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Inter-subject correlations (ISCs) of physiological data can reveal common

stimulus-driven processing across subjects. ISC has been applied to passive

video viewing in small samples to measure common engagement and

emotional processing. Here, in a large sample study of healthy adults (N = 163)

who watched an emotional film (The Lion Cage by Charlie Chaplin), we

recorded electroencephalography (EEG) across participants and measured

ISC in theta, alpha and beta frequency bands. Peak ISC on the emotionally

engaging video was observed three-quarters into the film clip, during a time

period which potentially elicited a positive emotion of relief. Peak ISC in

all frequency bands was focused over centro-parietal electrodes localizing

to superior parietal cortex. ISC in both alpha and beta frequencies had a

significant inverse relationship with anxiety symptoms. Our study suggests

that ISC measured during continuous non-event-locked passive viewing may

serve as a useful marker for anxious mood.

KEYWORDS
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Introduction

Humans, as social creatures, tend to mirror the emotions of others they see, whether
in person or digitally. Witnessing a person walk across a tightrope might induce most
viewers to feel anxious and stressed, while a cute video of a cat might be heartwarming
(Uhrig et al., 2016). Recent studies have quantified the neural correlates of mirroring
or “sync up” with others by calculating inter-subject correlation (ISC) of neuroimaging
and electrophysiological data analyzed on naturalistic stimuli such as films and movie
clips. In essence, ISC is a useful neural marker in answering the question “How alike is
one subject to the rest of the group?”. The first major study in this field measured blood-
oxygen-level-dependent (BOLD) activity as subjects viewed sections of a movie. High
levels of correlated brain activity between subjects were observed in areas beyond basic
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sensory processing regions, including the limbic system and
superior temporal cortex (Hasson et al., 2004). This suggested
that there are common, temporally similar patterns of activity in
higher order associative processing regions. Follow up studies
(Jääskeläinen et al., 2008; Nummenmaa et al., 2012; Di and
Biswal, 2020), using functional magnetic resonance imaging
(fMRI) or functional near infrared spectroscopy (fNIRS), have
corroborated Hasson’s earlier findings, showing ISC in a number
of brain regions beyond basic sensory cortex. Additional studies
have shown this effect is likely related to emotional processing or
engagement and not strictly external stimulus dependent, as ISC
can be elicited with narrative content in either written or audio
form (Regev et al., 2013; Wang and He, 2014).

The BOLD signal measured in most of the studies noted
above is a proxy for actual neural activity (frequency band
power) and is expensive to measure. Electroencephalography
(EEG), which is a low-cost method that directly reflects
physiological activity of neural populations, has also been used
to measure ISC (Dmochowski et al., 2012, 2014). Such studies
have corroborated those noted above, demonstrating that ISC
in EEG signals is greater during periods of high engagement
and arousal (Dmochowski et al., 2012; Cohen et al., 2017, 2018).
For example, subjects hearing the same song in a repetitive
manner showed lower ISC compared to a remix of the same
song that had less predictable attributes, which would cause
subjects to be more attentive (Dauer et al., 2021). Similarly, when
subjects were presented an audiovisual stimulus, lower ISC was
observed when they were distracted with mental math (Ki et al.,
2016). One additional benefit of EEG is the high temporal
resolution which allows frequency band filtering of specific
brain activity. Theta band activity is known to increase in
response to facial stimuli that occur during naturalistic viewing
(Busch et al., 2009; Dravida et al., 2019). Beta oscillations
have been associated with attentiveness (Posada-Quintero et al.,
2019), while in other contexts, alpha and beta oscillations
have been related to anxiety and stress (Knyazev et al., 2004;
Price and Budzynshi, 2009; Abhang et al., 2016). In fact,
a study has already noted that ISC during emotional states
does show distinct differences across frequency bands, though
low frequency (delta) and high frequency gamma bands were
most prominent (Maffei, 2020). As such, band-pass filtering to
specific frequency bands is necessary to capture this oscillatory
power (Ki et al., 2016). Altogether EEG-ISC analyses can offer
complementary information to that observed from fMRI. The
previous studies mentioned all used dense electrode systems,
either 64 or 128 channels. Although using higher density EEG
systems will provide more spatial resolution, a low-density
system (14 channel EEG) was also shown sufficient to capture
and measure ISC (Poulsen et al., 2017).

