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Prosthetic devices that replace a lost limb have become increasingly

performant in recent years. Recent advances in both software and hardware

allow for the decoding of electroencephalogram (EEG) signals to improve

the control of active prostheses with brain-computer interfaces (BCI). Most

BCI research is focused on the upper body. Although BCI research for the

lower extremities has increased in recent years, there are still gaps in our

knowledge of the neural patterns associated with lower limb movement.

Therefore, themain objective of this study is to show the feasibility of decoding

lower limb movements from EEG data recordings. The second aim is to

investigate whether well-known neuroplastic adaptations in individuals with

an amputation have an influence on decoding performance. To address this,

we collected data from multiple individuals with lower limb amputation and

a matched able-bodied control group. Using these data, we trained and

evaluated common BCI methods that have already been proven e�ective

for upper limb BCI. With an average test decoding accuracy of 84% for

both groups, our results show that it is possible to discriminate di�erent

lower extremity movements using EEG data with good accuracy. There are

no significant di�erences (p = 0.99) in the decoding performance of these

movements between healthy subjects and subjects with lower extremity

amputation. These results show the feasibility of using BCI for lower limb

prosthesis control and indicate that decoding performance is not influenced

by neuroplasticity-induced di�erences between the two groups.
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1. Introduction

Lower limb amputation is a disruptive intervention that

severely reduces a person’s mobility, impairing daily activities

such as walking (Kirkup, 2007). A possible way for people with

an amputation to recover part of the lost mobility is with the

use of a prosthesis that replaces the lost limb (van der Linde

et al., 2004). A suitable prosthesis can mimic the behavior

of the intact limb and feels natural to control to the user.

However, current prostheses lack such natural-feeling control

due tomostly using passivemechanisms or limited active control

(Versluys et al., 2009).

With passive prostheses, the energy required to mimic the

biomechanical properties of the limb is provided by springs

and dampers (Johansson et al., 2005). The main advantages of

such a passive design are their relative simplicity, low cost, and

the sturdiness of the device. However, passive devices lack the

ability to generate mechanical power without a prior movement

to store the energy required for actuation. The amount of

mechanical power generated can also not exceed the retrieved

energy. Additionally, they cannot autonomously adapt to the

user’s needs in a changing environment or provide feedback on

the current state of the device.

As an alternative, active prostheses attempt to solve

these issues by having actuated joints that users can control

consciously through a controller interface (Windrich et al.,

2016). This requires the integration of several additional

components such as a power supply to power the actuation

system. In addition, computation hardware, which also

consumes power, is required to run the device controller

software. Finally, a suitable control strategy is necessary to

interact with the control system. These additional components

typically add substantial bulk and weight to the device. However,

the benefits of using active prostheses, such as improved natural

gait reproduction (Zhang et al., 2010) and reduced metabolic

cost (Au et al., 2009; Martinez-Villalpando et al., 2011), generally

outweigh the costs.

Control of active prostheses can be achieved with

multiple modalities, possibly a combination of those.

Common modalities include muscle activity measured

with electromyography (EMG; Fleming et al., 2021), or non-

biological modalities such as human joint position with inertial

motion units and ground reaction forces through force sensors

built into the device (Vu et al., 2020). The optimal choice

of control modality depends on the design of the prosthetic

device and the targeted user population. For example, EMG

can only be measured from intact muscles, and both joint

positions and ground reaction forces are detected after the onset

of movement. Designing a suitable prosthetic control system

requires to balance these factors (Tucker et al., 2015; Windrich

et al., 2016; Vu et al., 2020).

With each of theses modalities, the delay caused by to the

need formotion initiation is amajor drawback. Another possible

interaction modality that can avoid this delay is the brain-

computer interface (BCI), also called brain-machine interface

(Lebedev and Nicolelis, 2017). BCIs measure brain signals to

decode the user’s intent, providing an increased sense of agency

that enables natural-feeling control (Caspar et al., 2021). BCI

can detect intention from the moment that neural activity

is generated, whereas other modalities can only detect user

intention after the onset of user action. A commonly used

brain signal for BCI is the electroencephalogram (EEG). EEG

has high temporal resolution, relatively low cost, and can be

measured with non-invasive sensors, making it the preferred

choice for BCI (Ramadan and Vasilakos, 2017). However, using

EEG for lower extremity prosthetic control is currently rare

(Lennon et al., 2020), as decoding lower limb movement from

brain signals is more challenging than upper body movements

(Penfield and Boldrey, 1937; Gandhoke et al., 2019).

BCI methods for the lower extremities were previously

used in the context of neurorehabilitation in stroke patients

(Miladinović et al., 2020b) and patients with Parkinson’s

disease (Miladinović et al., 2020a). However, such studies

are lacking in the context of lower limb amputation. To

design effective and user-friendly BCI systems for lower

limb prostheses, a comprehensive understanding of the

neural mechanisms of lower limb movement is necessary.

One of such mechanisms is the movement-related cortical

potential (MRCP), which can be observed from the EEG

signal when performing a movement (Shakeel et al., 2015;

Olsen et al., 2021). Detection of these MRCPs can be used

to decode the onset of lower-limb movements for BCI

control (Liu et al., 2018; Marusic et al., 2022). However,

the involved brain structures and resulting neural activity

related to movement tend to adapt after amputation due

to neuroplasticity (Molina-Rueda et al., 2019). Although this

phenomenon is known, our current understanding of how

these changes affect EEG activity, and therefore BCI decoding,

is limited.

