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Objective: Pregnancy leads to long-lasting changes in brain structure for

healthy women; however, little is known regarding alterations in the cortical

features of pregnant women with malformed fetuses. Isolated clefts of the

lip and/or palate (ICL/P) are the most common congenital anomaly in the

craniofacial region, which is highly gene-associated. We speculated that

pregnant women carrying fetuses with ICL/P may have associated risk genes

and specific brain changes during pregnancy.

Methods: In this study, we investigated T1-weighted brain magnetic

resonance imaging data from 48 pregnant women: 24 women carrying

fetuses with ICL/P (ICL/P group) and 24 women carrying normal fetuses

(normal controls), then explored intergroup differences in gray matter volume

(GMV), cortical thickness (CT) and cortical complexity (gyrification).

Results: Compared with controls, the ICL/P group had decreased total

intracranial volume (TIV) than normal controls; besides, they exhibited

increased GMV in the left cuneus, decreased GMV in the right superior

temporal gyrus; increased CT in the left precuneus and left superior parietal

gyrus, decreased CT involving parsopercularis, fusiform, middle temporal in

the left hemisphere and supramarginal, precentral gyrus (PreCG) in the right

hemisphere; increased gyrification in the left insula and PreCG, the left middle

temporal, and the right supratemporal gyrus.

Conclusion: Pregnant women with ICL/P fetuses had brain morphology

changes involving language, auditory, vision, and sensory cortex, which may

be their special brain changes compared to normal pregnant women. This

study may provide clues for the early detection of fetuses with ICL/P, and be

vital for preconception and prenatal counseling with non-invasive methods.

KEYWORDS

pregnant women, isolated clefts of the lip and/or palate (ICL/P), cortical
thickness (CT), gray matter volume (GMV), magnetic resonance imaging (MRI),
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Introduction

Pregnancy leads to long-lasting structural and functional
adaptations in the mother’s brain for non-human animals
and humans, which are necessary for the onset, maintenance,
and regulation of maternal behavior (Nelander et al., 2018;
Feldman et al., 2019; Pawluski et al., 2022). Structural magnetic
resonance imaging (MRI) on healthy primiparous women
(first-time mothers) explored an increase of the pituitary
gland (Gonzalez et al., 1988), transient reductions in overall
brain size in pregnant women (Oatridge et al., 2002), and
widespread reduced gray matter volume (GMV) covering the
right temporal lobe, precuneus, prefrontal cortex compared
with nulliparous, which was associated with decreased cognitive
function (Hoekzema et al., 2017). Carmona et al. (2019) found
a monthly rate of volumetric reductions of 0.09 mm3 for
primiparous women, accompanied by decreases in cortical
thickness (CT), surface area, local gyrification index, sulcal
depth, and sulcal length, as well as increases in sulcal
width. Furthermore, these motherhood-related brain structural
changes predicted measures of postpartum maternal attachment
(Hoekzema et al., 2020). There were also studies showing no
significant changes in GMV, white matter volume (WMV), or
brain volume for primiparous women during this period (Zheng
et al., 2018).

At present, very little is known concerning maternal
brain structural changes in pregnant women with malformed
fetuses. This kind of research may provide important clues
for preconception and prenatal counseling with non-invasive
methods. Isolated clefts of the lip and/or palate (ICL/P) are
the most common congenital anomaly in the craniofacial
region, which is highly gene-associated. Numerous studies
explored widespread brain structural changes in the ICL/P
cohorts (Adamson et al., 2014; Conrad et al., 2015, 2021;
Kuhlmann et al., 2021). We speculated that pregnant women
carrying fetuses with ICL/P (pregnancies with ICL/P) may
have associated risk genes and specific expression, for example,
specific brain changes during pregnancy. Exploring these
changes will add to the early detection of fetuses with
ICL/P, and will be vital for preconception and prenatal
counseling.

In our previous functional MRI (fMRI) study, pregnancies
with ICL/P were shown to have altered functional connectivity
and topological indices within neural networks of speech and
language (Li et al., 2019). Brain morphological analysis is
a stable and reliable method to investigate brain structures
(Schmaal et al., 2017; Zhao et al., 2019). In this study, we
analyzed their brain structural data and compare GMV, CT,
and cortical complexity (gyrification) between pregnancies
with ICL/P and pregnant women carrying healthy fetuses
(normal controls). We speculated that pregnancies with ICL/P
may have specific brain cortical indexes, which may reveal
the structural basis for the altered functional indices shown

in our previous fMRI study. Besides, these results may
provide clues for the early detection of fetuses with ICL/P,
and be vital for preconception and prenatal counseling.
Furthermore, they might provide clues for interaction between
fetuses and their mothers during pregnancy for future
study.