Thus, we can use ISC not only to assess how alike subjects
are to each other, but also their engagement to the emotional
stimuli being presented to them (Poulsen et al., 2017). Several

studies have also begun to explore whether ISC differs in
individuals with anxiety and depression. For example, ISC
is lower in individuals with social anxiety (Morrison et al.,
2016), and major depressive disorders (Guo et al., 2015).
Electrodermal activity measures (EDA) observed decreased ISC
values in dysphoric individuals (Li et al., 2021). Thus, prior
work has generally shown that natural videos can be used
as a way of identifying “common” patterns of activity that
occur across subjects, and individuals with various levels of
anxiety and depression may show greater differences from this
common pattern of visual-evoked activity, resulting in lower
than expected ISC values.

In this study, we wanted to contribute to the above literature
in two ways. First, it is increasingly recognized that a larger
sample size is required for robust estimates of neurocognitive
phenomena (Szucs and Ioannidis, 2020; Feng et al., 2022). As
such, we wanted to estimate the degree to which ISC occurs
using a large sample of subjects. Second, we were interested in
observing, in this large sample, whether ISC might be inversely
related to either anxiety or depressive symptoms. To accomplish
this, we performed an EEG-based ISC analysis with data parsed
into physiologically relevant theta (4–8 Hz), alpha (8–12 Hz),
and beta (15–30 Hz) frequency bands as subjects watched
an emotionally evocative short movie clip. Additionally, we
analyzed the correlation between each subject’s average ISC and
mental health symptoms of anxiety and depression. We also use
sparse Bayesian source localization to identify brain regions that
contribute to the EEG-based ISC.

Materials and methods

Participants

A total of 163 human subjects participated in the study
(mean age: 39.80 ± 22.65, range: 15–84 years, 59 males). All
subjects were fluent in English and provided written informed
consent to participate in the study following the University of
California San Diego (UCSD) institutional review board (IRB)
protocol #180140. Participants were recruited by convenience
sampling from the local university and broader San Diego
community using flyers and the online Research Match registry.
All data collection took place prior to the COVID-19 pandemic
research restrictions placed in Spring 2020.

Participants provided demographics data with regards to
age, gender, ethnicity, and provided mental health data on
standard scales of generalized anxiety (7-item generalized
anxiety disorder scale, GAD7) (Spitzer et al., 2006), and
depression (9-item patient health questionnaire, PHQ9)
(Kroenke et al., 2001). All participants were healthy, i.e., did not
have any current medical diagnosis nor were taking any current
psychotropic medications.
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Sample size and power

Our participant sample size met criteria for investigating
greater than small effect size outcomes across subjects
(neurobehavioral correlation coefficient, r > 0.1) at beta power
of 0.8 and alpha of 0.05, as calculated using the G∗Power
software (Faul et al., 2009).

Data acquisition

All participants made individual, single session study-visits
at the Neural Engineering and Translational Labs (NEAT Labs)
located at the Altman Clinical and Translational Research
Institute at the University of California San Diego. Participants
logged into the BrainE Unity platform (Balasubramani et al.,
2021), and viewed the short film “The Lion Cage” by Charlie
Chaplin video that lasted 3.83 min. The video was delivered on
a Windows-10 laptop at a comfortable viewing distance while
recording EEG signals. We did not employ a scrambled video
as control because the study goal was focused on investigating
effects of anxiety and depression in processing emotional
narratives, which requires the stimulus to stay intact. Although
a scrambled stimulus maybe beneficial to compare with ISC
to real stimuli, previous research has also omitted this control
(Dmochowski et al., 2014). The Lab Streaming Layer (LSL)
protocol was used to time-stamp the beginning and end of the
video clip (Kothe et al., 2019).

Electroencephalography data were collected using a 24-
channel saline soaked cap following the 10–20 system and
a wireless SMARTING amplifier. The signals were digitized
with a sampling rate of 500 Hz and 24-bit resolution and
stored as .xdf files.

