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Brain-computer interfaces (BCIs) have been successfully used by adults,

but little information is available on BCI use by children, especially

children with severe multiple impairments who may need technology to

facilitate communication. Here we discuss the challenges of using non-

invasive BCI with children, especially children who do not have another

established method of communication with unfamiliar partners. Strategies to

manage these challenges require consideration of multiple factors related

to accessibility, cognition, and participation. These factors include decisions

regarding where (home, clinic, or lab) participation will take place, the number

of sessions involved, and the degree of participation necessary for success.

A strategic approach to addressing the unique challenges inherent in BCI

use by children with disabilities will increase the potential for successful BCI

calibration and adoption of BCI as a valuable access method for children with

the most significant impairments in movement and communication.

KEYWORDS

assistive technology, neuropsychology, disability, event-related potential, pediatric,
choice-making, attention, P300

Introduction

Brain-computer interfaces (BCIs) have long been considered communication tools
for people with impairments that prevent verbal communication and manual computer
access. The event-related potential BCI design introduced by Farwell and Donchin
(1988) as the P300 BCI design has been used for daily communication in home
environments by people with amyotrophic lateral sclerosis (ALS) (Sellers et al., 2010;
Wolpaw et al., 2018). This non-invasive BCI design (Figure 1, left) presents stimuli on
a computer screen, senses brain activity using electroencephalogram (EEG) electrodes,
and interprets the EEG to determine to which single stimulus the user is paying
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attention. Although BCI has been successful for able-bodied
adults and adults with acquired impairments, little is known
about BCI use by children with severe multiple impairments
who need technology for communication (Orlandi et al., 2021).

Cerebral palsy (CP) is one of the most common childhood
disabilities (Odding et al., 2006). Approximately 25% of people
with CP cannot talk (Novak et al., 2012; Acpr Group, 2013),
while 15–19% have no method of communication (Parkes
et al., 2010). With verbal comprehension often exceeding
expressive capacities in children with complex communication
needs (Sevcik, 2006), we created and studied (with publisher’s
permission) BCI-facilitated access (Alcaide-Aguirre et al., 2017)
to a standard receptive vocabulary test, the Peabody Picture
Vocabulary Test, 4th edition, PPVT-4; (Dunn and Dunn,
2007). EEG was recorded with 32-location gel-based EEG caps
(Electro-cap International, Inc., Eaton, OH, United States) and
g.USBamps (g.tec medical engineering GmbH, Schiedlberg,
Austria). Directing attention among four images in response
to a recorded verbal prompt (Figure 1) enables BCI-facilitated
access (Huggins et al., 2015). We used this access method
with children and young adults (Alcaide-Aguirre et al., 2017),
both typically developing and with CP, who could also
complete the standard test format as a necessary first step
in validating the new access method (American Educational
Research Association et al., 1999). The 29 recruited participants,
18 with CP, were age 8–27 years (mean 15.0, SD 5.5). Primary or
secondary CP type included spasticity in 88.9%, with primary
or secondary ataxia in 11.2% and 5.6% dystonic. Primary or
secondary tone was hemiplegic or bilateral spasticity, with
66.7% exhibiting hemiplegia and 33.4% exhibiting diplegia or
quadriplegia. Functional mobility levels using Gross Motor
Functional Classification System (GMFCS) (Palisano et al.,
1997) scores were: level I-II 76.2%, level III 14.3%, and level
IV-V 9.6%. Functional dexterity ratings using the Manual
Ability Classification System (MACS) (Eliasson et al., 2006)
included level I 71.4, level II 19.0, and level III 9.6%. The study
focused on the psychometrics of BCI access to the PPVT-4,
showing excellent measurement agreement with standardized
administration (Warschausky et al., 2022). Our next step
was evaluating BCI-facilitated tests with those for whom
standardized test administration was inaccessible (Huggins
et al., 2020). The 28 recruited participants were 10–43 years
(mean 19.5, SD 9.4) with GMFCS scores of Level IV 17.9%
and Level V 82.1% and MACS scores Level IV 28.6% and
Level V 71.4%. Primary tone was spasticity (81.5%) and
dystonia (29.6%) with 76.2% exhibiting quadriplegia, 19.0%
diplegia, and 4.8% hemiplegia. A separate effort, involving 18
participants to date (age 13–79 years; mean 40.7 ± 18.6), is
examining BCI access to a commercial speech generating device
(Huggins et al., 2019) with 7-or 16-location gel electrodes or
seven-location dry electrodes (VR300 amplifier from Wearable
Sensing, San Diego, CA, United States). Here we discuss
the challenges experienced with the 75 participants in these
studies.

