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Background: The neural activity and functional networks of emotion-

based cognitive reappraisal have been widely investigated using

electroencephalography (EEG) and functional magnetic resonance imaging

(fMRI). However, single-mode neuroimaging techniques are limited in

exploring the regulation process with high temporal and spatial resolution.

Objectives: We proposed a source localization method with multimodal

integration of EEG and fMRI and tested it in the source-level functional network

analysis of emotion cognitive reappraisal.

Methods: EEG and fMRI data were simultaneously recorded when 15

subjects were performing the emotional cognitive reappraisal task. Fused

priori weighted minimum norm estimation (FWMNE) with sliding windows was

proposed to trace the dynamics of EEG source activities, and the phase lag

index (PLI) was used to construct the functional brain network associated with

the process of downregulating negative a�ect using the reappraisal strategy.

Results: The functional networks were constructed with the measure of PLI,

in which the important regions were indicated. In the gamma band source-

level network analysis, the cuneus, the lateral orbitofrontal cortex, the superior

parietal cortex, the postcentral gyrus, and the pars opercularis were identified

as important regions in reappraisal with high betweenness centrality.

Conclusion: The proposed multimodal integration method for source

localization identified the key cortices involved in emotion regulation, and the

network analysis demonstrated the important brain regions involved in the

cognitive control of reappraisal. It shows promise in the utility in the clinical

setting for a�ective disorders.
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Introduction

Emotion regulation is crucial to social functioning,

mental health, and wellbeing. Cognitive reappraisal is an

antecedent-focused emotion regulation strategy that aims

to modulate emotional processes before the full emotional

response occurs (Kim et al., 2021) by reinterpreting the

meaning of an emotional event (McRae and Gross, 2020).

Previous studies examined the time course of cognitive

reappraisal and investigated the neural interaction in brain

networks using single-mode neuroimaging techniques, such

as electroencephalography (EEG) and functional magnetic

resonance imaging (fMRI) (Langeslag and Surti, 2017; Steward

et al., 2021). However, due to the limitations of single-mode

neuroimaging in time and space resolution, some of the

detailed neural characteristics involved in cognitive reappraisal

remain unclear.

EEG estimates cortical activity with the temporal resolution

of milliseconds, so the temporal evolution of neural activity

during reappraisal is frequently investigated using EEG. The

late positive potential (LPP) is one of the most important

event-related potentials (ERP), which appears 300ms after

the stimulus onset with the central-parietal scalp distribution

(Chen et al., 2020; Schindler and Bublatzky, 2020). With the

development of brain functional networks and graph theory

analysis, more attention was paid to the system interactions

in the process of reappraisal. However, functional connectivity

derived from EEG signals is limited by the volume conduction

problem, and the channel locations cannot be seen as an

approximation of a source’s anatomical location. Besides,

spurious connectivity can occur between sensors, because the

EEG recordings on scalp electrodes are a mixture of signals

from many source activities (Van de Steen et al., 2019).

From this perspective, source-level functional connectivity

analysis has an advantage because it avoids such problems.

The study of Azizi et al. (2021) supported this point

of view by comparing the source level and sensor level

analysis methods in the classification problem of distinguishing

patients with schizophrenia from healthy controls. The results

showed that the best classifier performance was based on

connectivity measures derived from the source space. Although

it is possible to make a reasonable estimate of the source

using sensor-level EEG localization, this approach is based

on some physiological assumptions and has the natural

limitations of single-mode imaging data. fMRI is an indirect

measure of neural activity and is temporally limited by the

slow hemodynamic response, thus it is unable to directly

address neuronal activity within the cortex (Nguyen et al.,

2019). Although EEG and fMRI single-modal studies have

provided important insights into brain activity associated with

emotional processing, their limitations have hampered the

analysis of functional connectivity between regions involved in

cognitive reappraisal.