Subjects

This study recruited 24 pregnant women carrying
fetuses with ICL/P (ICL/P group) and 24 pregnant women
carrying healthy fetuses [normal controls (NC) group]
in Beijing Gynecology and Obstetrics Hospital affiliated
with Capital Medical University from January 2018 to
December 2019. Age, educational levels, and gestation
weeks (GW) of both groups were matched (Table 1). The
enrollment criteria mainly included: singleton pregnancy,
carrying ICL/P fetuses, or normal fetuses. All fetuses were
without intrauterine growth restriction or chromosome
abnormality. The key exclusion criteria for mothers were brain
structural abnormalities, neurological or psychiatric disorders,
complications of pregnancy, and MRI contraindications. The
research protocol was approved by the Medical Research
Ethics Committee of Beijing Gynecology and Obstetrics
Hospital. The methods were carried out in accordance
with the Declaration of Helsinki. All participants provided
written informed consent after being informed of the study
details.

Magnetic resonance imaging scan
protocol

Brain MRI scans were performed using a 3.0-T MR
scanner (Discovery MR750, GE, Milwaukee, WI, United States),
32-channel head coil. Participants were placed on their
backs so that they remained relaxed during the scan.
A cushion was used to limit head movement. The T1-weighted
brain structure scan parameters were as follows: repetition

TABLE 1 Demographic data of the isolated clefts of the lip and/or
palate (ICL/P) and normal controls (NC).

ICL/P (24) NC (24) p

Age (year) 30.88 ± 4.18 31.71 ± 3.33 0.449b

Education (year) 15.0 (11–15.0) 15.0 (11.0–18.0) 0.095a

Gestation weeks (week) 24.96 ± 2.02 25.88 ± 2.16 0.133b

TIV (cm3) 1386.50 ± 66.49 1441.76 ± 107.24 0.037b

ICL/P, isolated clefts of the lip and/or palate; NC, normal controls; TIV, total
intracranial volume. Normally data is presented as mean ± SD. Non-normally data is
presented as median (Interquartile range, IQR). p< 0.05 indicates statistically significant.
aThe Mann–Whitney U-test for non-normally distributed data between two groups.
bThe two-sample t-test for normally distributed data between the two groups.
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time = 8.2 ms; echo time = 3.2 ms; flip angle = 12; acquisition
matrix = 256 × 256; voxel size = 1 mm × 1 mm × 1 mm; 164
contiguous axial slices.

Structure magnetic resonance imaging
preprocessing

Brain MRI data were processed with the Computational
Anatomy Toolbox 12 (CAT121) and Statistical Parametric
Mapping12 (SPM122). Images were processed with the
following steps: converted to Neuroimaging Informatics
Technology Initiative (NIFTI) files, corrected for bias–field
inhomogeneities, spatially normalized (using the Diffeomorphic
Anatomical Registration using Exponentiated Lie algebra
(DARTEL) algorithm (Ashburner, 2007)), segmented [into
gray matter (GM), white matter (WM), and cerebrospinal
fluid (CSF)] (Ashburner and Friston, 2005). Then GM
maps were modulated and smoothed with a Gaussian
kernel of 8 mm (full-width at half maximum). CT was
computed with topological correction (based on spherical
harmonics) (Yotter et al., 2011) and the established novel
algorithm (for extracting the cortical surface) (Dahnke et al.,
2013). The local curvature-based gyrification index was
calculated based on absolute mean curvature (AMC) (Luders
et al., 2006). Central cortical surfaces were created for both
hemispheres separately. Surface-based images were resampled
and smoothed with a Gaussian kernel of 20 mm (full-width at
half maximum).

Statistical analysis

Demographics data were compared using SPSS
22.0 software and p < 0.05 was considered statistically
significant. Normally distributed data were expressed
as mean ± SD, and tested by a two-sample t-test;
non-normal distributed data were expressed as median
(interquartile range, IQR), and tested by Mann–Whitney U-test
non-parametric test.

