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More than 85% of stroke survivors su�er from di�erent degrees of disability for the

rest of their lives. They will require support that can vary from occasional to full

time assistance. These conditions are also associated to an enormous economic

impact for their families and health care systems. Current rehabilitation treatments

have limited e�cacy and their long-term e�ect is controversial. Here we review

di�erent challenges related to the design and development of neural interfaces for

rehabilitative purposes. We analyze current bibliographic evidence of the e�ect of

neuro-feedback in functional motor rehabilitation of stroke patients. We highlight

the potential of these systems to reconnect brain and muscles. We also describe

all aspects that should be taken into account to restore motor control. Our aim

with this work is to help researchers designing interfaces that demonstrate and

validate neuromodulation strategies to enforce a contingent and functional neural

linkage between the central and the peripheral nervous system. We thus give clues

to design systems that can improve or/and re-activate neuroplastic mechanisms

and open a new recovery window for stroke patients.
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1. Introduction

Stroke is the leading cause of long-term disability worldwide. More than 85% of patients

affected by a cerebrovascular accident suffer from functional deficits in motor control

as consequence of the injury (Langhorne et al., 2011). Both the initial and long-term

treatments for these conditions result in a substantial economic burden on the families

and the healthcare system (Kolominsky-Rabas et al., 2006; Lee et al., 2010; Feigin et al.,

2016). Within traditional rehabilitation strategies, physical therapy is the overall accepted

and standard method of rehabilitation for stroke patients. An example of physical therapy

includes movement constraint therapy (MCT; Taub et al., 1999), which consists of the

physical restraint of the healthy limb, forcing the patient to use the paretic arm/hand.

Although MCT has shown positive effects in chronic stroke with some residual movement

along with othermotor disorders (Taub et al., 1999), patients without residual movement one

year after stroke did not display an improvement after MCT (Wolf et al., 2006). Thus, this

approach might not be suitable for stroke patients with low Fugl-Meyer Assessment (FMA)

scores and limited residual hand movement (Birbaumer et al., 2008). Furthermore, although

intensive rehabilitation has recently shown recovery potential in chronic stroke (Ward

et al., 2019), other traditional rehabilitation treatments did not show significant efficacy for
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functional recovery over the long-term (Kwakkel et al., 2004;

Bell et al., 2015; Wu et al., 2016). Alternative therapies including

peripheral actuators such as robotic exoskeletons (Lo et al., 2010) or

electrical stimulators (Hsu et al., 2012) have shown great potential

in the field of motor rehabilitation as they permit a repeatable and

intensive proprioceptive stimulation of paralyzed limbs. However,

bottom-up treatments using these technologies (i.e., passive robot-

aided movements or open loop stimulation paradigms) do not

necessarily contribute to regain motor function in severely affected

patients (Prange et al., 2009) since explicit voluntary and contingent

motor intention is not necessarily present during movement (Song

et al., 2013).

These severely affected and chronic patients have, therefore,

very limited treatment options and often remain severely disabled

on the long-term (Byblow et al., 2015; Winters et al., 2015).

Due to the aforementioned limitations of standard therapies,

modern rehabilitation protocols for stroke have focused on the

reactivation of the top-down pathways to restore the volley of

voluntary contractions to the peripheral nervous system (Ramos-

Murguialday et al., 2013). These therapies aim to assist the re-

organization of neural circuits still intact following stroke by

leveraging neuroplastic properties of the adult central nervous

system, in order to convalesce motor function (Belda-Lois et al.,

2011). These novel therapies are based on the use of neural

interfaces that enable patients to employ their neural activity

for controlling various rehabilitative neuroprostheses like robots

or electrical stimulation devices and stimulate their peripheral

nervous system in a contingent manner. Consequently, patients

can receive feedback regarding their actual motor intentions or

potentially adopted ineffective compensatory strategies, based on

their remaining neurophysiological activity. Therefore, assuming

that certain neural networks and pathways remain unaffected by the

damaging effects of a stroke and can still transmit sensory signals

to the brain and residual efferent motor commands, synapse-

based learning facilitated by neural interfaces could assist in

the restoration or development of alternative functional circuits

following a stroke.

Therefore, our view for effective neural-interface-based stroke

rehabilitation is the development of new top-down protocols based

on reinforcing the functional link between the brain and the

muscles. We focus on neural interfaces coupled with peripheral

stimulation systems that provide naturalistic feedback to the

patient. In order to describe our view on the topic, the remaining of

the manuscript is divided into the description of neural interfaces

(NI) with a major focus on brain-computer interfaces, a summary

of some of the difficulties faced by researchers when combining

neurophysiological activity sensing and peripheral stimulation

technologies within a closed-loop system, some important aspects

that should be considered when designing a NI for motor recovery

after stroke and some scientific evidence correlating the use of NI

to improvement of motor function and rehabilitation outcome.

Finally, we provide a short discussion and conclusions.

2. Neural interfaces

Neural interfaces translate neural signals recorded from

the central and/or peripheral nervous system into commands

to allow users to control, for example, different types of

rehabilitative feedback systems. Examples of the latter are

robots or electrical stimulation devices that are used to

activate paralyzed muscles. We consider these apparatuses

“peripheral actuators” because they stimulate the peripheral

nervous system. Other examples are brain stimulation devices

(e.g., transcranial Magnetic or deep brain stimulation). These

“central actuators” activate the perilesional or contralesional

brain regions directly and could be defined as nervous

system actuators.

As a summary of the previous concepts, Figure 1 depicts

an illustration of a neural interface to perform upper-limb

motor rehabilitation.