Alternatively, motor imagery (MI) can also be used to

control a BCI system (Padfield et al., 2019). MI is generated

when imagining performing a movement, but can also be

observed in motor preparation when performing the actual

movement (Jeannerod, 1994). Therefore, it is still relevant to

include frequency bands in the EEG signal that are related

to MI, even though the movements were executed and not

imagined. MRCP activity occurs in the frequency band of

0–5 Hz (Shakeel et al., 2015), while MI activity is observed

between 8 and 30 Hz (Pfurtscheller and Neuper, 2001). These

frequencies fall within the delta (< 4Hz), theta (4–7 Hz), mu

(8–12 Hz), and beta (13–30 Hz) frequency bands, respectively

(Niedermeyer and da Silva, 2005).

One of the main issues in this field of research is the distinct

lack of available EEG data from both able-bodied individuals

and individuals with a lower limb amputation who perform

the same movements. Indeed, a recent review by Asanza et al.
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(2022) found that currently, only one paper investigates BCI

control of lower limb movement in individuals with a lower

limb amputation (Murphy et al., 2017), and even then, they

only use BCI to lock/unlock the knee of the prosthesis. To

the best of our knowledge, no open data are available for

this setting. Furthermore, most studies on lower limb BCI

focus on detecting the onset of movement or distinguishing

movement of the left from the right limb (Asanza et al., 2022),

which limits the possible interactions that are supported by the

control system.

For this purpose, we chose to employ a data-driven

approach to investigate the feasibility of lower limb BCI. Data-

driven approaches focus on the data rather than the models

used (Brunton and Kutz, 2019). This approach was found

successful in the field of machine learning (ML) as a method

to identify bias in models (Ntoutsi et al., 2020) and improve

decoding performance with suitable data engineering (Zhang

and Duraisamy, 2015; Olson et al., 2017; Brunton et al., 2020).

In the context of EEG decoding, bias was shown to be an

important issue due to changes in both mean and variance of the

signal over different recording sessions of the same individual

(Miladinović et al., 2021). This phenomenon causes the used

EEG features to violate the assumption of independent and

identically distributed data on which most ML methods rely

(Bishop, 2006).

For this study, a data-driven analysis was performed by

training different off-the-shelf ML pipelines that discriminate

ankle dorsiflexion from knee extension. Detecting ankle

extension and dorsiflexion could be relevant when driving a

car. Knee extension (besides hip extension) is crucial when

transitioning from a seated position to a standing position.

These are movements that occur frequently in daily activities

(Hyodo et al., 2017). Furthermore, we investigate possible

neuroplasticity-induced differences in EEG decoding between

individuals with an amputation and able-bodied individuals

that are possibly relevant to designing a lower limb prosthetic

BCI control system. Neuroplasticity resulting from lower limb

amputation is a well-known phenomenon (Schwenkreis et al.,

2003; Draganski et al., 2006; Jiang et al., 2015; Bramati

et al., 2019). However, the effect of these changes on EEG

data and subsequent movement decoding from this data are

currently unknown.

By identifying the methods that provide optimal decoding

performance and investigating differences between individuals

with an amputation and able-bodied individuals, our objective

is to identify possible approaches to including EEG as a control

signal for lower limb prostheses. This should also highlight

the requirements that must be fulfilled to build a successful

BCI control system. Additionally, confirming the viability of

methods that were successful for upper-limb decoding should

facilitate the development of lower limb control systems, as

components could be reused and the same principles could

be applied.

2. Materials and methods

To investigate the effect of neuroplasticity on the decoding of

lower limb movements from EEG, we gathered data from both

participants with an amputation and able-bodied participants

performing lower limb movements. Subsequently, we used the

acquired data to train multiple BCI decoding pipelines in an

attempt to identify the most promising approach to controlling

a lower limb prosthesis with EEG.

2.1. Participants

Participants with unilateral transfemoral amputation (aged

25–75 years) were recruited and completed their rehabilitation.

Medicare Functional Classification (Gailey et al., 2002) level

K2-4 was required for this experiment. Adults with bilateral,

transarticular knee or hip, or additional upper limb amputation

were excluded, as well as participants with neurological

disorders or with stump pains and wounds. A control group

of able-bodied participants was recruited and matched with

the intervention group on age, sex, and educational level. For

each group, indicated by the first digit in the identifier, eight

participants were recruited, totalling 16 participants (3 female,

13 male). Except for two participants (1 in each group), all

included participants have a counterpart in the other group

based on the previously mentioned matching criteria. This is

indicated by the last digit in the participant identifier. All

participants were written and verbally informed about the

study protocol and gave their written consent. The study was

carried out in accordance with the Declaration of Helsinki

(World Medical Association, 2013) and was approved by the

Medical Ethics Committee of the University Hospital of Vrije

Universiteit Brussel (B.U.N. 1432020000041).

2.2. Data acquisition

At the beginning of each session the participant’s head

circumference was measured to select the correct EEG cap size

followed by an anamnesis, biometrical measurements and the

EuroQol-5D questionnaire measuring quality of life (Herdman

et al., 2011). The participant remained seated for the whole

session in a chair that was adjusted to ensure optimal comfort.