The GMV maps of the two groups were compared
using Matlab2013b and SPM12 with a two-sample t-test.
Intergroup differences in CT and gyrification were performed
using CAT12 and SPM12 with a two-sample t-test, across
each hemisphere. Total intracranial volume (TIV, for GMV
comparison), age and GW, and educational years were
added as covariates. Statistical significance was defined as
p < 0.001, uncorrected with a minimum cluster extent
of 10 voxels (for GMV); p < 0.001, uncorrected or

1 https://neuro-jena.github.io/cat//index.html#DOWNLOAD

2 https://www.fil.ion.ucl.ac.uk/spm/software/spm12/

p < 0.05, peak-level Family Wise Error (FWE)-corrected
with a minimum cluster extent of 20 vertices (for CT
and gyrification).

Results

Demographic data

There were no statistical differences in age, GW, and
educational background between the ICL/P and NC groups
(Table 1).

Intergroup gray matter volume
difference between the isolated clefts
of the lip and/or palate and normal
controls groups

Compared with controls, the ICL/P group had decreased
TIV than the NC group (Table 1). Besides, they exhibited
increased GMV in the left cuneus and decreased GMV in
the right superior temporal gyrus (p < 0.001, uncorrected,
Supplementary Figure 1 and Supplementary Table 1).

Intergroup cortical thickness
difference between the isolated clefts
of the lip and/or palate and normal
controls groups

Two-sample t-test showed that the ICL/P group exhibited
increased CT in the left precuneus and left superior parietal
gyrus, decreased CT involving parsopercularis, fusiform, middle
temporal in the left hemisphere and the right precentral gyrus
(PreCG) (p < 0.001, uncorrected, Figure 1 and Table 2).
Furthermore, they had decreased CT in the right supramarginal
gyrus (SMG) (p< 0.05, peak-level FWE-corrected, Figure 2 and
Table 2). CT of the intergroup differential regions of both groups
was displayed in Supplementary Figure 2.

Intergroup gyrification difference
between the isolated clefts of the lip
and/or palate and normal controls
groups

The ICL/P group exhibited increased gyrification in
the insula, middle temporal in the left hemisphere, and
superiotemporal gyrus in the right hemisphere (p < 0.001,
uncorrected, Figure 1 and Table 3). Gyrification of the
intergroup differential regions of both groups was displayed in
Supplementary Figure 2.
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FIGURE 1

Altered cortical thickness (CT) and gyrification between the isolated clefts of the lip and/or palate (ICL/P) group and normal controls (NC).
A two-sample t-test was used; statistical significance was p < 0.001, uncorrected. Color bars indicate T-values. The 3D inflated brain maps
show the spatial location of intergroup different regions, shown on lateral or medial views.

TABLE 2 Intergroup cortical thickness (CT) difference between the isolated clefts of the lip and/or palate (ICL/P) and normal controls (NC).

T-value Cluster size Overlap of atlas region

ICL/P > NC

3.6 50 100% Precuneus (L)

3.4 36 94% Superior parietal (L)

6% Cuneus (L)

ICL/P < NC

4.1 273 100% Parsopercularis (L)

3.5 107 91% Fusiform (L)

9% Parahippocampal (L)

3.7 43 100% Middle temporal (L)

4.6* 440 100% Supramarginal (R)

3.6 92 100% Precentral (R)

ICL/P, isolated clefts of the lip and/or palate; NC, normal controls. A two-sample t-test was performed between ICL/P and NC. Results were thresholded at p < 0.001, uncorrected.
Results passed p < 0.05, peak-level FWE-corrections were marked with asterisk. (L)/(R) means left/right hemisphere. Atlas labeling was performed according to the Desikan-Killiany atlas
(Desikan et al., 2006).

Discussion

At present, very little is known concerning brain structural
changes in pregnant women with malformed fetuses. In
this study, we analyzed brain structural data and compare
GMV, CT, and gyrification of pregnant women carrying
fetuses with ICL/P (pregnancies with ICL/P) with normal
controls. We found that pregnancies with ICL/P have brain
morphology changes involving language, auditory, vision, and
sensory cortex. These results might reveal the structural basis
for the altered functional indices shown in our previous
fMRI study; besides, these results may provide clues for
the early detection of fetuses with ICL/P, and may be
vital for preconception and prenatal counseling with non-
invasive methods.