Stimulus

“The Lion Cage” depicts a man (Charlie Chaplin) in a circus
getting accidentally locked in a cage with a sleeping lion and
his efforts to escape without waking the lion. This film was
chosen due to its emotional rollercoaster nature (scenes of high
stress and anxiety mixed in with emotional relief), which we
hypothesized would induce higher emotions in the subjects and
show significant levels of ISC. Using a black and white silent film
format also reduces confounding variables and puts more focus
on the emotional narrative (Vandewalle et al., 2010; Gerdes et al.,
2014). The entire film and subsequent data were parsed into
10 consecutive time windows to help isolate scenes of interest,
with each window containing an interval of 23 s. This parsing
was used for simple standardization (i.e., to have a standardized
window of time) and was not related to aspects of the scene or
video. The authors also independently coded these 10 windows
with varying emotions and intensity scores on a 10-point scale

to create an emotion key. After the ratings were proven reliable
with a Cronbach’s alpha value of 0.704, the authors met to
resolve differences and came to a consensus on a single key for
simplicity shown in Table 2 (Cronbach, 1951).

Pre-processing of
electroencephalography channel data

A standard pipeline was used for all subjects to clean the data
through EEGLAB v 14.1.2 in MATLAB (Delorme and Makeig,
2004). Using EEGLAB, the data was resampled to 250 Hz and
bandpass filtered between 1 and 45 Hz. This was achieved with
the eegfiltnew() function which uses an 826 order Hamming
windowed sinc FIR filter (Widmann et al., 2015). This removes
DC drift at <1 Hz and high frequency noise originating from
muscle contractions or 60 Hz line noise. All channels used an
average reference. The EEG data were then parsed to isolate the
start and stop of the film while also removing any pauses during
the film’s playback from event markers generated by the LSL.
Artifact rejection was performed automatically using the Sparse
Bayesian Learning Algorithm (BSBL) (Ojeda et al., 2018, 2021)
to remove non-EEG-signals, i.e., signals of electrooculographic
(EOG), electromyographic (EMG), or unknown source origin.
Outlier rejection was done to further clean the data, excluding
any data points that were greater than 5 standard deviations
(5SD) above the average. The cleaned data was then filtered
into three frequency bands, theta (4–8 Hz), alpha (8–12 Hz),
and beta (15–30 Hz) for individual analysis. Our experimental
setup was not in a very low-noise/shielded environment to allow
for gamma band analyses, hence, this frequency band was not
included in the analyses.

Inter-subject correlation

To extract the instantaneous power for correlation analysis,
we transformed each subject’s channel data into Hilbert space,
calculated the magnitude at each discrete time point (Freeman,
2004) and then standardized the data by z-scoring. Using
the MATLAB function glmfit, we fit linear regression models
for every pair of subjects using the 23 s of data within
each of the time windows across the 24 electrodes and three
frequency bands. Thus, for each electrode, time-window and
frequency band we created a symmetric N × N matrix (β)
where N is the number of subjects and βij represents the beta
value (slope) between subjects i and j. In other words, the β

matrix is comprised of individual beta values for all pairwise
combinations of subjects. These beta values are regression
coefficients and thus not scaled between ±1. P-values were
calculated from the upper triangular elements of this matrix
using a one-sample t-test across all unique intersubject βij

values for significance relative to the null hypothesis, with
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the null hypothesis being that the average inter-subject beta
value would be 0 for all electrode, time window and frequency
combinations indicating no correlation between any of the
subjects (Wilson et al., 2008; Kauppi, 2010). A total of 100
iterations of permutation testing were also performed for
the peak window to estimate the likelihood of mean beta-
values above occurring from uncorrelated data. Each subject’s
neural activity was scrambled across time, followed by the ISC
calculation as described above for each frequency and electrode.
These 100 repeats served as our random distribution, and we
calculated the percentile at which the real data sat relative
to the random distribution. Permutation testing confirmed
significance of the real beta values in the peak window at greater
than 99th percentile of the permuted random distribution.

Average beta values for each electrode and time window
were plotted on a heatmap masked with significance. Adjusted
p-values from Benjamini-Hochberg false discover rate (FDR)
were used to resolve multiple comparisons across the 24
electrodes and 10 time windows. We identified the 8th time
window (at 184–207 s in the video) for further analysis as
it showed the largest and most significant ISC values when
averaged across electrodes for each frequency band. This was
further confirmed by running a repeated measures ANOVA
across the 10 time windows followed by Tukey’s post-hoc test.
Beta values were averaged across frequency and electrodes to
find the overall peak window of interest. We chose to analyze
the peak ISC because that would presumably be the timeframe
of highest engagement across subjects as well as when healthy
subjects are most “in sync” (Dmochowski et al., 2012; Cohen
et al., 2017, 2018). The ISC data for this time window was
then plotted on a 2D scalp topography representation for
better visualization with the topoplot.m function in MATLAB’s
EEGLAB toolbox. In addition to the ISC data, the average
activity across subjects during the peak ISC window, i.e., 8th
time window, was plotted in a similar manner to determine peak
activity electrode clusters for further analysis. The topography
plots revealed the midline centro-parietal region electrodes (Cz,
CPz, Pz, POz) had highest ISC values as well as neural activity.
Peak ISC and neural activity were compared across frequency
bands using within-subjects repeated measures analysis of
variance (rm-ANOVA) with the Greenhouse–Geisser correction
applied to adjust for lack of sphericity.