After applying the EEG acquisition hardware, the room was

darkened and the participant was instructed to keep their eyes

closed to avoid external stimuli as much as possible. Before

starting the experiment, a baseline EEG measurement was

recorded for 3 min while the participant remained seated and

kept their eyes closed.

Following preparation, the participant was instructed to

perform multiple repetitions of a complete knee extension and

ankle dorsiflexion at their own pace with their dominant leg.
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FIGURE 1

Overview of the experimental protocol.

For participants with an amputation, this corresponded to their

healthy leg. The participant was not informed about the number

of expected repetitions that they had to perform to avoid that

they would count their movements. They were informed to

take approximately 5 s to rest between each movement and

that the entire session should take approximately 15 min. The

experimenter counted the number of movements performed

until 30 repetitions were performed for each movement. When

a participant reached the expected number of movement

repetitions, they were told that the experiment was over.

No additional feedback was provided. An overview of the

experimental procedure is shown in Figure 1.

Markers were placed in the data during the experiment

with a label that indicates the movement performed. After

the experiment, the timing of each marker was updated based

on auxiliary EMG data from sensors (Ambu®Neuroline 710,

Ambu A/S, Denmark) that were placed on the rectus femoris

and tibialis anterior. In addition to EMG, accelerometers were

attached to the sternum, two bilateral sensors were installed on

the anterior margo tibiae, and one sensor on the fifth metatarsal

of the non-amputated foot. Both auxiliary signals were used to

ensure precise timing of the movement-onset markers.

The acquisition of 64 channel EEG was performed using

a LiveAmp amplifier (Brain Products GmbH, Germany) with

actiCap snap active wet electrodes. The auxiliary signals were

connected with the LiveAmp Sensor and Trigger Extensions

to enable synchronization with the EEG signal. The EEG

signals were recorded with 500 Hz sample frequency and were

resampled to 128 Hz. Subsequently, the signal was preprocessed

with a one-pass, zero-phase, non-causal bandpass filter with

a finite impulse response designed using the windowed time-

domain design (firwin) method. The window type is a Hamming

window with a 0.0194 passband ripple and 53 dB stopband

attenuation. The filter length was automatically determined for

each filter on the basis of the reciprocal of the shortest transition

bandwidth. Specifically, the reciprocal value (in samples) is

multiplied by 3.3. Applied filter frequencies are presented in

Section 2.4. Finally, the signal was epoched from −2 to 2 s

relative to the movement onset, which is given by markers

that were placed in the data, yielding labeled windows of 512

samples each.

2.3. Data processing

The feature extraction and classification models used in the

decoding pipelines to discriminate ankle dorsiflexion from knee

extension were chosen for their off-the-shelf availability and for

their previous success in decoding upper extremity movements

(Rashid et al., 2020). Although more advanced models exist,

these methods are used in most of the literature (Hosseini et al.,

2021) and are also relatively simple mathematically, enabling

better explainability of the predictions that were made. More

advanced models such as deep learning are currently outside of

the scope of this study.

By combining different approaches and selecting optimal

parameters for these models, we expect to find commonalities

that are indicative of the optimal choice for decoding EEG

from lower limb movements. This should highlight promising

avenues of research for future work and enable the design of

future general-purpose BCI systems.

To compare the EEG activity between the groups of

individuals with an amputation and able-bodied individuals,

epochs of both movements were averaged for each participant.

For this analysis, the preprocessing of EEG was different to focus

more on the frequencies in which MRCPs typically occur. The
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data was filtered to only keep frequencies between 0.1 and 5

Hz and the resampling was set to 250 Hz to allow for higher

temporal resolution in this analysis. Additionally, bad epochs

were rejected or repaired by using an automated method (Jas

et al., 2016). Subsequently, the grand average was calculated

over the individuals in each group. The resulting grand averages

were then compared by aggregating sensor data and taking the

average global field power (GFP; Lehmann and Skrandies, 1980;

Murray et al., 2008) across each channel.

Data were processed with the Python 3 programming

language (Van Rossum and Drake, 2009, RRID:SCR_008394),

using the MNE toolkit to read and filter EEG data (Gramfort

et al., 2013, RRID:SCR_005972). MNE was also used to epoch

the data and extract features from the epoched EEG. Automated

rejection and repairing of epoch data was handled by the

AutoReject software library (Jas et al., 2017). The employed

ML models were provided by the Scikit-learn software library

(Pedregosa et al., 2011, RRID:SCR_002577), except for the

neural network model, which was implemented using PyTorch

(Paszke et al., 2019, RRID:SCR_018536). Custom code was

written to perform the experiments and integrate the different

software components of the software libraries mentioned above.

The hardware used to perform training and evaluation of the

models was a desktop computer running on the Ubuntu 20.04

operating system. The machine has an AMD Ryzen 9 3900X 12-

Core Processor and has 66 GB of memory. The neural network

models were run on the machine’s NVIDIA GV100 (TITAN

V) graphical processing unit by leveraging the CUDA software

toolkit (Luebke, 2008).