To date, only a few studies provided mechanistic insights

into emotion regulation by using simultaneous EEG-fMRI and

even fewer investigated the EEG source-level connectivity with

EEG-fMRI integration. First, simultaneous EEG-fMRI provides

the ability to design novel emotion regulation neurofeedback

paradigms, in which one modal can be used to extract the

feedback neural index and the other modal can be used

to conduct the brain function analysis, as well as to probe

the activity changes after intervention. For example, in an

EEG neurofeedback study, the effect of training in emotion

regulation by retrieving positive autobiographical memories was

evidenced by increased connectivity between the prefrontal,

parietal, limbic, temporal, and occipital regions, showing more

synchronized brain networks during neurofeedback (Dehghani

et al., 2020a). This effect was validated by a study examining

the fMRI brain connectivity and activity changes with the same

experimental design, and increased activity in the prefrontal,

occipital, parietal, and limbic regions was found (Dehghani

et al., 2020b). The emotional regulation training can also be

designed with real-time fMRI neurofeedback and concurrent

EEG recordings. In an fMRI neurofeedback study, participants

were instructed to upregulate left amygdala activity during

happy memory recall, frontal EEG asymmetry was found to

be correlated with left amygdala activity, and left fronto-

temporal EEG coherence was found to be positively associated

with decreased depression symptoms (Bodurka, 2018). In

addition, the integration of EEG and fMRI can achieve in-

depth information about the emotion regulation process due

to their complementary characteristics of high spatial and

temporal brain imaging (Rosa et al., 2010). In an EEG-informed

fMRI study, the general linear modal (GLM) was used to

investigate the cortical areas that modulate the frontal LPP when

downregulating the negative affect by cognitive reappraisal. It

was found that the septum pellucidum, the right insula, and the

right subcallosal gyrus were involved in the modulation of the

LPP amplitude (Fang et al., 2019). The integration of EEG and

fMRI can also improve the localization of cortical sources with

higher efficiency (Lin et al., 2004). When it comes to source-level

functional connectivity analysis, combining EEG and fMRI can

provide improved network characterization (Labounek et al.,

2019). However, this kind of source-level brain network analysis

method is seldom reported in cognitive reappraisal, except for

a study by Nguyen et al. (2019) that examined the causal brain

network associated with the emotion process, in which the

ventrolateral prefrontal cortex (VLPFC) was found to play a

modulator role in emotion network. Further studies are needed

to reveal the detailed modulation effect on neural activity and

network characteristics during reappraisal.

Source localization with scalp electroencephalography

recordings is an inverse problem that tries to specify the location

of the sources of the brain activity. There are mainly two

kinds of methods to solve the inverse problem, namely, the

parameterized method of the equivalent current dipole model
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(Tenney et al., 2020) and the non-parameterized method of

distributed source model (Michel and He, 2019). Minimum

norm estimate (MNE) is the classical method of the distributed

source model (Xu et al., 2018). The statistical maps derived

from fMRI data can be used as a spatial prior for the distributed

source reconstruction, so the fMRI constrained EEG source

imaging has attracted more and more attention. The fMRI-

weighted minimum norm estimation (fMNE) algorithm is

the mostly used method, in which fMRI spatial information is

integrated into the EEG source location framework as a priori

information (Xu et al., 2018). In our previous research, the fused

priori weighted minimum norm estimation (FWMNE) was

developed based on EEG sliding windows in order to effectively

trace the brain source dynamics (Zhang et al., 2021).

In this study, we used the FWMNE method for the

source localization by EEG-fMRI integration and estimated the

dynamic cortical activity during cognitive reappraisal, which

was then used to construct the emotional regulation network

that supports the system interaction analysis. Our aim was to

apply the proposed source localization method to the analysis of

emotional processing and to investigate how the neural activity

and brain network parameters were modulated by cognitive

reappraisal. We hypothesized that the regions responsible for

the cognitive processing of reappraisal would be activated, and

the system interaction and operation of regulation would be

reflected in network characteristics by graph theory.