Challenges and compensatory
strategies

Caregiver participation

The participation of trusted adults is important for any BCI
use by children, especially children with multiple impairments.
In our BCI lab, parents/guardians receive advance information
about the BCI during the consent process, which may help
set expectations. Parents have identified topics such as football,
pictures of food, or specific cartoon characters as content that
is motivating or of interest to a child to establish rapport and
reduce potential participation anxiety. It is recommended that
future studies systematically gather this type of information
and incorporate the content into initial introductory materials
and training stimuli. In the session, caregivers familiar with the
child help to manage expectations regarding BCI procedures,
assist with interpreting non-verbal communication, provide
comfort, entertain the child during BCI setup, or focus their
attention on a task. However, caregivers also can be a distraction
or provide inaccurate instructions by well-meaning verbal or
physical prompts.

Situational anxiety and motivation

Despite caregiver presence, some children still exhibited
signs of anxiety when entering the study site. Children often
need advance preparation for unfamiliar settings and task
demands, which could be accomplished with video orientation
materials (see Section “Comprehension of task”) and guided
parent task-specific behavioral modeling. We have found that
taking the BCI to the child’s home or other familiar environment
can help alleviate anxiety. Children’s assent for participation
should always be sought, although children without well-
established communication methods will likely be unable to
pose questions and only express lack of assent or a desire to
end participation with non-verbal behaviors. These may include
closed eyes, turning away from the screen or experimenter, or
pretending to sleep.

Children’s willingness to use assistive technology also
depends on their perception and experience of immediate
benefits (Hemmingsson et al., 2009). In addition, there can be
self-image related resistance to using unusual technologies in
social situations (Hemmingsson et al., 2009; Murchland and
Parkyn, 2010). Furthermore, there are individual differences in
mastery motivation, or the willingness to persist in the face of
the challenge of learning new technology.

Task demands

All elements of a BCI task should be evaluated for familiarity
and fit with capabilities and experience. Before working with
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FIGURE 1

Left: Participant with cerebral palsy (CP) viewing first calibration screen. Adjustable monitor support enables optimal positioning. Right: Closeup
of a later calibration screen, with the stimulus flashing for picture 3.

children who could not access the standardized vocabulary
test, we carefully selected calibration words the children were
likely to have experienced in either personal, educational, or
entertainment contexts. Starting from word frequency lists, we
excluded items that involved motor demands inaccessible to
the child or with associated images that were ambiguous or
scary. For this cross-cultural study, we also removed words
with inconsistent meanings between the United States and
Australia (e.g., cookie vs. biscuit). Illustrations were selected
instead of photographs to facilitate the planned transition to the
PPVT-4 vocabulary test (Dunn and Dunn, 2007), which uses
illustrations.

A child who has never successfully used technology should
not be expected to be immediately ready to follow multi-step
instructions for BCI operation. However, gradual introduction
of concepts involved in BCI use may be possible. During
calibration, we supported the concept of picture identification
by using color to highlight the target among grayscale non-
targets. Further, we started with a single picture and three
empty quadrants (Figure 1, left), then a picture with non-target
generic shapes, and finally a target picture with three non-target
pictures (Figure 1, right). Similarly, we first used a + character
on the flashing labels before introducing the numeric labels that
matched the PPVT-4 testing screens. However, the efficacy of
this graded training is not yet clear.

Experience with choice-making

The most fundamental skill for participation in cognitive
assessment or BCI use is the ability to make a choice (Van
Tubbergen et al., 2008). In typically developing children, choice-
making skill follows a developmental progression, from basic
orienting, to preference, to directed choice in response to
questions requiring indirect application of knowledge (e.g.,
can dogs fly?). Directed choice-making is needed for typical
cognitive assessments. Yet, it can be difficult to determine
if children with limited reliable overt communication have
achieved directed choice-making. This is particularly true for

children with CP who function at GMFCS (Palisano et al., 1997),
MACS (Eliasson et al., 2006), and Communication Function
Classification System (Hidecker et al., 2011) levels IV-V, which
indicate inability to reliably move or talk without assistance (if
at all). A child skilled with a communication device exhibits
directed choice-making. However, children with lower levels of
motor and communication function in effect can be “locked
in” with limited recognition of their underlying capabilities.
Further, without choice-making opportunities, they can be
completely naïve to the most fundamental testing demands.
Thus, even the initial preparatory and learning/practice trials
may provide novel information regarding choice-making
capabilities.

Screen layout and brain-computer
interface stimuli

In our cognitive testing BCI design, the spatial separation
between the vocabulary pictures and flashing labels (stimuli)
added to the complexity of instructions. We subsequently
considered (but have not yet tested) alternate stimulus types
and locations. Face stimuli have been shown to improve BCI
accuracy, especially for people with disabilities (Kaufmann et al.,
2013). However, face stimuli may increase the complexity of
instructions. We prefer the idea of integrating stimuli into the
pictures or their backgrounds or using actual or simulated
motion as the stimulus (Martens et al., 2009; Liu et al., 2010). If
the stimulus is a small picture rotation, the user could be simply
instructed to pay attention to the picture that matched the word
and the response to the “movement” of the picture should be
largely automatic.