2.3.1. Feature extraction
A commonly used feature in BCI is the Power Spectral

Density (PSD) which is often used in neural signal analysis

too (Bialek et al., 1996; Stoica and Moses, 2005; Bascil et al.,

2016). This method projects the time-series signal into the time-

frequency domain with a Fourier transform that is subsequently

normalized. PSD indicates the amount of energy in each

frequency band. For this experiment, PSD was computed with

the multitaper method (Walden and Percival, 1993) using the

default parameters provided by the MNE toolkit.

Another common feature extraction method is common

spatial patterns (CSP) (Koles et al., 1990; Tortora et al., 2020a;

Gao et al., 2021). This adaptive filtering method projects the

original channel space onto a new lower-dimension space. The

linear mapping is obtained by optimizing the variance (power)

to be maximally informative with respect to two classes (knee

extension vs. dorsiflexion in our case). The algorithm uses the

preclass signal covariance matrices and solves the generalized

eigenvalue problem to compute the patterns.

Finally, we also applied the xDAWN algorithm to feature

extraction (Rivet et al., 2009, 2011). This algorithm is generally

used to reduce the noise in the signal. This method is therefore

more of a data cleaning method rather than feature extraction.

The output is therefore the same shape as the input and typically

needs further reducing, for which we use Principal Component

Analysis (PCA).

2.3.2. Machine learning classifiers
Logistic regression (Bishop, 2006) is a linear model of

classification, and not regression as its name implies. Here, the

probabilities of belonging to a class given the input are modeled

using a logistic function. Training the model consists in finding

the parameters of this function that minimize the classification

error on the training data.

Linear Discriminant Analysis (LDA; McLachlan, 1992) is a

classifier that consists of finding a linear combination of input

features that enables the characterization or discrimination of

two or more classes. LDA is an attractive classifier because

it can be solved analytically, with a closed-form solution that

is straightforward to compute. Additionally, it is inherently

multiclass, has proven to work well in practice, and has no

hyperparameters to tune.

Neighbor-based learning (Altman, 1992) is a form of

instance-based learning or non-generalizing learning: it does

not attempt to find optimal parameters for a general model but

instead retrieves samples of the training data. Classification is

determined by a majority vote of the nearest neighbors in the

input space. In k-nearest neighbors classification, this decision

is made by selecting the k (a user-provided parameter) nearest

neighbors based on some distance measure, such as Euclidean

distance for example. The optimal choice of the value k is highly

data-dependent. Generally, a larger k suppresses the effects of

noise, but makes the classification boundaries less distinct.

Support vector machines (SVM; Cortes and Vapnik, 1995)

are a type of supervised learning model used for classification,

regression, and outlier detection. SVM projects training inputs

to points in a mathematical space so that if we draw a decision

boundary between the points in this space, the gap between

the groups is maximal. New inputs are then projected into

that same space and assigned a label based on which side of

the decision boundary they fall on. The decision boundary is

linear, but SVMs can also use non-linear decision boundaries

by using the kernel trick (Hofmann et al., 2008). SVMs have

multiple advantages, including effectiveness in high dimensional

spaces and in cases where the number of dimensions is greater

than the number of samples. Other advantages are that it is

memory efficient and versatile, as different kernel functions can

be specified for the decision function. However, one of the main

disadvantages is that SVMs do not directly provide probability

estimates, requiring an expensive cross-validation step for this.

Random Forest (RF; Breiman, 2001) consists of an ensemble

of decision trees where each tree in the ensemble is constructed

from a subset of data drawn with replacement (i.e., a

bootstrap sample) from the training data. Furthermore, either
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all input features or a random subset of fixed size, which is a

hyperparameter of the model, are used to determine the split

of each node in each decision tree. The purpose of these two

sources of randomness is to decrease the variance of the forest

estimator. This reduced variance sometimes comes at the cost

of a slight increase in bias. In practice, the variance reduction is

often significant, hence yielding an overall better model.

In extremely randomized trees (ExtraTrees; Geurts et al.,

2006), randomness is further increased in the way the splits

are calculated. Instead of looking for the most discriminative

thresholds as in RF, thresholds are drawn at random for each

candidate feature and the best of these randomly generated

thresholds is employed. This usually enables a further reduction

of the variance of the model, at the expense of a slightly greater

increase in bias.

Neural networks (Rosenblatt, 1958) are a type of parametric

model consisting of a network of interconnected neurons. Most

neural networks only allow connections between neurons in

a single direction and are called feedforward neural networks.

When training a neural network, one tries to find the optimal

set of weights that are associated to each connection, which are

used to multiply the value from the outgoing neuron, yielding

a new value as input for the incoming neuron. The most simple

form of neural networks are calledMultilayer Perceptrons (MLP;

Rumelhart et al., 1985), also called vanilla neural networks, and

consist of an input layer where each node receives one of the

input values, one or more hidden layers where each neuron in a

layer is connected to each neuron in the next layer, and finally an

output layer that will contain the predicted value(s).

2.4. Decoding pipeline evaluation

The different combinations of feature extraction and

ML methods used are listed in Table 1. For each of these

combinations, a grid search was performed over the set of

realistic parameter values for each component of the pipeline.