Experimental materials and methods

Participants

A total of 20 subjects from Changzhou University were

recruited, and 5 subjects were excluded from further analysis due

to head movements and resulting low-quality EEG recordings.

For the final 15 subjects included in this study, 12 were men

and 3 were women. The age range of the participants was 19–24

years, with a mean of 21.8 and a standard deviation of 1.4 years.

All participants had a normal or corrected-to-normal vision and

no history of neurological or mental illness. The experimental

protocol was approved by the research ethics committee of

Changzhou University, and after explaining the considerations

in the experiment, we obtained a signed written consent form

from each participant according to the Declaration of Helsinki.

Experimental paradigm

The experiment involved emotional cognitive reappraisal

task. As seen in Figure 1, the single experimental trial began with

an instruction (either watch or decrease) in the center of the

gray screen for 4 s, followed by a blank screen for 2 s. A color

image was then displayed against the gray background for 6 s.

After the offset of each image, the cue word “relax” was presented

for 4 s, prompting participants to take rest. Visual stimuli were

120 emotional images selected from the International Affective

Picture System (IAPS) (Lang et al., 1997). Among them, 40

images were neutral and used for the watch task (neutral-watch);

80 images were negative, equally divided into two parts, i.e., one

part was for the watch task (negative-watch) and the other part

was for the reappraisal task (negative-reappraisal). Participants

should react naturally to the image in the watch task and try to

reduce the degree of negative emotion in the decrease task by

using the regulation strategy of reappraisal. The experimenters

interpreted the concept of reappraisal with an example trial and

described how it was possible to come up with a less negative

interpretation of the image content (e.g., imagining the situation

being unreal or assuming a better outcome of the scene). The

participants were then trained with several trials, which were

not used in the formal task. The participants reported their

reinterpretations to the experimenter, and the experimenter

determined whether the participants correctly reappraised the

negative images according to the experimental criteria. In the

formal task, a total of 120 trials were equally divided into four

sessions. Each session included 10 neutral-watch, 10 negative-

watch, and 10 negative-reappraisal trials. The sequence of the 30

trials in each session was randomized for each subject.

Simultaneous EEG-fMRI data recording

The experiment with synchronous EEG-fMRI was

conducted in Changzhou Second People’s Hospital. Participants

were scanned with a 3-T scanner (Philips Medical Systems)

while wearing an EEG-Cap (HydroCel Geodesic Sensor

Net; Electrical Geodesics, Inc., Eugene, OR). EEG data were

collected by using Net Station software from 64 channels in

10-10 montages at the sampling rate of 250Hz. Cz served

as the reference. The impedance of all electrodes was kept

below 50 k�. Functional MRI data acquisition (3-T scanner,

Philips Medical System) was performed using a gradient echo

EchoPlanar Imaging sequence [repetition time (TR)= 2,000ms,

echo time (TE) = 35ms, flip angle = 90◦, and voxel size = 3

× 3 × 3mm]. A total of 24 continuous slices parallel to the

anterior commissure-posterior commissure line were acquired

per volume (field of view of 230 × 182mm and matrix of 96

× 74). A structural MRI image was also collected from each

participant with a voxel size of 1 × 1 × 1mm. The EEG and

fMRI data were synchronized using a synchronization box.

Pre-processing

EEG data were processed by using the Netstation software.

First, the average artifact subtraction (AAS) algorithm (Allen

et al., 2000) was used to perform gradient artifact correction,
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FIGURE 1

The experimental design of cognitive reappraisal task for a single trial.

and the optimal basis set (OBS) algorithm (Niazy et al., 2005)

was applied to suppress ballistocardiogram artifacts. Next, the

FIR filter with the passband of 0.01–40Hz was applied. Then,

the EEG data were re-referenced to the common grand average

of all EEG channels, segmented to −0.2 to 1.5 s epochs relative

to the image onset, and baseline corrected against the −200ms

to 0ms. Furthermore, artifact detection and bad channel

replacement were applied to each channel and segment. Finally,

an independent component analysis (ICA) algorithm was

adopted to remove residual noises, such as electromyography,

eye movement, and head movement artifacts. The ADJUST

plug-in (automatic EEG artifact detector based on the joint use

of spatial and temporal features) was adopted to help remove the

residual noise component (Mognon et al., 2011).