Reading out the neural data in real time and using it (e.g.,

decoding motor intention) to produce an output signal that

controls a nervous system actuator by bypassing the lesion is
hypothesized to close the loop within the nervous system. In
our case, it closes the loop between the movement intention

and that exact feedback provided through the peripheral system.
Closed-loop neural control systems allow interfacing with the
nervous system by recording neural signals and simultaneously
providing some type of neuro-feedback and/or stimulation

to the nervous system. The motivation behind closed-loop
approaches lies in the hypothesis that contingent proprioceptive
feedback associated with the movement intention/attempt

might activate plasticity mechanisms and strengthen the neural

circuits, thereby promoting motor recovery. Thus, this interactive

engagement with the nervous system can leverage Hebbian

plasticity mechanisms inducing both long-term and short-

term plastic changes (Fetz, 1969, 2007; Birbaumer, 1999) and

ultimately lead to functional rehabilitation (Ramos-Murguialday

et al., 2013). In the absence of any residual peripheral activity

(i.e., muscle activity), the attempted/imagined movement

of an affected limb in severely paralyzed patients can be

decoded from brain signals. These signals provide an objective

measurement to detect when and how patients try to move a

paralized limb.

Indeed, brain activity of stroke patients has been employed

to bypass the brain lesion and reinforce perilesional areas with

the goal of reconnecting or optimizing the connection between

brain and muscles. In this way, stroke patients can use their brain

activity to control a virtual hand or different types of rehabilitative

body actuators. In this last case, the precise association of cortical

activation and peripheral feedback can boost neuroplasticity by

re-establishing contingency between ipsilesional cortical activities,

which is related to motor planning of attempted execution,

and the proprioceptive feedback. The working hypothesis is

that Brain-computer (BCIs) or Brain-machine Interfaces (BMIs)

might strengthen the ipsilesional sensorimotor loop and foster

neuroplasticity that facilitates motor recovery by triggering

Heabbian plasticity (Birbaumer and Cohen, 2007; Jackson and

Zimmermann, 2012; López-Larraz et al., 2018c). BCIs/BMIs record

and process brain activity to obtain patterns that are subsequently

decoded and used, for example, as a control signal in an online

manner. In this work, and in relation to a tendency in the

community to distinguish between both terms Wolpaw et al.

(2020), technology using non-invasive brain signals is termed BCIs

and invasive systems are BMIs.
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FIGURE 1

Visual summary of di�erent neural control modalities coupled with di�erent peripheral actuators proposed for upper-limb rehabilitation.

Finally, the rehabilitation of patients with total or partial motor

paralysis of one or more limbs by means of NIs has attracted

considerable attention (Mateo et al., 2015; Pichiorri et al., 2015;

Cervera et al., 2018; López-Larraz et al., 2018c; Mrachacz-Kersting

et al., 2021) and these systems are the focus of intensive research

due to their capacity to connect the human brain with external

devices able to stimulate the nervous system in different ways

(Blankertz et al., 2010; Millán et al., 2010; Chaudhary et al., 2016).

3. Design of brain-based neural
interfaces for motor rehabilitation

Neural interface systems are usually composed of several

modules, including the acquisition and processing of neural

signals, a feature extraction and a classification/decoding module.

Extracting features is a very important step in these systems

because they contain characteristics of the brain activity that are

informative for the interfaces and allow their classification. Also,

how neurofeedback is provided to the user plays a crucial role.

In the following we consider each of them in the framework of

motor rehabilitation.

3.1. Dealing with noisy brain signals

The presence of artifacts and noise in brain signals is a

main issue in EEG and a recurring research topic (Klass, 1995;

Urigüen and Garcia-Zapirain, 2015). In signals acquired from

stroke patients, possible noise sources are eye, head, or body

movements during the attempt of a movement, muscular activity

of the neck and cranial muscles, and also involuntary movements

non-related to the task (López-Larraz et al., 2018a). Artifact

removal is important to ensure that the features used are directly

related to voluntarymotor intentions because, although researchers

always try to minimize the amount of artifacts during the

recording, it is hard for patients to perform the task avoiding

body and eye movements. In presence of artifacts, classifiers might

artificially boost movement decoding accuracy due to noise related

information (López-Larraz et al., 2018a). This implies the risk that

patients might learn to control the BCI/BMI device generating

artifactual signals. In fact, it has been shown that eye and head

movements might pollute brain signals of patients to the extent

that EEGmotor correlates might be solely based on artifacts (Bibián

et al., 2021).

There are two main approaches to deal with artifacts in closed

loop systems: automatic trial rejection and/or algorithmic artifact

correction (Winkler et al., 2011; Daly et al., 2014). Trial rejection

is limited to training datasets containing a sufficient amount of

data (Ofner et al., 2017). When trials cannot be discarded, signal

correction is usually employed. Depending on the characteristics of

the noise, different approaches can be considered.

For example, when artifacts are located in a frequency range

other than the band conveying discriminative information related

to motor attempt (i.e., alpha o beta bands), they can be easily

removed using band-pass filters. For those cases in which the

frequency band of the artifact overlaps with our band of interest,

several denoising methods have been proposed, such as ICA or

linear regression-based algorithms (Schlögl et al., 2007; Winkler

et al., 2011; Daly et al., 2014). However, linear regression based

methods are not able to remove non-linear artifacts.

Removing non-linear noise is important for NIs for

motor rehabilitation because they are often coupled with

neurostimulation techniques such as functional electrical

Frontiers inHumanNeuroscience 03 frontiersin.org

https://doi.org/10.3389/fnhum.2023.1070404
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Vidaurre et al. 10.3389/fnhum.2023.1070404

stimulation (FES) or transcranial magnetic stimulation (TMS;

Hoffmann et al., 2011; Vidaurre et al., 2013, 2019a, 2021; Rogasch

et al., 2014, 2017; Iturrate et al., 2018; Kohli and Casson, 2020;

Insausti-Delgado et al., 2021). Artifacts of short duration and

high amplitude such as electrical stimulation pulses can be

removed using median filters without substantially affecting

the signals (Insausti-Delgado et al., 2021). However, recordings

of brain activity are easily corrupted by electromagnetic fields

that negatively affect the signal, masking the activity of interest

(Walter et al., 2012). As aforementioned, this noise causes a biased

closed-loop control that could cause maladaptive motor learning.