Source-localized analysis

We performed cortical source localization to map the
underlying neural source activations using the block-sparse
Bayesian learning (BSBL-2S) algorithm (Ojeda et al., 2018,
2021). This is a two-step algorithm in which the first-step
is equivalent to low-resolution electromagnetic tomography
(LORETA) (Pascual-Marqui et al., 1994). LORETA estimates
sources subject to smoothness constraints, i.e., nearby sources

tend to be co-activated, which may produce source estimates
with a high number of false positives that are not biologically
plausible. To guard against this, BSBL-2S applies sparsity
constraints in the second step wherein blocks of irrelevant
sources are pruned. This data-driven sparsity constraint of the
Sparse Bayesian Learning (SBL) method reduces the effective
number of sources considered at any given time as a solution,
thereby reducing the ill-posed nature of the inverse mapping
(Ojeda et al., 2018, 2021). In other words, one can either
increase the number of channels used to solve the ill-posed
inverse problem or impose more aggressive constraints on the
solution to converge on the source model when channel density
is low/moderate; 24 channels in this case. The two-stage SBL
has been benchmarked to produce evidence-optimized inverse
source models at 0.95 AUC relative to the ground truth, while
without the second stage < 0.9 AUC is obtained (Ojeda et al.,
2018, 2021). Prior research also provides support that sparse
source imaging constraints can be soundly applied to low
channel density data (Ding and He, 2008; Stopczynski et al.,
2014), and we have also shown that cortical source mapping with
this method has high test-retest reliability with Cronbach’s alpha
of 0.77 (Balasubramani et al., 2021).

Prior to source analysis, EEG data were specifically filtered
in theta (4–8 Hz), alpha (8–12 Hz), and beta (15–30 Hz) bands
and separately source localized in each of the three frequency
bands to estimate their cortical ROI source signals. Using BSBL-
2S, the 24-channel frequency band specific data were mapped
onto 68 cortical brain regions as defined by the Desikan-Killiany
(DK) atlas (Desikan et al., 2006) with the Colin-27 head model
(Holmes et al., 1998). For this, the source model included 8,003
dipoles that were then parcellated into the DK atlas 68 cortical
regions by averaging the magnitudes of the dipole sources in
the same cortical region (Ojeda et al., 2018, 2021). The signal
envelope was calculated to obtain the source spectral amplitude

TABLE 1 Summary of participant demographics and mental health
symptoms self-reported by healthy study subjects.

Demographics

Age (years, mean ± std) 39.80 ± 22.65

Gender n (%) –

Male 59 (34.4%)

Female 103 (63.6%)

Ethnicity n (%) –

Caucasian 95 (58.6%)

Black/African American 3 (1.9%)

Asian 40 (24.7%)

Native American 2 (1.2%)

More than one ethnicity 14 (8.6%)

Other 8 (4.9%)

Anxiety (mean ± std) 4.11 ± 4.48

Depression (mean ± std) 3.78 ± 4.20

Anxiety and depression were self-reported on the GAD7 and PHQ9 scales, respectively.
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FIGURE 1

(A) Screenshots representative of 10 time windows from the film. The red border indicates the peak 8th time window. (B) Heat map of the
inter-subject correlation (ISC) values per electrode and time window across three frequency bands; peak ISC was observed in the 8th time
window. Cells with “+” indicate FDR-corrected p < 0.05 significance relative to null.

of each brain region across time in each subject. Artifacts from
external factors such as jaw or eye movement that may remain in
source space require an alternate approach for outlier rejection
beyond 5 SD; for these, we employed the Grubbs statistical test
to iteratively remove outliers and replace them using a spline
interpolation—an option available within the MATLAB isoutlier
function. ISC was performed on the cleaned subject source
data in all ROIs and the average ISC across subjects in peak
time window 8 was plotted on cortical brain maps in the three
frequency bands with one-sample t-test significance testing of
β coefficients performed relative to null; p-values were FDR
corrected across 68 brain regions and three frequency bands.