The fMRI data were preprocessed and analyzed with

the SPM8 software (http://www.fil.ion.ucl.ac.uk/spm/,

RRID:SCR_007037). The preprocessing steps include slice

time correction, realignment, head motion correction, spatial

normalization, and spatial smoothing. First, the fMRI images

were corrected for slice-timing artifacts and spatially realigned

to the first brain volume. To exclude the head motion effects,

subjects showing a maximum displacement of > 2mm and an

angular motion of >2◦ were removed. Under this criterion, five

subjects were excluded. Then, the data were normalized based

on the Montreal Neurologic Institute (MNI) reference brain,

and the voxel sizes were turned into 3 × 3 × 3mm. In addition,

fMRI maps were smoothed by an 8-mm FWHM Gaussian

kernel. Finally, the images were filtered with a temporal

band-pass of 0.01–0.08 Hz.

Analytical framework of the cognitive
reappraisal network

The flowchart of the framework used in the reappraisal

network analysis is shown in Figure 2. First, we used the

FWMNE method proposed in our previous research (Zhang

et al., 2021) to project sensor-level EEG to source space. In

the fMRI priori features extraction, the predicted BOLD signals

were recorded by convolving the extracted EEG features with

standard hemodynamic response function (HRF) and used as

Frontiers inHumanNeuroscience 04 frontiersin.org

https://doi.org/10.3389/fnhum.2022.960784
http://www.fil.ion.ucl.ac.uk/spm/
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Li et al. 10.3389/fnhum.2022.960784

FIGURE 2

Flowchart of the analytical framework.

EEG regressors. The GLM was used in the EEG-informed fMRI

analysis to find the task-relevant activations in the whole brain,

which were taken as fMRI priori features (Zhang et al., 2021).

Next, the Desikan-Killiany labeling system (Desikan et al., 2006)

was used to extract the ROI time series from source space

activities. Then, the phase lag index (PLI) (Stam et al., 2007)

was used to measure the synchronization between ROIs. A

paired sample t-test was used to identify the connectivity with

a significant difference between negative-watch and negative-

reappraisal conditions (df = 14; FDR-corrected for multiple

comparisons; q= 0.05), which formed the edges of the network.

Finally, the reappraisal network parameters were analyzed using

graph theory.

Source localization and analysis

The classical EEG inverse problem is depicted as follows

(Nguyen et al., 2018):

Y = GJ + ε

ε ∼ N(0,C,T)

J ∼ N(0,R,T),

where G ∈ Rm×s is the lead field matrix, and J ∈ Rs×d is the

unknown brain activities in the source space with s dipoles. ε

represents the noise component in the sensor space, and C ∈

Rm×m represents the noise spatial covariance matrix. R ∈ Rs×s
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is the source space covariance matrix of J, representing prior

knowledge about the distribution. The source current vector J

is estimated as follows:

Ĵ = RGT(GRGT + C)
−1

Y

In fMRI-weighted minimum norm estimation, prior

information can be extracted from fMRI statistical analysis, and

the dipole covariance matrix can be set as follows:

R = Rf

In Rf , the diagonal elements are set to 1 for the locations in

the activation regions, and other diagonal elements are set to 0.1,

while the off-diagonal elements are set to 0 (Xu et al., 2018).

