 36)
of the GBM segmentations were found adequate for TTFields
treatment planning (grades 5–7; Figure 5). whereas, for the
remaining cases, 22% (rated 3–4) required a short manual edit
and the rest 6% of cases require a significant editing before
further considering them for this application. More specifically,
the most common comment in cases of score of 1–4 was
under-segmentation of the resection cavity or the necrotic core.
When the segmentation was adequate, it took the physician
approximately 2 min to select the uncertainty threshold and

FIGURE 5

A distribution of the experts’ ratings for the glioblastoma
multiforme (GBM) segmentation using the uncertainty values.
Seventy-two percent of the segmentation results were rated
"acceptable as is for treatment planning" (5) or better (scores 6
and 7).

TABLE 3 Spearman correlation between uncertainty and accuracy
measures.

Median voxel % of voxels > 0

Whole tumor −0.39* −0.27*

Resection −0.64* −0.49*

Necrotic −0.24 −0.10

Enhancing 0.62* −0.40*

Image-uncertainty was estimated by two methods: (1) median voxel-uncertainty value,
and (2) percentage of voxels above zero. Accuracy was measure with the Dice coefficient.
*p < 0.05 after multiple comparison correction.

validate the segmentation on the T1 enhanced MR image. This
suggests a significant reduction of segmentation time compared
to the typical 20–50 min manual GBM segmentation.

Table 3 summarizes the Spearman correlation between the
uncertainty and the accuracy. The two suggested uncertainty
measures demonstrate a significant correlation (p < 0.05;
after multiple comparison correction) with the “resection” and
“enhancing” tumor tissues segmentation accuracy that was
measured with the Dice coefficient. The median uncertainty
measure demonstrated lower inverse-correlation with the Dice
coefficient in comparison to the other uncertainty measure
of percentage of voxels that are assigned above zero voxel-
uncertainty. A comparison of uncertainty values of high
(Dice > 0.5) and low (Dice < 0.5) accuracy segmentations
suggests that lower accuracy segmentations were associated with
higher uncertainty values (Figure 6).
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FIGURE 6

A comparison of uncertainty values of high (A; Dice > 0.5) and low (B; Dice < 0.5) accuracy segmentations. Lower accuracy segmentations
were associated with higher uncertainty values.

Discussion

The Dice coefficient, Hausdorff and mean surface distances
demonstrate that the method have achieved state-of-the-art
accuracy. Moreover, the Dice scores observed using our method
are similar to these observed between raters. Therefore, in
terms of Dice, this method has reached an expert level result.
The observed rate of mislabeling values suggest that the
utilization of surgical type and segmentation of CSF reduce
the errors in segmentation of tissues within the GBM tumor.
The physicians’ comments suggest two common errors that can
be further handled. The resection/necrotic-core segmentation
error can be further reduced via a graphical user interface that
facilitates re-labeling of specific segments. Moreover, we will
revise the model objective function to reflect the physicians’
low tolerance for under-segmentation, in comparison to over-
segmentation. The physicians’ ratings suggest that 72% of the
segmentations are adequate as is and another 22% can be briefly
edited before integration in TTFields treatment planning. In
these cases, the expected time reduction is 15–35 min per
treatment planning. Therefore, the suggested method has a great
potential to reduce the overall planning time or to increase the
clinic throughput.

To conclude, we present a novel method for segmentation
of GBM on post-operative T1 enhanced MRI scans. The
method incorporates the surgery type and segments the CSF
in addition to the GBM to improve its delineation. Moreover,
we jointly trained two segmentation networks using a unified
loss consisting of segmentation loss and divergence loss.
This architecture can be extended to multiple networks and
baseline architectures. In future work, more complex meta-
data can be used in the training phase to improve the
tumor labeling for different patients. Our final result is a
segmentation map augmented with an uncertainty map, that

can be further facilitated for fast and interactive selection of
personal preference.
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