Additionally, several filter boundaries were used for bandpass

filtering in some of the pipelines. The included lower boundaries

were 0.1, 5, and 8 Hz, and the candidate upper boundaries

were 32, 35, and 41 Hz. The choices for these boundaries were

based on common values found in literature, with the most

common frequency band being 8–30 Hz (Singh et al., 2021;

Asanza et al., 2022). These filter boundaries maintain the Mu

and beta frequency bands, which are associated with motor

activity (Pfurtscheller and Neuper, 2001). The lower boundaries

of 0.1 and 5 HZ were chosen to investigate the effect of only

filtering out low drift noise and keeping the MRCP-related theta

band, respectively. Higher boundaries were empirically chosen

to investigate the effect of including the gamma bands in a

gradual way.

To evaluate model classification performance, a 10-fold

cross-validation procedure was performed on the data from each

TABLE 1 Evaluated EEG decoding pipelines.

Features Classifier Other steps

PSD RF Vectorize and PCA between PSD and RF

PSD KNN Vectorize and PCA between PSD and KNN

PSD LDA Vectorize and PCA between PSD and LDA

PSD Logistic regression Vectorize and PCA between PSD and logistics

regression

PSD ExtraTrees Vectorize and PCA between PSD and ExtraTrees

PSD SVM Vectorize and PCA between PSD and SVM

PSD MLP Vectorize, PCA and Datatype cast between PSD

and MLP

CSP RF

CSP KNN

CSP LDA

CSP Logistic regression

CSP ExtraTrees

CSP SVM

CSP MLP Datatype cast before MLP

XDawn LDA Vectorize and MinMax Scale between XDawn and

LDA

XDawn Logistic regression Vectorize and MinMax Scale between XDawn and

LDA

PSD, Power spectral density; CSP, Common spatial patterns; RF, Random forest; KNN, K-

nearest neighbors; LDA, Linear discriminant analysis; ExtraTrees, Extremely randomized

trees; SVM, Support vector machine; MLP, Multilayer perceptron; PCA, Principal

component analysis.

participant separately (within-subject evaluation). The metrics

used to evaluate the performance of the model are the average

cross-validation accuracy and the average cross-validation F1

score. F1 score is a measure of binary classification accuracy

which is calculated as the harmonic mean of precision and

recall, where precision is the number of true positives divided by

the number of samples that were classified as positive (Powers,

2020). Recall corresponds to the number of true positives

divided by the number of samples that should be classified

as positive.

The comparison of classification performance between the

group of persons with amputation and the able-bodied group

was made by performing an independent sample t-test that

tests the null hypothesis that the average best pipeline decoding

accuracy is the same for both groups.

3. Results

3.1. Characterization of the decoding
pipelines

The best performing pipelines and their optimal parameter

settings, based on accuracy, are shown in Tables 2, 3 for the
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TABLE 2 Decoding performance in individual participants with a lower limb amputation.

Participant Best pipeline Best parameters Best frequencies Best accuracy Best F1

01 csp -> knn csp__n_components: 4

knn__leaf_size: 5

knn__n_neighbors: 9

knn__p: 1

knn__weights: uniform

0.1–41 Hz 0.898± 0.033 0.901± 0.023

02 csp -> rf csp__n_components: 8

rf__criterion: entropy

rf__max_features: 0.75

rf__n_estimators: 40

8–35 Hz 0.744± 0.070 0.713± 0.049

03 psd -> vectorize -> pca -> extratrees extratrees__criterion: entropy

extratrees__max_features: 0.75

extratrees__n_estimators: 80

pca__n_components: nan

pca__whiten: False

0.1–41 Hz 0.918± 0.075 0.902± 0.090

04 csp -> extratrees csp__n_components: 6

extratrees__criterion: entropy

extratrees__max_features: 0.5

extratrees__n_estimators: 160

5–32 Hz 0.850± 0.097 0.832± 0.117

05 csp -> knn csp__n_components: 3

knn__leaf_size: 5

knn__n_neighbors: 7

knn__p: 1

knn__weights: uniform

8–32 Hz 0.774± 0.167 0.796± 0.143

06 csp -> rf csp__n_components: 9

rf__criterion: entropy

rf__max_features: 0.25

rf__n_estimators: 20

8–32 Hz 0.763± 0.118 0.679± 0.222

07 csp -> extratrees csp__n_components: 8

extratrees__criterion: entropy

extratrees__max_features: log2

extratrees__n_estimators: 20

8–32 Hz 0.954± 0.062 0.951± 0.066

09 csp -> rf csp__n_components: 8

rf__criterion: gini

rf__max_features: sqrt

rf__n_estimators: 20

8–41 Hz 0.850± 0.082 0.849± 0.098

Mean 0.844± 0.088 0.828± 0.101

SD 0.072± 0.038 0.089± 0.058

group of individuals with an amputation and the group of able-

bodied individuals, respectively. The mean results of the cross-

validation and the mean standard deviation (SD) values of the

cross-validation for each group are shown at the bottom of each

table. In addition to accuracy scores, these tables also show F1

score results for the same pipeline and the optimal lower and

upper bounds for the bandpass filter used for preprocessing.

From these tables we can observe that both groups reach

an average classification accuracy of 84% and F1 scores

were 0.828 and 0.840 for the group of individuals with

an amputation and able-bodied individuals, respectively.

The best performance was achieved for participant 07

with 94% accuracy and the worst performance was for

participant 17, reaching 74% accuracy. There is no single
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TABLE 3 Decoding performance on individual able-bodied participants.