Recently, Vidaurre et al. (2021) showed that eliminating spatial

components at specific frequency bands could also reduce noise

in other bands, in particular at the motor imagery frequency

range. More recently, Chen et al. (2022) developed an algorithm to

remove harmonic noise in different frequency components.

Regarding invasive recording technologies, such as

electrocorticography (ECoG) and intracortically implanted

microelectrodes, these are more robust to ocular (Ball et al.,

2009) and EMG relaled artifacts (Freeman et al., 2003). However,

they can also be corrupted by noise. Again, methods like narrow

band-pass filters, ICA or stationary wavelet transform have been

explored to identify and remove artifacts (Islam et al., 2014).

Unfortunately, artifacts are usually difficult to identify given the

highly non-stationary nature of these neural signals (Kaneko et al.,

2007).

3.2. Voluntary and involuntary
compensatory movement correlates

Although somehow related to signal noise, compensatory

movements cannot be observed as such in the brain signals but

have a huge influence in NIs for stroke rehabilitation. After a

stroke, neural plasticity mechanisms activate to compensate the

loss of motor function (Takeuchi and Izumi, 2012). Adopted neural

strategies might contribute to motor recovery while others might

actually limit it (Takeuchi et al., 2007). Compensatory movements

are common after a stroke and brain patterns associated to them

should be identified and isolated to ensure correct BMI/BCI

feedback to the patient (Cirstea and Levin, 2000). The correlations

between cortical activity and kinematics of joints that should not be

involved in the intended movement were investigated and defined

in Spüler et al. (2014). NIs for stroke motor rehabilitation should

exclusively train the reinforcement of non-pathological neural

patterns. Therefore, “healthy/functional” biomarkers should be

used as biotargets. The usual example would be the reinforcement

of ipsilesional activity to re-balance brain laterality (see cf. Ray et al.,

2020).

3.3. Feature extraction module

Feature extraction is a crucial step in the design of BCIs/BMIs

that allows extracting relevant information from brain activity

(Blankertz et al., 2007; Krusienski et al., 2011; Bashashati et al., 2015;

Ramos-Murguialday and Birbaumer, 2015).

The most prominent effects measured in non-invasive

signals (electro or magnetoencephalography) are related to the

modulation of power in different frequency bands. Regarding

movement intention, these changes are termed event-related

de/synchronization of sensorimotor rhythms (ERD/ERS;

Pfurtscheller and Da Silva, 1999; Pfurtscheller and Neuper,

2006; Scherer and Vidaurre, 2018; Yao et al., 2018a). In fact,

ERD/ERS in sensorimotor rhythms (SMR) were the first exploited

features in EEG-based BCIs designed for stroke rehabilitation

(Buch et al., 2008).

Regarding the extraction of features from brain signals of

stroke patients, in general two distinct philosophies have been

pursued. On the one hand, BCIs for motor rehabilitation of

stroke patients might use a low number of electrodes located over

the sensorimotor cortex in the ipsilesional hemisphere. The idea

behind this approach is to minimize the time necessary to perform

rehabilitation sessions by employing easy to use and fast to setup

configurations of electrodes and other hardware and software.

In BCIs, performance improvement is often achieved with the

application of spatial filters that reduce volume conduction artifacts

inherent to EEG data (van den Broek et al., 1998). Commonly used

non-data driven spatial filters are bipolar, laplacian or common

average references. These assign specific weights to the electrodes

depending on their location (Ramoser et al., 2000; Tsuchimoto

et al., 2021) and can be used with a low number of electrodes.

These simpler BCIs were used by chronic stroke patients with

severe paresis. The patients were able to control a robotic orthosis

fixed to the paretic limb using brain signals and decreased the

power of the sensorimotor rhythm over the ipsilesional motor

cortex measured with EEG (Ramos-Murguialday et al., 2009, 2012,

2013). Remarkably, functional motor improvements were stable in

time as confirmed in a follow up measurement 6 months after the

intervention (Ramos-Murguialday et al., 2019a). Patients showed

a consistent pattern of brain reorganization and recovery. Theses

findings have been also confirmed by other independent controlled

studies (Ang et al., 2014; Pichiorri et al., 2015; Biasiucci et al., 2018;

Cervera et al., 2018; López-Larraz et al., 2018c).

The second approach consists on searching the optimal

algorithms that increase decoding accuracy to improve control by

recording many electrodes. Acquiring signals from many sensors

allows the use of data-driven approaches (Millán et al., 2010;

Sannelli et al., 2011, 2016, 2019; Pedrocchi et al., 2013; Vidaurre

et al., 2013, 2016, 2019a, 2021). Data-driven means that spatial

filters are learnt from data depending on their objective function

(Rivet et al., 2009; Pascual et al., 2011; Haufe et al., 2014a;

Nakanishi et al., 2017; Jorajuría et al., 2022) increasing thereby the

discrimination and signal to noise ratio of the features (Ang et al.,

2014, 2015; Ono et al., 2014; Antelis et al., 2016).

Within those techniques, there are supervised and

unsupervised algorithms, depending whether or not they use

information from the type of task. Regarding power changes, the

most prominent supervised data-driven method to obtain spatial

filters in BCI is usually termed Common Spatial Pattern (CSP)

analysis (Ramoser et al., 2000; Blankertz et al., 2007). In short, it

learns the weights of the electrodes such that the power difference
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between classes is maximized. This is optimal for exploiting

ERD/ERS effects on EEG. Thus, it is a very successful and standard

approach. Furthermore, the patterns obtained can be interpreted

in terms of networks of sources, because they are in line with the

linear model of the EEG (Haufe et al., 2014b). Hence, it is possible

to locate them using methods such a scMUSIC or eLORETA

(Pascual-Marqui et al., 2011; Shahbazi et al., 2015) and study

from which sources discriminative brain activity arises. Thus, they

can be helpful to determine the neural patterns of interest for

closed-loop neurofeedback.