After obtaining JfMNE by using the fMNE method, we

divided EEG with sliding time windows and extracted the fusion

feature of the dipole in each time window, functioning as

dynamic fused prior information for weighted minimum norm

estimation. The new covariance matrix Rwindow was constructed

with the diagonal elements set as:

R̂window = diag(cov
(

JTfMNE_window

)

),

where JfMNE_window is the source space activities in each time

window using the fMNE method. After that, the fused priori

weighted minimum norm estimations were performed, and the

source activity in each time window was estimated as follows:

Jwindow = RwindowG
T(GRwindowG

T + C)
−1

Ywindow

The analysis was performed in each of the three windows:

60–172ms, 428–580ms, and 1,164–1,276ms, because the

statistical analysis of the parietal-occipital event-related

potential showed that the amplitude was lower in negative-

reappraisal than in the negative-watch condition in the three

windows (Zhang et al., 2021).

Phase lag index

We used the phase lag index to measure the synchronicity

in the neural activity between all possible pairs of source-

level regions of interest (ROIs), and it is defined as

follows (Stam et al., 2007):

PLI = |
1

M

M−1
∑

l=0

Sign(1∅

(

tl
)

)|,

where M is the time series length, and 1∅

(

tl
)

, l =

0, 1, . . . , M – 1 represent a time series of phase differences,

which is defined as follows:

1∅

(

tl
)

= ∅j
(

tl
)

− ∅k(tl), where ∅j and ∅k are the

instantaneous phases of time series j and k, and extracted using

the analytical signal:

xH (t) = x (t) + ix̃ (t)

x(t) is the original time series, and x̃(t) is its Hilbert transform.

The instantaneous phase can be calculated as follows:

∅ (t) = arctan
x̃(t)

x(t)

The PLI is a bounded measure between 0 and 1, where 0

represented no phase synchronization and 1 indicated a fixed

phase relationship.

In the current study, the PLI values were calculated between

any two ROI time series in five frequency bands, namely, delta

(1–3Hz), theta (3–8Hz), alpha (8–13Hz), beta (13–30Hz), and

gamma (30–40Hz), and averaged across trials for each condition

in each participant (Yin et al., 2020), based on which the PLI

matrix was constructed.

Brain network analysis

Brain network construction

According to the Desikan-Killiany labeling system (Desikan

et al., 2006), we extracted 68 ROIs from brain activities in the

source space, which were defined as nodes in the network.

The PLI method was used to construct the connectivity matrix,

which was later converted to a binary graph representation of

the brain network by considering a threshold. The threshold

was determined according to the following criteria: after

binarization, the average degree of nodes is > 2lnK =

2 ln (68) ≈ 8.4, where k represents the number of network

nodes, and the small-world index is >1 (Zhang et al., 2011).

Finally, the threshold was set as 0.30. A paired sample t-test was

performed on each connectivity between negative-reappraisal

and negative-watch conditions, and the edges with a significant

difference (df = 14; FDR-corrected for multiple comparison; q

= 0.05) were retained for network measures analysis.

Betweenness centrality

Betweenness centrality quantifies the number of times a

node acts as a bridge over the shortest path between two other

nodes. It can also be considered as a measure for quantifying

the importance of one node to the communication between two

other nodes. It measures the global characteristics of nodes in the

network and reflects the degree to which a node (brain region)

acts as an efficient relay within the network (Fang et al., 2020).

The betweenness centrality of node i can be calculated as follows:

Bi =
∑

m6=i 6=n
rmn(i)
rmn

, where rmn is the total number of

shortest paths from nodem to node n, and rmn(i) is the number

of paths that go through node i.
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Network density

Network density is a measure quantifying the density of a

functional brain network. It can be calculated as follows:

D = 2M
K(K−1)

, where K represents the number of nodes, and

M represents the number of actual edges.