Participant Best pipeline Best parameters Best frequencies Best accuracy Best F1

11 csp -> log_reg csp__n_components: 5

log_reg__model__solver: liblinear

5–32 Hz 0.897± 0.108 0.897± 0.095

12 csp -> knn csp__n_components: 3

knn__leaf_size: 5

knn__n_neighbors: 5

knn__p: 1

knn__weights: uniform

8–35 Hz 0.815± 0.104 0.797± 0.111

14 csp -> svm csp__n_components: 7

svm__degree: 4

svm__gamma: scale

svm__kernel: poly

8–32 Hz 0.947± 0.072 0.942± 0.079

15 csp -> extratrees csp__n_components: 9

extratrees__criterion: gini

extratrees__max_features: 0.75

extratrees__n_estimators: 160

5–32 Hz 0.763± 0.141 0.744± 0.186

16 csp -> extratrees csp__n_components: 8

extratrees__criterion: entropy

extratrees__max_features: sqrt

extratrees__n_estimators: 40

5–35 Hz 0.892± 0.078 0.895± 0.066

17 psd -> vectorize -> pca -> extratrees extratrees__criterion: entropy

extratrees__max_features: 0.25

extratrees__n_estimators: 140

pca__n_components: nan

pca__whiten: True

5–41 Hz 0.738± 0.078 0.756± 0.038

18 psd -> vectorize -> pca -> extratrees extratrees__criterion: entropy

extratrees__max_features: sqrt

extratrees__n_estimators: 40

pca__n_components: nan

pca__whiten: True

8–41 Hz 0.787± 0.050 0.768± 0.061

19 csp -> rf csp__n_components: 3

rf__criterion: gini

rf__max_features: 0.25

rf__n_estimators: 60

5–32 Hz 0.923± 0.049 0.920± 0.046

Mean 0.845± 0.085 0.840± 0.085

SD 0.074± 0.029 0.076± 0.044

best pipeline or frequency band that is the optimal choice

for all participants. We also see that there does not

seem to be any trend regarding optimal choices for either

participant group.

To characterize the consistency of decoding performance

over all users, Figure 2 shows box plots for each considered

pipeline based on the average test decoding accuracy over

all participants.

From this figure, we can observe that the pipelines using

CSP consistently achieve higher median accuracy compared to

those employing other feature extraction methods. However,

the pipelines that use PSD for feature extraction have lower

variance, with the exception of the one that uses KNN for

classification and outliers in both the ones that use RF and SVM

for classification. Regarding classification methods, RF and its

variant ExtraTrees achieve the highest median accuracy overall.
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FIGURE 2

Average decoding accuracy on the cross-validation test set across all participants for every pipeline.

FIGURE 3

Comparison of grand average of the GFP activity between individuals with an amputation and able-bodied individuals when performing (A)

ankle dorsiflexion and (B) knee extension.

3.2. Di�erences between able-bodied
participants and participants with an
amputation

Regarding classification accuracy, there are no statistically

significant differences between the amputee and able-bodied

groups (p = 0.99). However, best average performers are

different between the two groups, but no clear pattern emerges

with regards to the best performing pipelines for the two groups.

Differences between GFP in able-bodied individuals and

individuals with an amputation are shown in Figure 3 for ankle

dorsiflexion and knee extension, respectively. The X-axis shows

time with relation to the movement onset, which is indicated by

the vertical dotted line at 0.0 s.
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Figure 3 clearly displays the expected patterns related to

motor preparation for both individuals with an amputation

and able-bodied individuals during both movements. For ankle

dorsiflexion, the GFP pattern in individuals with an amputation

shows a deviation from able-bodied individuals.

4. Discussion

The principal aim of this study was to identify which

methods are most suited to decode lower limb movement from

EEG and to assess the general feasibility of using EEG as a

control signal in a BCI system. Additionally, we investigated

the differences between decoding movements from individuals

with an amputation and able-bodied individuals to examine

whether neuroplasticity induced by the lack of afferent and

efferent neural processing in motor cortices in individuals with

an amputation might result in different outcomes compared

to healthy individuals. For this purpose, we compared the

single-joint movement (knee extension vs. ankle dorsiflexion)

decoding performance in both groups for a set of well-known

decoding pipelines with off-the-shelf components. Single-joint

movements were chosen for their importance in scenarios that

deviate from regular gait, such as ascending stairs, and for their

utility in daily activities such as driving a car or transitioning

from a seated position to a standing position. The employed

decoding methods were chosen for their simplicity and previous

success in upper limb decoding. As the purpose of this study

was to show the feasibility of lower limb movement decoding

rather than to benchmark state-of-the-art methods, evaluation

was restricted and comparison to decoding results in previous

work was limited.

The results that are presented in Tables 2, 3 show that the

resulting average individual classification accuracy was 84% for

both groups and the average F1 score was 0.828 and 0.840

for the group of individuals with an amputation and the

able-bodied group, respectively. With some accuracies reaching

94%, these results match the best performing methods in the

literature, which often use more advanced algorithms and

simpler classification tasks (Asanza et al., 2022). Variability is still

an issue, and the lowest accuracy of 74% would be insufficient

for clinical applications, but it is still acceptable in a BCI setting,

taking into account that this could still be improved and that

there are methods to mitigate the low single-trial classification

performance (Rashid et al., 2020). While Murphy et al. (2017)

showed the feasibility of BCI control for lower limb prostheses

through a case-study, our data-driven study shows that accurate

decoding of movements from EEG is possible given the right

user-specific decoding pipeline.