However, when the number of recorded electrodes is high, CSP

has the drawback that high dimensional data covariance matrices

must be estimated and often this estimation suffers from a strong

bias (Blankertz et al., 2011). This is specially the case when the

number of EEG samples acquired is low, which is common in

calibration sessions with stroke patients in the clinical practice.

Thus, many modifications have been proposed to improve their

performance (Wang and Zheng, 2008; Kang et al., 2009; Lotte and

Guan, 2010; Lu et al., 2010; Wang et al., 2011; Samek et al., 2012;

Kawanabe et al., 2014). Another disadvantage of CSP filters is that

they in principle need a relatively high number of electrodes to

be computed, but these are not always available when working

with patients data. This is because many electrodes imply a longer

setup time. However, modifications have also been developed to

use CSP with lower number of electrodes (Sannelli et al., 2016).

Nevertheless it is a very robust technique that has been used

in stroke rehabilitation. For example, it has been shown that

using Common Spatial Patterns Analysis improves performance in

comparison to employing only three electrodes over the ipsilesional

motor cortex of severely paralyzed stroke patients (López-Larraz

et al., 2017).

Other approaches related to power differences are based on

Riemannian geometry due to the extensive use of covariance

matrices, or in general, (semi-)positive definite matrices in

BCI research. In the context of classification, it consists on

a multidimensional extension of the unidimensional variance

thresholding, as explained in the review (Congedo et al., 2017).

Perhaps, the major disadvantage of this approach in the context of

clinical applications is the lack of neurophysiological interpretation

that otherwise spatial patterns can offer.

Features different from power changes in EEG have also

been employed. For example, amplitude modulations that can be

observed at very low frequencies. They are usually referred to as

movement related slow cortical potentials (MRCP; Pfurtscheller

and Aranibar, 1979). MRCP modulations have been measured in

stroke patients, including persons suffering from severe paralysis

(Niazi et al., 2011; Jiang et al., 2015; Yilmaz et al., 2015; Pereira et al.,

2017; López-Larraz et al., 2018a).

In the case of invasive techniques to measure brain activity,

ECoG and local field potentials (LFP) acquired from intracortical

recordings have a broader spectral band (above 40 Hz, Staba et al.,

2002) that can provide a greater information about arm and hand

movement classification (Anderson et al., 2012; Pistohl et al., 2012;

Yanagisawa et al., 2012). Although the major movement-related

information might be encoded in high frequency bands of ECoG

and LFP signals, low frequency components may also serve as

a valid feature for online closed loop control (Milekovic et al.,

2012). A wise selection of most informative spectral power features

(e.g., selected via a screening task; Leuthardt et al., 2004) and the

combination of features extracted from different frequency bands

might be the most optimal solution for improving invasive BMI

control accuracy (Milekovic et al., 2012). Additionally, motor-

cortical single (SUA) and multi-unit (MUA) spiking activity have

been shown to encode both upper limb speed and direction

information (Moran and Schwartz, 1999). Usually, models based

on linear regression-like algorithms have been used for decoding

upper limb motor intentions directly from the spiking firing

rates of neuronal units or ensembles for controlling virtual arm

models (Ajiboye et al., 2017), high-dimensional robotic arms

(Hochberg et al., 2012; Collinger et al., 2013) or functional electrical

stimulation (Bouton et al., 2016; Ajiboye et al., 2017) systems in

individuals with intact cortical structures and more recently in

stroke patients (Ramos-Murguialday et al., 2019b). For a review on

this topic, please refer to Waldert et al. (2009).

3.4. Classification/decoding module

Although many classifiers are suitable for BCI applications

(Lotte et al., 2018), BCI systems are still inefficient (Blankertz and

Vidaurre, 2009; Vidaurre et al., 2011a,b; Sannelli et al., 2019). This

problem could not be completely overcome yet (Nierhaus et al.,

2021). And it is even more so in the context of rehabilitation and

other clinical applications (Birbaumer et al., 2009; Lee et al., 2019).

Modern neurofeedback systems include for example regression

paradigms (Wu et al., 2017; Vidaurre et al., 2022), but nowadays,

clinical settings call for simple classifiers such as linear models.

These uncomplex models offer two main advantages: first, they

usually need less data to be trained. This process is usually called

calibration, a bottleneck in clinical BCIs (Lotte, 2015) because it is

time consuming and a source of frustration for the patient; second,

they are easier to interpret (Müller et al., 2017). Linear classifiers

can be as simple as thresholds that are used to positively reward

the patient when they produce the discriminative brain activity

(Ramos-Murguialday et al., 2013; Pichiorri et al., 2015).

An important aspect that should be considered in NIs for

stroke motor rehabilitation, is that neurostimulation is often used,

and it interacts with the human body inducing the excitation

of different nervous systems (Nitsche and Paulus, 2000; Ridding

et al., 2001; Peinemann et al., 2004; Zrenner et al., 2018). The

excitatory mechanisms affecting the neurophysiological signal that

controls the closed-loop system might change the characteristics

of the signals of interest. Therefore, classifiers adjusted by

neurophysiological activity during a BCI/BMI intervention have

shown to enhance motor performance in many different studies

(Millán et al., 2007; Vidaurre et al., 2007a, 2013, 2019a; Blankertz

and Vidaurre, 2009; Sannelli et al., 2011; Faller et al., 2012; Scherer

et al., 2018; Spüler et al., 2018; Nierhaus et al., 2021).