Results

The brain networks in delta, theta, alpha, beta, and gamma

bands are demonstrated in Figure 3. The important nodes,

measured by betweenness centrality, are illustrated with blue

dots in the network (Figure 3 and Table 1). In the delta band, the

banks of the superior temporal sulcus (right), the pericalcarine

(left), the lingual gyrus (left), the lateral orbitofrontal cortex

(left), and the rostral middle frontal gyrus (right) were the brain

regions with high betweenness centrality, suggesting that these

regions played an important role in information transmission

during cognitive reappraisal. In the theta band, the regions

with high betweenness centrality included the isthmus of the

cingulate gyrus (right), the inferior temporal cortex (left), and

the supramarginal gyrus (right). In the alpha band, the superior

parietal gyrus (right), the cuneus (left), and the pars orbitalis

(right) were the central nodes of the network. The betweenness

centrality in the beta band was relatively lower compared with

other bands, and the important regions included the lateral

occipital sulcus (right), the posterior cingulate cortex (right),

the precentral gyrus (left), and the medial orbitofrontal cortex

(right). In the gamma band, the emotional cognitive reappraisal

network, the cuneus (right), the lateral orbitofrontal cortex (left),

the superior parietal gyrus (left), the postcentral gyrus (right),

and the pars opercularis (left) were the brain regions with large

betweenness centrality, representing the central nodes of the

network. The network density in delta, theta, alpha, and gamma

bands was similar, while the network density in the beta band

was relatively low.

Discussion

According to Gross’s process model, emotion may be

regulated at five points in the emotion generative process:

selection of the situation, modification of the situation,

deployment of attention, change of cognitions, and modulation

FIGURE 3

The source-level brain networks of cognitive reappraisal in five frequency bands.
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TABLE 1 Brain regions with high betweenness centrality in the cognitive reappraisal networks.

Frequency bands Region Desikan-killiany label Betweenness centrality

Delta Banks of the superior temporal sulcus (right) r.bankssts 939.979

Pericalcarine (left) l.pericalcarine 608.266

Lingual gyrus (left) l.lingual 406.736

Lateral orbitofrontal cortex (left) l.lateralorbitofrontal 333.695

Rostral middle frontal gyrus (right) r.rostralmiddlefrontal 280.742

Theta Isthmus of cingulate gyrus (right) r.isthmuscingulate 990.901

Inferior temporal cortex (left) l.inferiortemporal 775.866

Supramarginal gyrus (right) r.supramarginal 613.933

Alpha Superior parietal gyrus (right) r.superiorparietal 1227.661

Cuneus (left) l.cuneus 961.647

Pars orbitalis (right) r.parsorbitalis 682.633

Beta Lateral occipital sulcus (right) r.lateraloccipital 82.102

Posterior cingulate cortex (right) r.posteriorcingulate 74.524

Precentral gyrus (left) l.precentral 70.613

Medial orbitofrontal cortex (right) r.medialorbitofrontal 64.877

Gamma Cuneus (right) r.cuneus 816.549

Lateral orbitofrontal cortex (left) l.lateralorbitofrontal 760.86

Superior parietal gyrus (left) l.superiorparietal 635.769

Postcentral gyrus (right) r.postcentral 549.215

Pars opercularis (left) l.parsopercularis 548.215

of experiential, behavioral, or physiological responses (Gross,

2002). In cognitive reappraisal, the stimulus is perceived in

the context of the current situation at first. Then, people

attend to some of these stimuli or their attributes. The next

step involves assessing the importance and relevance of the

stimulus. Finally, these appraisals were translated into a change

in emotional experience (Ochsner et al., 2012). A number of

brain regions take part in the cognitive reappraisal process,

including the inferior parietal regions and the dorsolateral and

posterior prefrontal cortices that are associated with selective

attention and working memory, the dorsal anterior cingulate

cortex involved in performance monitoring, regions of the

ventrolateral prefrontal cortex involved in appropriate target

selection and inappropriate target suppression responses, and

the dorsomedial prefrontal regions implicated in attributing

mental states (Ochsner et al., 2012).

In our previous study by Zhang et al. (2021), the activation

of the specific brain regions in cognitive reappraisal and its

dynamic changes were examined by conducting the contrast

between negative-reappraisal and negative-watch in three

important time windows. Neural modulation can be detected

from the activation change when the affective response of the

negative images was regulated. In 60–172ms, the left inferior

parietal lobe demonstrated higher significant activations during

cognitive reappraisal, which was in line with previous studies.