Neurobehavioral correlations with
mental health

We used Spearman’s correlation to investigate associations
between each subjects’ anxiety (GAD7)/depression (PHQ9)

score and their average ISC value within the peak window
and electrode cluster identified earlier. Spearman’s correlation
analyses were used as these are less sensitive (though not
completely insensitive) to outlier effects (Rousselet and Pernet,
2012). Results were FDR p < 0.05 corrected for multiple
comparisons. Spearman’s rho (ρ) values indicated effect size: 0.1:
small, 0.3: medium, 0.5: large effect size. Age and gender were
also tested as covariates using Spearman’s partial correlations.

Results

Table 1 shows subject demographic and mental health
(anxiety and depression) symptom report data that was available
for 162 of 163 human subject participants. The sample had
about a 2:1 ratio of females to males and a Caucasian majority.
Subjects with anxiety/depression scores > 5 are considered to
have mild symptoms; there were 28.75 and 22.01% subjects with
mild anxiety and mild depression symptoms, respectively.
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Figure 1 shows brief screenshots of the short film where each
screenshot is meant to capture the scene of each particular 23 s
time window. Below it are heatmaps of the ISC values across
the film’s 10 time windows, electrodes, and frequency bands.
Repeated measures ANOVA resulted in F(9,1.2E5) = 32.9,
p < 1.3E-36 after Greenhouse–Geisser correlation for sphericity.
Post-hoc Tukey’s test revealed that peak window 8 was
significantly different than all other windows (p < 0.0002).
Table 2 provides a scene description by time window, and the
potential emotion that may be evoked when watching the scene.

From the ISC heatmaps, we observed that highest average
inter-subject correlation across electrodes was found during
time window 8 (highlighted in red in Figure 1 scene panel),
which coincided with the permanent onset of emotional relief.
Almost all electrodes showed significant correlation across time,
p < 0.05 FDR-corrected. FDR-correction was performed across
the 24 electrodes and 10 time windows, i.e., correcting for
240 statistical tests, separately for each frequency band. For all
further analyses, we focused on the peak ISC time window 8
which had the highest relief rating by all authors across the 10
scenes.

Figure 2 shows the scalp topography of the peak time
window 8 ISC, showing clear focality in the midline centro-
parietal electrodes in all theta, alpha and beta frequency bands.
The B panel shows the corresponding average neural activity
during the same time window, which interestingly showed
lateral but not central maxima, suggesting ISC magnitude was
not a simple function of activity magnitude. The theta frequency
band appeared by eye to have the highest magnitude ISC values
compared to the other frequency bands; hence, we statistically
analyzed this. The bar graphs in the right panel quantify and
compare the magnitude of ISC (A) and activity (B) across
frequency bands in the peak (Cz, CPz, Pz, and POz) electrodes
(within-subjects rm-ANOVA across frequency bands, ISC: F(2,
46) = 45.42, p = 1.95E-7, average activity: F(2, 46) = 22.52,
p = 4.1E-5). ISC was largest for the theta frequency band
compared to both other frequencies, and alpha showed higher
ISC than beta frequency bands.

Figure 3 shows the neurobehavioral correlations between
the peak ISC (within peak time window eight and peak midline
centro-parietal channels) and subjects’ mental health scores.
All correlations were FDR-corrected for multiple comparisons.
Neurobehavioral correlations with anxiety in the alpha and
beta band showed a significant inverse relationship [alpha
band rho (ρ) = –0.244, p = 0.012; beta band ρ = –
0.221, p = 0.015]; correlation with anxiety in the theta band
was not significant (theta band ρ = –0.115, p = 0.179).
Neurobehavioral correlations were anxiety specific and did
not achieve FDR-corrected significance with depression scores
in our healthy sample (p > 0.05). Age and gender were
not significant covariates of these ISC-anxiety neurobehavioral
relationships (Spearman partial correlations, alpha ISC vs. age
ρ = –0.073, p = 0.361; vs. gender ρ = –0.123, p = 0.123;

TABLE 2 Description of the 10 scene segments and potential evoked
emotional responses as keyed by the authors.