3.5. Calibration and (co-)adaptation

Reducing or eliminating calibration periods is an active

research topic (Lotte, 2015). A way to reduce calibration recordings

Frontiers inHumanNeuroscience 05 frontiersin.org

https://doi.org/10.3389/fnhum.2023.1070404
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Vidaurre et al. 10.3389/fnhum.2023.1070404

is to employ data from the same subjects in previously recorded

sessions (Vidaurre et al., 2007a), a strategy also tried in patients data

(López-Larraz et al., 2018b). In the same line, in the first decade of

2000 it was shown that adding some data from the current day to

past data to recalibrate the BCI improves performance (Vidaurre

et al., 2007a; Azab et al., 2019), recently this was also tested

in patients data (López-Larraz et al., 2018b). Other approaches

include unsupervised adaptation between sessions (Arvaneh et al.,

2013).

Another way to reduce or even eliminate calibration without

feedback, is to perform online co-adaptation by incorporating

user data to the feature extraction and classification modules trial

by trial. Recently, it was shown in healthy participants that co-

adaptation induces brain activity changes after just one hour of

BCI training (Nierhaus et al., 2021). Previously, co-adaptation also

proofed to be a useful tool (Vidaurre et al., 2005, 2006, 2007b,

2010; Yoon et al., 2009; Llera et al., 2011; Faller et al., 2012;

Wu and Ge, 2013) that can reduce BCI inefficiency (Blankertz

and Vidaurre, 2009; Vidaurre and Blankertz, 2010; Vidaurre

et al., 2011a,b), a concept first introduced in Vidaurre et al.

(2011a).

In the case of BMIs, online co-adaptation has been also

proposed for intracortical recordings. It consists on updating part

of the decoder based on a Kalman Filter using blocks of 1–2 min

of data (Orsborn et al., 2012; Dangi et al., 2013) to adapt the initial

decoder and improve performance.

As mentioned above, such recalibration and adaptation

algorithms could be particularly useful in clinical applications,

where many factors can limit initial performance and thus patient

adherence to the treatment as recently shown in Zhang et al.

(2022). Nevertheless, in clinical applications the level of algorithm

recalibration or adaptation should be critically studied to only

account for the non-stationarities of the neural signals and

maximize the desired neural adaptation toward a theoretically

stable functional map by means of cortical plasticity by the patient.

3.6. Sensory feedback modalities

Multiple sensory modalities are often used to assess the state

of the body in reference to the external environment and are thus

key for normal motor control (Rossetti et al., 1995; Van Beers

et al., 1999; Sober and Sabes, 2005). They can be used as afferent

information to feedback patients their current condition. In this

section we review the aspects that we consider the most important

in the design of neuro-feedback strategies.

3.6.1. Proprioceptive and tactile feedback
The ability to correct errors in real time (part of the error-based

learning) has been found highly dependent on the proprioceptive

system (Gordon et al., 1995). Proprioception is also important for

forming and helping to update a template of appropriate velocity-

based motor commands for successful execution of a motor skill

(Thoroughman and Shadmehr, 1999; Hwang et al., 2006).

Central processing of proprioceptive feedback is necessary for

motor learning. Thus, stroke-related damage to somatosensory

cortical areas, thalamus and/or the associated white matter tracts

would result in impaired continuous motor learning (mainly

affecting efferent pathways). For example, in Vidoni and Boyd

(2008) individuals with chronic stroke of the middle cerebral

artery were recruited and trained to perform a continuous

motor learning task under severely restricted visual feedback.

The aim was to investigate the role of proprioception in motor

learning. Generally, some stroke subjects were able to demonstrate

a behavioral change and thus show learning of the practiced

pattern of continuous movements. Importantly, they found that

proprioception was strongly related to the magnitude of behavioral

change associated with learning. It could then be concluded that

the integrity of the sensory processing system is the main predictor

of the success of motor skill acquisition in stroke rehabilitation.

The most relevant areas were somatosensory cortices, thalamus

and the associated white matter tracts. When these sensory-

associated regions are dysfunctional either due to an ischemic

insult or transiently using TMS, learning is compromised (Della-

Maggiore et al., 2004). If these structures remain intact, they

are available to create representations of behavior through intra-

cortical interaction even if one or more sources of feedback are

disrupted. Most stroke patients exhibit relatively intact afferent

tracts that should be engaged to drive the sensory information of a

movement of the paretic limb to the brain. In this line, the integrity

of somatosensory components of the impaired limb (e.g., skin

mechanoreceptors, muscle spindles, Golgi tendon organs and joint

receptors), responsible for transmission of afferent information,

also conditions the benefits of the rehabilitation.

Consequently, proprioceptive feedback provided by neural

interfaces can play an essential role on the rehabilitative effects,

which directly depend on the remaining afferent pathways. Neural

interfacing systems can act providing a contingent connection

between efferent activation and afferent feedback (via vision or

proprioception; Daly and Wolpaw, 2008; Chaudhary et al., 2016).

And in fact, researchers have shown that somatosensory and

proprioceptive feedback in the scope of NI are essential for motor

control and learning (Ramos-Murguialday et al., 2012).

Furthermore, continuous feedback associated with cortical

activity enhances the control of body actuators and potentiates

instrumental learning, which might also favor Hebbian

neuroplastic mechanisms (Jackson and Zimmermann, 2012;

Ramos-Murguialday et al., 2013; Mrachacz-Kersting et al., 2016).

Indeed, the afferent recruitment of somatosensory components

due to a robotic orthosis or neurostimulators, generates changes in

sensorimotor cortical rhythms of motor areas close to the lesion

(Ramos-Murguialday et al., 2013). These changes are expressed

as down regulation of inhibitory processes that result in cortical

plasticity and reorganization (Golaszewski, 2017). However,

research has shown that the efficacy of neurostimulation-based

therapy crucially depends on delivering the stimulation while the

patient is trying to perform the movement (Barsi et al., 2008).