Compared with controls, the ICL/P group had
decreased CT in regions involved in the language neural
circuit (the left parsopercularis and the right SMG).
The language neural circuit includes the Broca area,
Wernicke’s area, SMG, angular gyrus, and the main
long associated fibers connecting different language
centers (Hage and Nieder, 2016; Hagoort, 2017). Broca’s
area classically comprises cytoarchitectonic areas 44
(parsopercularis) and 45 (pars triangularis) in the left
hemispheres, complemented by some authors by area
47 (pars orbitalis) (Ardila et al., 2017). Areas 44 and 45 on the
left side of the brain are instrumental for the production, or
articulation, of speech and language (Friederici and Gierhan,
2013). The parsopercularis is connected with the oral cavity and
tongue movement area, it participates in language production
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FIGURE 2

Altered cortical thickness (CT) of the right hemisphere between the isolated clefts of the lip and/or palate (ICL/P) group and normal controls
(NC). Statistical significance was p < 0.001, uncorrected (left) and p < 0.05, peak-level FWE-corrected (right). Color bars indicate T-values. The
3D brain maps [supplied by SPM12 (Statistical Parametric Mapping)] show the spatial location of intergroup different regions, shown on lateral
views.

TABLE 3 Intergroup gyrification difference between the isolated clefts of the lip and/or palate (ICL/P) and normal controls (NC).

T-value Cluster size Overlap of atlas region

ICL/P > NC

3.5 201 67% Insula (L)

33% Precentral (L)

3.5 168 100% Middle temporal (L)

3.5 58 100% Superiotemporal (R)

ICL/P, isolated clefts of the lip and/or palate; NC, normal controls. A two-sample t-test was performed between ICL/P and NC. Results were thresholded at p < 0.001, uncorrected. (L)/(R)
means left/right hemisphere. Atlas labeling was performed according to the Desikan-Killiany atlas (Desikan et al., 2006).

and speech processing. The triangle part (BA45) participates in
semantic processing (Turken and Dronkers, 2011). In addition,
the ICL/P group had decreased CT in the right SMG (p < 0.05,
peak-level FWE-corrected). SMG was shown to participate
in auditory memory processing and speech decision-making
(Mirman et al., 2015). Our previous work showed that for
adults with cleft of lip and palate (CLP) after surgery, during
articulation rehabilitation (focusing on improving articulation
clarity), the junction part of the right postcentral gyrus and right
SMG was involved, which indicated right SMG was a key region
for articulation improving (Li et al., 2020).

Besides, we found decreased CT in the right PreCG and
increased gyrification in the left PreCG in the ICL/P group.
Our previous fMRI study showed that the functional connection
between PreCG and amygdala in both hemispheres declined in
pregnant women with ICL/P fetuses compared with controls (Li
et al., 2019). Decreased CT and increased gyrification of PreCG
in both hemispheres may have explored its structural basis.

In summary, pregnant women with ICL/P fetuses (ICL/P
group) have brain morphology changes involving language,
auditory, vision (fusiform gyrus), and sensory cortex (right
PreCG), which may be brain changes in the ICL/P group
compared to normal pregnant women. This may lead to

differences in their language or auditory or cognition, just
as findings in the ICL/P cohorts (Conrad et al., 2015, 2021;
Kuhlmann et al., 2021), while at present the cognitive and
language status of parents of the ICL/P cohorts stay unknown.
This may be a direction for future research. Meanwhile, we
speculated that the altered cerebral morphology of pregnant
women with cleft fetuses may be caused by carrying CL/P
risk genes. This study provided an important supplement to
the limited research on maternal brain structure for the ICL/P
cohorts. Brain morphology changes of the ICL/P group may give
support to the theory that abnormal migration of cells caused
during facial development occurs concurrently with abnormal
migration of neuronal cells. Large samples and genetic studies
will be needed to supply more confirmation.

The present study also had several limitations. Firstly, the
sample size of this study was small, besides, most of the results
were at the uncorrected statistic level and they did not survive
under multiple comparisons correction. As a result, they cannot
be considered reliable and need to be carefully interpreted.
Secondly, this study is a cross-sectional study, without the
comparison of structural data before and after pregnancy. The
results of the longitudinal study will be more convincing. This
will be the future direction.
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SUPPLEMENTARY FIGURE 1

Altered gray matter volume (GMV) between the isolated clefts of the lip
and/or palate (ICL/P) group and normal controls (NC). A two-sample
t-test was used; statistical significance was p < 0.001, uncorrected.
Color bars indicate T-values. The brain maps show the spatial location
of intergroup different regions, shown on a cross or coronal views.

SUPPLEMENTARY FIGURE 2

Cortical thickness (CT) and gyrification of the intergroup differential
regions of the isolated clefts of the lip and/or palate (ICL/P) group and
normal controls (NC). The statistical level of the intergroup differential
regions was p < 0.001, uncorrected. (L)/(R) means left/right hemisphere.
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