Window #
(Seconds)

Scene Evoked
response

1 (0–23) Charlie Chaplin (CC) is
in a cage with a sleeping
lion

C(6.3), F(6)

2 (23–46) CC waves a handkerchief
to try and get help

S(6)

3 (46–69) CC crawls through a hole
where he is unknowingly
close to a tiger

F(7), A(6)

4 (69–92) There is a dog jumping
and barking at the cage
with the sleeping lion

S(4.6), AG(4.3),
F(3), H(3)

5 (92–115) A woman approaches the
cage and subsequently
passes out

AG(4), S(3),
H(3),

6 (115–138) The lion wakes up and
approaches CC

F(8)

7 (138–161) The lion walks away,
rolls over onto his back,
and goes to sleep

R(5.3), H(3.7),
S(3)

8 (161–184) The woman wakes up
and opens the cage door;
CC showcases a sense of
relief

R(8.7)

9 (184–207) CC runs out of the cage
and up a flagpole to get
away from the lion’s cage

H(7.3), F(3.3),
S(3), A(3)

10 (207–230) Film ends with CC
taking a bow

R(6), H(5.3)

Emotion key: F, fear; A, anxiety; S, Stress; R, relief; AG, anger; C, confusion; H, humor.
The number in parentheses is the average intensity score given by the authors on a 10
point scale (Cronbach’s alpha = 0.704).

beta ISC vs. age ρ = 0.017, p = 0.831; vs. gender ρ = –
0.129, p = 0.105; although age and anxiety were significantly
inversely related in these partial correlations: ρ = –0.33,
p < 0.0001, anxiety and gender were not: ρ = 0.08,
p = 0.3).

Finally, Figure 4 shows the EEG cortical source
reconstruction of the peak window ISC data, mapped onto the
68 ROI brain regions as per the Desikan-Killiany atlas. Similar
to Figure 3, theta band ISC had larger magnitude values than
alpha and beta band with greatest intensity in the right superior
parietal cortex across all bands.

Discussion

Inter-subject correlation of physiological data can provide
useful proof of how similarly humans process stimulus
information (Hasson et al., 2004). Several neuroimaging studies
using fMRI during video watching have shown evidence of ISC
in sensory, multisensory and limbic brain regions (Jääskeläinen
et al., 2008; Nummenmaa et al., 2012; Di and Biswal, 2020).
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FIGURE 2

Scalp topography maps of peak ISC window 8 across three frequency bands. (A) ISC values and (B) average neural activity on the scalp. The bar
graph panel on the right plots the mean ± std peak time window ISC and neural activity values at midline centro-parietal electrodes across the
three frequency bands. ****p < 0.001.

FIGURE 3

Neurobehavioral correlations between peak ISC and mental health symptoms of anxiety and depression, across the three frequency bands.

Recent studies have utilized EEG for generating ISC during
classroom video watching (Poulsen et al., 2017) and to detect
stress/anxiety states from EEG features during video watching
(Giannakakis et al., 2015). Here, we extend this literature to
ask whether ISC during naturalistic video watching especially

in a large subject sample relates to mental health. We find
that ISC, as a physiological marker of inter-subject neural
processing similarity during passive viewing, has a significant
negative relationship with anxiety, showing stronger correlation
in subjects without anxiety than with anxiety.
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FIGURE 4

Significant brain regions of ISC during the peak time window across the three frequency bands.