Although robotic exoskeletons can reproduce the desired trajectory

or movement better, FES can activate muscles electrically, which

are the ultimate output of the neuromotor system. Probably the

simultenous use of orthoses/robots coupled with FES might be the

most successful option, although their effect on brain oscillatory

activity differs (Cho et al., 2023).
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If we focus on using as feedback electrical stimulation to induce

themovement, we know that FES seems (besides the artifact bias) to

improve classification performance regardless whether it is applied

over or below the motor threshold (Vidaurre et al., 2013, 2019a;

Corbet et al., 2018). It also increases functional connectivity of

sensorimotor areas in healthy subjects and in patients where it

additionally relates to a motor deficit decrease (Mottaz et al., 2018;

Vidaurre et al., 2019a).

The neural control of FES has been demonstrated on

individuals with motor disorders (Daly et al., 2009; Young et al.,

2014; Osuagwu et al., 2016; Ajiboye et al., 2017; Ibáñez et al.,

2017; Trincado-Alonso et al., 2018). Further, controlled studies

have been conducted to study if these interventions can overcome

other approaches in stroke patients, such as conventional therapy

(Kim et al., 2016), FES without BCI/BMI (Li et al., 2014; Mukaino

et al., 2014), or FES triggered by a sham BCI/BMI (Biasiucci et al.,

2018). In the four studies, triggering the FES with the movement

intentions decoded with EEG led to higher recovery than the

control interventions. In the latter study they also demonstrated

that moderately-to-severely disabled stroke patients can achieve

clinically relevant improvements and these can last at least 6

months after concluding the therapy (Biasiucci et al., 2018).

Another successful option to activate the sensorimotor afferents

is tactile stimulation. Several works have also shown that it

can improve the accuracy of motor attempt/imagination when

performing BCI experiments. Notable examples are the studies

presented in Yao et al. (2017), Shu et al. (2018), Yao et al. (2018b),

and Zhong et al. (2022), showing the advantage of including tactile

sensation concurrent to the performance of motor tasks.

Our advice to researchers would be that before running

any neurofeedback-based intervention, measuring and reporting

proprioceptive and haptic ability should be considered, as well as

the location of the injury or severity of the insult and its functional

effect on the proprioceptive system. If the sensory afferent pathway

is disabled (inability to process the upcoming sensory information,

which prevents “closing the loop”), afferent assessment might be

an exclusion criterion for participation or at least for categorization

in proprioceptive neurofeedback-based rehabilitative interventions

(López-Larraz et al., 2018c).

3.6.2. Immersive and multisensory feedback
Active involvement of patients during the rehabilitation

procedure is also key to improved training results (Blank et al.,

2014). Thus, rehabilitation schemes that involve multisensory

feedback might have the potential to improve current outcomes.

Examples of those are systems combining robot-driven actuations

and electric or magnetic stimulation, immersive visual and auditory

feedback by, e.g., embedding the training in a virtual world, or

tactile stimulation (Hu et al., 2015; Resquín et al., 2016; Straudi

et al., 2016; Nam et al., 2017; Zhong et al., 2022).

Regarding immersive feedback, growing evidence shows that

virtual reality (VR) and interactive procedures might be very

beneficial for stroke rehabilitation (Yates et al., 2016; Laver et al.,

2017). For example, the studies by Vourvopoulos et al. (2019a,b)

found in one and four chronic stroke patients respectively, that the

combination of EEG and VR is a safe rehabilitation protocol, that

can induce neuroplastic changes. Furthermore, recently Sebastián-

Romagosa et al. (2020) showed in 51 stroke survivors ranging from

severe to mild impairment, that a BCI treatment also combining

EEG andVR promoted long lasting functional increase of the upper

extremity. Finally, a very interesting work combining transcranial

stimulation with EEG and VR demonstrated in three stroke

patients, that ipsilesional motor activity and behavioral function

can be increased with this combination of techniques (Johnson

et al., 2018).

In any case, VR together with other approaches such as robot-

assisted proprioceptive feedback or transcranial stimulation, are

promising research directions (Levin et al., 2015; Johnson et al.,

2018; Zheng J. et al., 2018) and it is likely that future therapies will

be based on systems using a combination of virtual reality gaming

and proprioceptive feedback (Mattia et al., 2020).

3.7. Physiotherapy to generalize and exploit
the rehabilitative e�ect

According to Ramos-Murguialday et al. (2013), although

plastic changes taking place after BCI/BMI interventions

might not automatically translate to meaningful activities of

daily living, a physiotherapy training immediately after the

BCI/BMI intervention could produce significant changes in motor

impairment and it is thus highly recommended.

This shows that in any rehabilitation paradigm aiming

to improve the quality of life of stroke patients, it is of

great importance to include the individual motor goals of

the participants and personalize the intervention to meet

those goals. Thus, in order to harvest the best possible

outcomes from the intervention, the BCI/BMI session

should be embedded in a training program allowing

personalization and the application of meaningful and

functional movements.

Repeated training of functional movements including

grasping a toothpaste tube, eating, reaching and grasping while

standing and with social distractions has the advantage of

representing natural movements which the patient could practice

at home, maximizing the possibility of repetition and keeping the

participants motivated and interested. Developing rehabilitation

scenarios and interventions with such tasks is key for the

successful generalization of any rehabilitation therapy, especially

the ones using novel technology. Therefore, the application

of a physiotherapy paradigm, which is both daily life oriented

and goal directed, is highly recommended. The patient must be

coached to achieve autonomy in exercises. Patients should also be

encouraged to adapt behavior and to use the newly learned skills in

daily life.