Comprehension of task

To generate P300’s, the user must select a specific stimulus
among the possible stimuli, monitor for occurrences of that
stimulus, and preferentially attend to that stimulus. This process
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is often explained by instructions to count the flashes of the
specific stimulus. The typical practice of referring to stimuli as
flashes seems readily understood by children. However, parents
report that children may not be able to count or may find
counting stressful because of association with the demands of
school. Further, children who are able may prefer to count
out loud, which could generate EEG artifact. Yet, instructions
other than counting the flashes are not as easily understood.
Several variants have produced inadvertent, non-useful results.
Participants instructed to think “yes” when a flash happened in
the right place reported that they were thinking yes over and
over again, but their EEG showed a lack of stimulus-related
responses. Another participant responded to the stimulus, but
the response was evident because the participant performed
the physical movement used to indicate yes, a source of
both fatigue and artifact. Another participant who was non-
verbal made sounds in response to the stimulus. Several of
these participants generated clear responses when asked to try
counting instead. We have also tried the instruction to think
“now” when a flash happens in the right place, this has the
advantage of describing the connection between stimulus and
mental response. Sometimes, thinking the name of the target
item when the target stimulus occurs is sufficient, although this
instruction may easily be misunderstood as thinking the name
of the item repeatedly (without the vital connection to the time
of the stimulus).

A key difficulty is the impossibility of demonstrating P300
BCI use. Most instructions for operating devices, even assistive
technology, involve some task-specific behavioral modeling so
the learner can mimic the actions required for use. But anything
added to BCI use to indicate the thought process involved
artificially inserts a physical response that is unnecessary and
potentially problematic, both for a user with a disability and
for EEG quality. To address this, we are creating instructional
videos for each BCI study that include slow motion sections
emphasizing the relationship between stimulus timing and
mental response. Videos also enable the use of thought bubbles
or other representations of thought to model mental responses
to target stimuli e.g., (Branco et al., 2021).

Age and attention

Even children who try to follow instructions may struggle
with doing so long enough to provide 10–20 min of
calibration data. Our study found that children in the 8–
10-year age range exhibited significant inattentiveness during
calibration. Children could sometimes be redirected toward the
calibration task by prompting. Also, breaking the calibration
data into shorter segments was sometimes of benefit. However,
inattentiveness and/or reported lack of interest were an
ongoing barrier.

Immediate feedback from the system on whether they are
doing something wrong and how to change it would be desirable

(Taherian and Davies, 2018). An example of the effect on mental
tasks was demonstrated (Schudlo and Chau, 2014) where eight
out of 10 participants adjusted their mental strategies when
receiving feedback. However, prior to BCI calibration, relatively
little information is available to inform specific feedback.

Processing speed

Individual differences in cognitive processing speed can
affect BCI accessibility. Children with CP are at significant
risk for slowed processing speed, even with normal range IQs
(Kaufman et al., 2014). Processing speed can affect both the
time to register a stimulus and the time to plan the next target
after the BCI registers a selection. The duration of BCI stimuli
can be adjusted to accommodate slower visual processing speed.
However, appropriate planning time is an often overlooked and
potentially more complex challenge. P300 BCIs usually operate
in a synchronous mode in which a specific number of stimuli are
presented, a decision is made, and stimuli for the next selection
start after a fixed duration pause. Two approaches might
accommodate an individual’s slower processing speed. The time
between selections can be manually adjusted. Alternatively,
automatic algorithms might identify whether an EEG response
was generated to one of the stimuli. Our cognitive testing BCI
used statistical analysis of the stimulus responses to identify
when one stimulus produced a significantly larger EEG response
(Alcaide-Aguirre et al., 2017; Aref, 2018). This enabled the user
to spend as much time as needed to consider the illustrations
before picking the one they wanted to select and attending to
the associated stimulus.