Compared to decoding performance obtained in the

literature that is reviewed in Asanza et al. (2022), which

mostly use similar methods, the performance obtained in

this article is in the same range. If we compare with the

methods that decode MI presented in Gu et al. (2021), we

can also see that our decoding results are on par and that

using more advanced methods could yield further performance

improvements. However, it is important to note that accuracy

results cannot be directly compared with models that are

trained on different datasets and potentially use a different

training regime.

The results show that there is no single best pipeline to

decode the movement of the lower extremities from EEG. This

is in line with previous literature showing that interindividual

variability makes it difficult to create a general-purpose BCI

classifier (Lotte et al., 2018). For feature extraction, the best

choice seems clear, as CSP is the feature extraction method in 13

of the 16 best pipelines. We have also observed that when using

CSP as the feature extraction method, the median accuracy over

all participants is higher. Moreover, XDawn never appears to be

the optimal choice for features/feature extraction.

For classification, random forest methods, RF and

ExtraTrees, appear to be the best classifier choice in the majority

of cases, with 10 out of 16 best pipelines using one of these

models as the classifier. Of those 10, the optimal choice of

RF variant is split, with 4 optimal pipelines using RF and the

remaining 6 using ExtraTrees. This indicates that the additional

randomness introduced by ExtraTrees does not always result

in improved classification accuracy. We can also observe that

ExtraTrees generally achieve the best median classification

accuracy, regardless of the employed feature extraction method

whereas RF only achieves similar performance when using CSP

for feature extraction.

The differences between individuals are further highlighted

by the variability in optimal parameter settings of the model.

For instance, looking at optimal CSP settings, the optimal

number of components is highly variable, with some only using

3 components, while other pipelines require 9 components for

optimal results. Generally, RF classifiers seem to work best with

a high number of components, with the exception of the pipeline

for participant 19, which only uses 3 CSP components.

For optimal RF and ExtraTrees settings, entropy is the most

common optimal criterion for splitting decision tree nodes, with

the exception of participants 15 and 19 using Gini Index, an

alternative criterion which calculates the probability of a specific

feature being classified incorrectly when its value is assigned

randomly. The other RF parameters are more variable, with the

maximum number of features used in a decision tree ranging

from 0.25 (that is, using only 25% of features) to 0.75 and the

optimal number of decision tree estimators ranging from 20

to 160.

Regarding the optimal filter frequencies, we can once again

observe significant variability between individuals. Generally,

filtering out low frequencies below 5 Hz seems to be essential to

good accuracy, with the exception of (amputee) participants 01

and 03, whom benefited from the inclusion of lower frequencies.

In both cases, the highest high-pass setting of 41 Hz was also the
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optimal choice. Filtering out frequencies below 8 Hz is the most

common lower boundary, with eight optimal pipelines using

this lower bound. Including higher frequencies appears to be

beneficial in some cases, while decreasing performance in others.

Eight optimal pipelines filter out frequencies above 32 Hz, while

5 use a higher bound of 41 Hz.

Although MI activity, which is commonly used to control

BCI systems, is generally observed between 8 and 30 Hz

(Pfurtscheller and Neuper, 2001), retaining higher and/or

lower frequencies during preprocessing appears to increase

decoding accuracy in some cases. In other cases, MRCP-related

frequencies are more relevant for detecting motor intention

than those for MI. Assessing whether a user’s movement

intention is most strongly present in MRCP frequencies or MI

frequencies could therefore prove useful when determining the

frequency ranges to use for a specific user. This means that user-

specific frequency bands are necessary, as previously shown by

Pfurtscheller and Neuper (2001), among others (Ang et al., 2008;

Gaur et al., 2018; Nakagome et al., 2020).

The practical implication of this large variability means that

it would be worthwhile to evaluate multiple possible pipelines

in real-life situations. Next to selecting the optimal pipeline

components and filtering boundaries, the parameters of these

components should also be calibrated to the user. As long

as there is no general model that can perform well on all

users, it would be more practical to determine the best pipeline

and settings for each user on an individual basis. While time-

consuming, this process could be automated. This highlights the

importance of developing methods for automated user-specific

calibration to reduce the necessary calibration time and effort.

Since the data consisted of matched trials for both

individuals with an amputation and able-bodied individuals, a

comparison could also be made between the two groups. For

this study, the analysis was limited to a comparison of the

BCI performance between the two groups and the trends in

the optimal pipelines. We found that there are no statistically

significant differences in classification accuracy between the

two groups. Similarly, no trend could be identified in terms of

optimal pipeline composition. These results seem to indicate

that the effect of neuroplasticity is limited when it comes to

decoding movement intention from EEG in healthy limbs.

To further compare the differences in EEG activity for

individuals with an amputation and able-bodied individuals, the

GFP was visualized in a grand average over both groups. The

resulting figures display the typical activity related to movement

for both movements and similar waveforms for both groups

(Figure 3).