3.8. Mental and physical state

The increasing complexity of rehabilitation environments

that include, for example, brain-controlled exoskeletons,

electrical stimulation, auditory cues, and virtual reality might

also have detrimental effects on the patients’ ability to perform
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because of divided attention and cognitive deficits present

after stroke. For example, the combination of a movement

task and a cognitive task (proper oral response to specific

auditory stimuli in a dual-task paradigm) showed a decrease

in walking speed (Bowen et al., 2001). Effects on performance

of upper-limb movements have also been discovered in a

similar dual-task paradigm (Pohl et al., 2011). Thus, it is

possible that decoding the mental state of the user of BCI/BMI

systems might provide additional information to improve the

rehabilitation outcomes. Furthermore, the learning experience of

the patient could be enriched by adapting the task to the current

mental state.

For example, Walter et al. (2017) developed an adaptive

system for learning arithmetic that optimizes the task difficulty

on the learner’s current workload online. The work demonstrates

that real-time measurement of cognitive load is feasible. This

framework could be exploited in neural rehabilitation training

settings to reduce task difficulty; however, including the mental

state of the patient in the NI is currently not a well-established

research topic.

Regarding published literature on the general population,

Hogervorst et al. (2014) review and compare different methods

for the electrophysiological assessment of mental workload. They

conclude that EEG-based methods perform best, at least for the

memory training tasks that were tested. Alternatively, EOG has also

been used together with EEG to more reliable estimate by the user’s

workload or fatigue (Novak et al., 2015). Finally, Aricò et al. (2018)

recently reviewed passive BCI systems that have been tested outside

of the laboratory and provide an overview of different methods and

potential applications.

In one of the few works on stroke patients, Park et al. (2014)

explored how cognitive engagement could be measured to increase

the outcome of motor rehabilitation. They attributed differences in

the EEG activity of active and passive hand movements in chronic

stroke patients to increased cognitive engagement during the

active task. Besides, other potential neurophysiological correlates

of cognitive workload during robot-assisted tasks have been

discovered in Fels et al. (2015). In that work the authors could

predict perceived workload of participants from interhemispheric

network measures during resting-state EEG recorded prior to the

rehabilitation training.

Not only workload, but also mental or physical fatigue, and

attention or vigilance might have an influence on task performance.

There is extensive research, especially focusing on drivers in the

transportation sector, cf. Balandong et al. (2018) for a recent review.

Roy et al. (2013) tried to disentangle working memory load and

time-on-task. They claimed that especially the spectral power of

lower alpha oscillations in the midline electrodes increased with

mental fatigue. However, they acknowledged that other factors

such as arousal might influence or overshadow this measure of

fatigue. Particularly, tasks related to movement might be prone to

that effect, since central alpha activity also represents a marker of

movement (Pfurtscheller and Da Silva, 1999).

Event-locked measures of vigilance such as error-related-

potentials could provide a marker that is more robustly discernible

from themovement-related spectral changes. For example, Omedes

et al. (2018) showed that error-related potentials can be used to

detect erroneously decodedmovement commands. These could, for

instance, be employed in an oddball paradigm to measure vigilance

of patients to the task.

Physical fatigue, particularly of muscles involved in the training

exercises, might play a detrimental role in the decoding accuracy in

rehabilitation environments including electromyographic control.

Different methods for assessment of muscle fatigue using EMG

have been reviewed (González-Izal et al., 2012). A first step

toward evaluation of muscle fatigue in stroke patients undergoing

neurorehabilitation has also been done (Ray et al., 2019). All

these works indicate that, in order to optimize any rehabilitation

intervention, neurophysiological inputs can be used to track

different user states directly influencing rehabilitation (attention,

cognitive load, fatigue etc.) that can then be used to adjust

the system and the intervention on demand allowing longer

and more efficient training sessions (Thacham Poyil et al.,

2020).

3.9. User involvement and acceptance

It has been shown that acceptance, adoption, motivation,

engagement and participation of patients are essential to

therapy success (World Health Organization, 2003). Thus, the

involvement of patients during the rehabilitation procedure

is key to improved training results (Blank et al., 2014).

In fact, the design of neural interfaces for rehabilitation

includes decisions about their features that should ensure,

not only the fulfillment of technical requirements, but also

the acceptance of the final users. This means, that not only

the neural-motor considerations should be assessed, but also

feedback from the patients should be gathered and taken

into account into the design. However, according to a recent

review (Baniqued et al., 2021), studies on the topic hardly ever

disclose information about the usability of the systems for

motor rehabilitation, nor about the degree of acceptability of the

final users.

A notable exception is the very recent study on the acceptance

of BCI systems for stroke rehabilitation (Grevet et al., 2023),

that has provided important guidelines for researchers. They

stress the importance of informing patients about the goal of

the BCI-based therapy, clarifying how it works and which can

be the expected outcomes. They also remark that informing

the users about difficulties that they might encounter, e.g.,

learning and cognitive costs, is also vital. In summary, a similar

concept to the Goal Attainment Scale is highly relevant for the

BCI/BMI field.

Another interesting recommendation found in Grevet et al.

(2023), is that one way to let possible users clearly understand

how a BCI system for stroke rehabilitation works is the production

of videos. Pedagogical material for the general public can greatly

benefit the perception of these systems. In fact, not only possible

users should be informed, but also their relatives and care-givers.

Finally, the most important conclusion is that the experimental

protocol should be adapted to the assessed acceptability so that the

wellbeing and the engagement of patients can be optimized, which
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most surely will be translated into an increase of the efficiency of

the rehabilitation therapy.

4. Biotargets for rehabilitative neural
interfaces

Brain correlates associated with motor attempt or execution

(e.g., ERD/ERS in sensorimotor rhythms) have been commonly

used as the feedback feature or bio-target in BCIs for motor

rehabilitation (Ramos-Murguialday et al., 2013). Neural recordings

from recent clinical studies using NIs in stroke patients undergoing

motor recovery have permitted the finding of neurophysiological

correlates of functional motor improvement in brain and muscular

signals. Hence, in this section we review works identifying brain

and cortico-muscular features correlated to motor recovery in

stroke that could be proposed as neural targets that might boost

the rehabilitation outcomes of NI-based treatments.