We observed that peak ISC was obtained in EEG signals
when passively viewing a particular scene segment (161–184 s)
in a video clip of Charlie Chaplin’s (CC) film “Lion Cage” that
was 230 s in total duration. This 8th time window is observed
to coincide with the possible onset of strongest emotional relief
in the film when CC is let out of the dangerous lion’s cage.
This period contrasts to the rest of the film up to this point,
potentially transitioning viewers to a more relaxed state of
mind. As previous research has suggested, we would expect
to see high ISC with low variation across subjects as they all
go through the same emotional response (Jääskeläinen et al.,
2008). Interestingly, the magnitude of peak ISC in the alpha/beta
frequency bands at the centro-parietal electrodes was inversely
related to subjects’ self-reported anxiety, i.e., more anxious
individuals reporting greater anxiety had lower ISC scores.
Greater activity in the alpha and beta bands have been related
to anxiety and stress (Knyazev et al., 2004; Price and Budzynshi,
2009; Abhang et al., 2016). More pertinently, it is possible that
individuals with higher levels of anxiety are less distinct during
this epoch when, in general, there is a sense of “relief.” Higher
theta activity is also expected with the presentation of visual
stimuli as well as high facial perception, which is also observed
in our analysis (Busch et al., 2009; Dravida et al., 2019). We
further verified that these neurobehavioral correlations were not
affected by age or gender. We also confirmed that this peak
ISC localized to the superior parietal brain region, which is a
well-known component of the attentional network (Corbetta
and Shulman, 2002; Dosenbach et al., 2007). Meta-analyses have
identified this region as important for attention and emotion,
coding for emotional dysregulation especially in mood and
anxiety disorders (Compton et al., 2003; Picó-Pérez et al., 2017).
ISC-anxiety correlations being most significant in the alpha and
beta bands suggests local region-specific modulation selective
for attention and emotion processing (Ray and Cole, 1985;
Klimesch et al., 1998; Schutter et al., 2001; Güntekin and Basar,
2007; Güntekin and Başar, 2010; Peylo et al., 2021). Alpha
activity in parietal cortex has been postulated to select visual
information for attentive processing (Peylo et al., 2021), and

the parietal alpha ISC-anxiety correlations may suggest that
individuals with greater anxiety may not process relief, the
positive emotion in the peak time window, as readily as those
with lower anxiety scores.

Limitations of this research include use of a moderate
density electrode system, which may lead to more approximate
source localization; these results could be verified by high
density EEG mapping or other neuroimaging in future research.
Furthermore, the lack of having multiple videos (and/or
scrambled videos) as a control stimulus, may complicate the
interpretation of our results. With regards to neural signal
processing, we used a bandpass filtering approach to extract
frequency band information. However, as noted in Widmann
et al. (2015), separate low and high pass filtering may be
better for attenuating the signals below the cutoff frequency
particularly for the high-pass filters. Thus, it is possible that
our data within theta, alpha and beta frequencies have some
degree of contamination from outside the filter band. This
contamination effect may to some extent explain why we
observe similar findings in the alpha and beta frequencies,
in particular, similar correlations with anxiety. Importantly,
though, the theta and alpha frequency bands are both narrower
and closer together and thus more likely to show cross-
band contamination, and we found that, while alpha-frequency
electrodes significantly correlated with symptoms such as for
depression (r = –0.177), theta frequency band signals did
not (r = 0.003), suggesting some frequency band specificity.
An additional limitation of this study is that our symptom
correlation analysis relied purely on subjective reporting on
symptoms scales of anxiety and depression. We did not
have a systematic way to interrogate or otherwise clinically
verify whether these scores were an accurate depiction of an
individual’s actual level of anxiety or depression, although
notably the prevalence of symptoms in this study reflects the
prevalence of anxiety/depression in a mixed community and
college sample (Kessler et al., 2012; Li et al., 2022). That
symptom scales may have been misreported, or there may
simply have been some misunderstanding as individuals were
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responding, is a small possibility. However, we believe this
type of misreporting/error would have been more likely to
reduce rather than increase any neurobehavioral correlations
observed, and is a general challenge with many neurobehavioral
correlation studies. As such, results also need to be extended
to individuals with clinically diagnosed anxiety to investigate if
these relationships hold true in more anxious individuals in a
clinical population.

In conclusion, the neurophysiological ISC measures may
parallel the mirrored human emotions elicited during video
watching. Being able to properly understand and feel similar
emotions as others around us, i.e., empathy, is an important
trait possessed by healthy humans. Yet, research has shown that
individuals with anxiety, especially social anxiety, have difficulty
understanding positive emotions of others as readily as healthy
controls (Morrison et al., 2016). Other research suggests that
empathy may be intact in social anxiety but that there may be
deficits in prosocial action (Auyeung and Alden, 2016, 2020),
and that links between anxiety and empathy are not fully clear
(Pittelkow et al., 2021). Our physiological analysis suggests
that aspects of parietal attention, especially during a period of
positive emotion, i.e., relief from prior stress during emotional
video viewing, may not occur as readily in more anxious
individuals. Furthermore, we show that these neurobehavioral
relationships hold true for continuous data that is not event-
locked to specific stimuli.
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