In the fMRI study by Lee et al. (2021), it was found that

cognitive reappraisal induced higher activities in the bilateral

inferior parietal lobes compared to the condition of “look.” The

inferior parietal lobe was also identified in the downregulation

of negative emotion compared with just looking (Ochsner et al.,

2004). Modulation of inferior parietal cortices may reflect the

attentional selection in working memory. In 428–580ms, the

right superior temporal gyrus demonstrated higher significant

activations in reappraisal, consistent with the study by Ochsner

et al. (2004) comparing the activity between reappraisal and

“look”. It has been indicated that the superior temporal gyrus

should be involved in the execution of regulation initiated

by the frontal areas (Kohn et al., 2014). So, we inferred that

the cortical activation of the right superior temporal gyrus

indicated the execution of the reappraisal. Besides, we also

found that reappraisal was associated with the modulation of

the lateral occipital cortex, reflecting the role of perceptual

processing (Lake et al., 2017). In 1,164–1,276ms, it was found

that reappraisal processing induced higher activation in the right

inferior middle frontal gyrus, an area associated with cognitive

reappraisal during emotion regulation (Wadden et al., 2018).

While in contrast to negative-watch > negative reappraisal, it

was found that activation of the insula was significantly lower

during reappraisal than during just looking. Ochsner et al.

(2004) found modulated activity in the bilateral insular cortex

when decreasing the negative affect, showing decreased activity

in reappraisal. We inferred that this modulation indicated a

decreased negative affect by reappraisal.

The process for the emotional processing and regulation

of negative affect involves the interactions between several

cognitive processes in the neural system, resulting in the
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recruitment of a large-scale functional brain network (Schlumpf

et al., 2019; Fang et al., 2020). In this study, based on our previous

source localization results (Zhang et al., 2021), functional

networks were constructed at the source level in different

frequency bands. The central nodes of the emotional reappraisal

network were identified by using the graph theory measure of

betweenness centrality, and the density of the brain network in

different frequency bands was analyzed. It has been indicated

that the gamma band plays an important role in the cognitive

control of emotions (Oathes et al., 2008; Yang et al., 2020). In

this study, the left lateral orbitofrontal cortex, the left superior

parietal gyrus, the right cuneus, the right postcentral gyrus, and

the left pars opercularis were identified as central nodes in the

gamma band reappraisal network. In the study by Gao et al.

(2021), the functional coupling of the orbitofrontal cortex and

the basolateral amygdala was found to mediate the association

between spontaneous reappraisal and emotional response. The

left superior parietal gyrus is a part of attention and executive

control networks, coordinating attention under competing

conditions and voluntary orienting of attention (Corbetta and

Shulman, 2002). The functioning of the left superior parietal

gyrus seemed to be associated with cognitive reappraisal during

emotion regulation. In the study by Wadden et al. (2018), yoga

practitioners uniquely activated clusters of voxels in the left

superior parietal lobule during emotion regulation. Reappraisal

also generated significant responses in cuneus. In the study

by Goldin et al. (2008), higher activity was found in bilateral

cuneus in reappraisal compared with suppress strategy. These

findings may give light to the study on brain networks related to

emotion regulation.

Conclusion

In this investigation, the aim was to examine the source-

level functional network of emotional cognitive reappraisal by

using the fused priori weighted minimum norm estimation

method and the phase lag index. We constructed the network

at different frequency bands. The gamma band network was

found to be closely related to reappraisal. The central nodes

were identified by the betweenness centrality, including the left

lateral orbitofrontal cortex, the left superior parietal gyrus, the

right cuneus, and so on. The source-level connectivity analysis

method proposed in this study was applicable in examining

the neural activity of the cognitive process, and the analysis of

emotion regulation networks would give light to the research on

mechanisms of emotional cognitive reappraisal.
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