One of themajor limitations of this study pertains to the type

of data that was collected. Since the participants only performed

actual movements with their healthy limb, motor imagery in

the amputated limbs is not represented. Furthermore, the BCI

methods used in this study were limited to basic methods to

show the feasibility of discriminating different single-joint lower

limbmovements from EEG, and did not investigate state-of-the-

art methods. The evaluation of the methods was also limited to

offline decoding accuracy for the best pipeline settings. Since the

chosen time windows for the EEG input also include data from 2

s after movement onset, the models that were trained according

to our method would not be suited for real-time decoding. This

delay of 2 s would inhibit the user’s sense of agency, removing the

main advantage of using BCI. Furthermore, since the evaluation

of the models was performed on a high-end desktop, the timing

results would not be representative for the real-world setting.

Another important aspect to note is that the code used was not

optimized for fast execution as this was outside of the scope of

this study. Therefore, extensive benchmarks of state-of-the-art

methods are necessary to assess which specific methods would

be the most suitable for real-time decoding.

Future research avenues include expanding the dataset

with more data samples on the one hand and including

imagined movement of the missing limb for individuals with

an amputation on the other hand. This would allow for a more

comprehensive comparison of the two populations, enabling

more advanced analysis which takes into account neural activity

related to actual movement and MI of the lower extremities. A

better understanding and more data to train ML models would

enable the development of more sophisticated BCI decoding

pipelines. As we did not find significant differences in BCI

decoding between the able-bodied group and the group of

individuals with an amputation, it would be interesting to

investigate whether it is possible to use a decoding pipeline

that was trained with data from able-bodied individuals in a

neuroprosthetic control system. If this is possible, the data

collection to train the decoding models for a prosthetic control

system would become much easier.

Furthermore, a deeper investigation of CSP and RF methods

in the context of EEG could provide an improved understanding

of neural activity in the lower limb, complementing classical

neuroscientific methods, such as source imaging (Michel and

Brunet, 2019). One of the main advantages of both CSP and

RF is their explainability. CSP components can be interpreted

to localize activity related to event related potentials (Congedo

et al., 2016) and RF methods can be used for empirically

ranking features based on their importance in classification

(Breiman et al., 2017). Another possible analysis regarding the

location of EEG activity could be investigating the effect of only

using certain subsets of EEG channels in decoding. Together,

these analyses could provide valuable insights into the neural

mechanisms involved in lower limb movement.

Possible advanced methods that would be worth

investigating should include transfer learning methods

(Wan et al., 2021) to assess between-subjects transfer of BCI

decoding capabilities, which could enable the implementation of

a general purpose BCI classifier for lower limb movement. This

will likely require the use of more advanced ML methods, such

as deep learning (Roy et al., 2020) or automated fine-tuning of
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feature extraction methods (Zhang et al., 2017; Jao et al., 2018;

Gurve et al., 2020). Deep learning seems to be an attractive

prospect, as it has already been shown to be successful in lower

limb decoding (Nakagome et al., 2020; Tortora et al., 2020b).

Automated detection of optimal frequency bands for user-

specific calibration could also contribute to further improving

decoding performance and facilitating the deployment of

BCI systems.

In real-world BCI settings, interactions are much more

complex than single-joint movements, and additional

constraints, such as decoding time, come into play. While

it was shown in previous work that real-time decoding should

not be an issue with these methods (Even on embedded

hardware; Tam et al., 2020; Yu et al., 2022), the accuracy

decreases with complexity and number of movements to

decode. This is another reason, why state-of-the-art methods

would likely be more appropriate. Combining EEG with other

control signals, such as EMG, in a hybrid BCI system (Banville

and Falk, 2016; Wöhrle et al., 2017; Li et al., 2019; Hooda

et al., 2020; Tortora et al., 2020c), and further developing

artifact removal methods (Gorjan et al., 2022), could prove

necessary to achieve the balance in reliability and decoding

speed that are required for real-world BCI control. Therefore,

investigating real-time decoding with state-of-the-art models is

essential to move toward practical BCI decoding in real-world

applications. Assessing the real-time performance of these

decoding methods will require more extensive evaluation

methods than those used in the current article. For example,

to evaluate model performance on data that was not involved

in the optimal parameter selection process, a separate test set

should be acquired.

Another crucial aspect that becomes an added concern

with real-world BCI applications is the design of the control

system. As we decode single-joint movements, these could

be used to trigger discrete actions beyond the coordinated

movements of regular gait cycles. For example, detection of

ankle dorsiflexion could be used to press and release the

clutch of a car with a prosthesis during driving. With real-

world applications, user experience and ease-of-use become

the most important requirements. Investigating advanced real-

time decoding methods and developing a prototype real-

time decoding pipeline is therefore an important final step

toward bringing real-world BCI control of lower extremity

neuroprostheses closer to reality.

5. Conclusion

The presented decoding results show that BCI control of a

lower limb prosthesis should be feasible. We trained a selection

of basic decoding methods and found that these methods can

achieve acceptable decoding performance, which is on par with

previous work on similar settings (Gu et al., 2021; Asanza et al.,

2022). This leads us to believe that further improvements can

be made by using more advanced methods. The development of

BCI control of lower extremity prostheses would improve the

sense of agency for the user and provide more natural control of

the device.

In addition, when comparing the average decoding

performance of the optimal pipeline for each participant with

a statistical test, no significant differences between groups

of people with amputations and healthy people could be

found. This suggests that one could build a decoding pipeline

for prosthetic device control using data from non-disabled

individuals. However, more research is needed on various

aspects to confirm these hypotheses and determine the most

appropriate decoding methods.
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