Calibration time

An advantage of the P300 BCI design for children is that
it can be calibrated within a single session as compared to the
multiple sessions generally required for motor imagery BCIs
[e.g., (Cincotti et al., 2008)]. However, calibration time may
still exceed a child’s attention span, especially if the stimuli are
not inherently interesting. Traditionally, P300 BCIs use a fixed
duration of calibration data. Our various studies used 9, 13, or
19 min of calibration data (Alcaide-Aguirre et al., 2017; Huggins
et al., 2019, 2020). While calibration data of this duration is not
necessarily essential, calibrations performed on small amounts
of data may report success, but not correctly interpret new
data. Methods to create BCIs that work without individualized
calibration or that perform more rapid calibration using transfer
learning from past participants are not yet readily available [e.g.,
(Lu et al., 2009; Xu et al., 2015; Sahay and Brinton, 2021)].
Methods are needed to automatically remove data with artifact
or low participant attention. In addition, methods are needed to
rapidly validate, preferably during collection of the calibration
data, whether a calibration will generalize to new data.
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FIGURE 2

Concept map, design aspects, and possible strategies to consider in brain-computer interfaces (BCI) design for children with disabilities.
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Electrode location

An additional consideration for calibration is electrode
location. Most P300 BCI studies use similar electrode locations
(Thompson et al., 2009; Wolpaw et al., 2018) based on
experiments with typically developing participants and people
with ALS. For these groups, customizing electrode locations
appears to actually reduce performance (Colwell et al., 2014).
However, for people with congenital disabilities, custom
electrode locations can be useful and perhaps vital for successful
calibration (Tou et al., in revision). This is not surprising
considering that neuroanatomy imaging of children with
CP found abnormal results in 80–90% (Korzeniewski et al.,
2008). Thus, when working with children with congenital
neurodevelopmental conditions, custom electrode locations
should be considered if calibration with standard locations fails.
Further, ongoing efforts to reduce the number of electrodes
used by BCIs should consider the possible necessity of atypical
electrodes locations.

Electroencephalogram headgear
challenges

EEG headgear designed for people without impairments
may not fit the heads of people with multiple congenital
impairments. Prevalence of head asymmetry among
people with the most severe impairments from CP
are reported as over 40% (Kawakami et al., 2013) and
microcephaly at 30–60% (Venkateswaran and Shevell,
2008; Minciu, 2012). We have repeatedly experienced
issues with poor fitting gel and dry EEG headgear. Thus,
there is a need for either custom fitted headgear or
headgear that accommodates asymmetries or atypical head
shapes.

Additionally, the time required for EEG electrode setup
and establishing good recording quality can be tedious.
Providing caregiver-suggested/provided entertainment can
help. In addition, the necessary intrusion into a child’s personal
space and the strange sensations of gel electrodes or the
weight of a dry electrode headset may be poorly tolerated.
Comfortable EEG headgear that can be rapidly set up and
quickly establish good recording quality is essential. Further, it
may be necessary to specifically acclimate children so that they
will tolerate the headgear.

Electroencephalogram signals may also be vulnerable to
movement artifact. Children, of course, move; and children with
CP may have more frequent and less controlled movements,
leading to greater issues with movement artifact in EEG. Further,
movements may bring the EEG headgear into contact with the
back of a chair or a wheelchair headrest, which can create EEG
artifact, dislodge the headgear, or be painful (Daly et al., 2013).

Discussion

For any child, familiarity and a paced and supportive
introduction of the EEG headgear and the tasks involved in
BCI use may be vital for eventual success. However, for children
with impairments in speech and volitional movement, including
those with CP, factors related to agency, neuroanatomy, and
lived experience may differ in important ways. Building on
work-to-date, we present a concept map (Figure 2) of issues
and strategies to consider when designing BCIs for children with
multiple impairments.

Consideration should first be given to overall accessibility,
not only for wheelchair access, but also for compatibility of EEG
headgear with seating systems and any known neuroanatomy
anomalies. Slowed visual processing speed or a history of
cognitive visual impairments should be considered. Children
with CP are at significant risk for epilepsy and a history
of photosensitive epilepsy is usually an exclusion factor for
BCI use, though we have not seen reports of visual BCI
stimuli actually causing seizures. Next, the cognitive and
experimental aspects of the BCI design should be considered.
Successful participation may depend upon implicit and explicit
assumptions about what the child knows and can understand,
and their previous experience with alternative access methods
such as switch or eye-gaze technology. Engagement will
likely be affected by comfort and familiarity with the nature
and complexity of the stimulus presentation. If participation
requires following directions, how will that fundamental
capability be assessed, or will it be developed during training?
The child’s endurance and sustained attention will affect the
time available for setup, training, and assessment. In addition
to situational anxiety, travel time can affect attention and
fatigue. What can be done to maximize the child’s comfort and
motivation? These considerations will inform strategic planning
of where (home, clinic, or lab) to conduct the assessment and
over how many sessions. More sessions allow introduction
of new concepts at a slower pace but also increase travel
burden if not conducted in the home. The child’s engagement
and participation may depend upon the extent to which the
study requires conscious compliance with instructions rather
than initial passive participation, which can ease the child
into BCI use. Thus, accessibility, cognition, and participation
considerations establish the basis on which successful BCI
calibration and successful adoption of BCI as an access
method will be built.
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