4.1. Brain correlates

A few reviews have investigated how electromagnetic signals,

as those used in BCI/BMI research, are correlated with upper-limb

impairment or can predict the rehabilitation outcome in stroke

(Finnigan and van Putten, 2013; Rabiller et al., 2015; Triccas et al.,

2019). The amount of research in this area is increasing with the

number of published clinical trials using a rehabilitation therapy

based on neural control and the correlation of electromagnetic

signals with behavior. The identified correlates are Sensory

Evoked Potentials (SEPs), oscillatory cortical signals, measures of

functional connectivity and measures of interhemispheric balance

of brain activity (Triccas et al., 2019).

The work of Ramos-Murguialday et al. (2013) was among the

first to report a change of laterality of brain activation related

to motor improvement. The trial focused on chronically severely

impaired stroke patients and correlates were discovered using

functional MRI. Also, Mane et al. (2019) found that a brain

symmetry index based on EEG power is the best predictor of

gains in upper limb motor function for an intervention based

on a brain-controlled exoskeleton. In a trial on a similar patient

cohort an increase of brain desynchronization was found on

both hemispheres between the pre and post measurement also

accompanying recovery (Ono et al., 2014). Pichiorri et al. (2015)

found increased desynchronization in the experimental group

using a brain-controlled feedback paradigm, too. Furthermore,

they also investigated coherence measures and found a correlation

between the motor improvement and a weighted density measure

in the beta band of the EEG. Other works have more recently also

reported similar findings (Biasiucci et al., 2018; Carino-Escobar

et al., 2019).

The strengthening of the ipsilesional motor pathway has

been seen to cause anatomical and structural changes in the

integrity of the descending cerebro-spinal tract. The case study

report published by Zich et al. (2017) using motor imagery

neurofeedback, training showed that the patient who benefited

the most from the intervention had a significant increase in

lateralization during motor imagery and attempted movement

toward the ipsilesional hemisphere rather than to the contralesional

one (laterality was reversed). The increased lateralization was

attributable to be an increase in ipsilesional and a decrease

contralesional activity. Similar findings were reported by Song et al.

(2014). Increased ipsilesional cortical activation measured by fMRI

(Kimberley et al., 2004; von Lewinski et al., 2009) was also found

as an effect of electromyography-triggered electrical stimulation

protocols. Similarly, the analysis of Diffusion Tensor Imaging

data from Ramos-Murguialday et al. (2013) corroborates that the

reorganization of structural and functional connectivity within

the motor networks of the brain that occurs during the partial

recovery of upper limbmotor functions in severely paralyzed stroke

patients was a result of a BCI intervention. The study findings

provide evidence that the BCI, through reinforcing brain activity

on the same side as the lesion and improving proprioceptive

function in the affected hand, triggers changes in the connections

and circuits involved in somatosensory and motor functions,

including both within the hemisphere and between hemispheres.

These alterations in the neural pathways associated with afferent

and efferent connections support the partial restoration of the

original motor control physiology, even in cases of severe and

chronic strokes, as demonstrated in Caria et al. (2020). These

results lead to the conclusion that interventions should aim

at modulating features that entail increased ipsilesional and/or

reduced contralesional activation.

Finally, the recent work Ray et al. (2020) showed in an

observational study with 30 stroke patients that a progressive

shift of alpha ERD toward the ipsilesional hemisphere correlates

significantly with clinical improvement regardless of lesion

location. Also, initial alpha ERD might be a key factor to

stratify stroke patients, with its interhemispheric balance being

determinant for motor recovery.

4.2. Cortico-muscular correlates

Some researchers have already explored hybrid BCIs that

combine features derived from brain and muscle signals in the

control paradigm (Leeb et al., 2011). From the technical point of

view, supporting signals from muscles involved in motor intent

have been employed to increase the performance of BCI systems

(Leeb et al., 2011; Lalitharatne et al., 2013; Balasubramanian et al.,

2018; Lopez-Larraz et al., 2018; Spüler et al., 2018) combining brain

and muscle signals in different ways. Usually, the final classification

decision is a weighted mixture of the decoding results of both

modalities (Sarasola-Sanz et al., 2017; Spüler et al., 2018; Tryon

et al., 2019). And actually, the aggregation of multiple decoding

outputs is a usual technique employed in machine learning to

fuse information of different decoders and obtain a single decision

output (Fumanal-Idocin et al., 2021a,b, 2022).

Nevertheless, the combination of classification outputs is

unfortunately not directly related to the communication between

brain and muscles: on the one hand, brain features alone cannot

ensure a functional connection to the movement due to their

lack of specificity to the motor output, especially in non-invasive

systems. On the other hand, the origin of motor signals is not only

cortical, but they are generated in the spinal cord as well (Baker,
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2007). Furthermore, there are several other sources of disagreement

between brain and muscle signals that significantly increase the

difficulty to detect movement intent (Balasubramanian et al., 2018).

The patients brain is usually damaged, causing altered neural

dynamics, because the sources contributing to functional motor

control might also be located in (originally) non-motor brain areas

(Johansen-Berg et al., 2002; Jang et al., 2005; Misawa et al., 2008).

Additionally, often patients produce uncontrolled movements that

greatly increase the amount of noise in the brain andmuscle signals.

Thus, combining both modalities (brain and muscle activity) has

proven to be highly non-trivial.

In order to partially ameliorate these difficulties, over the past

few years researchers in the field of stroke rehabilitation have

started to focus on the simultaneous study of synchronized cortical

and muscle activity to gain insights regarding the disrupted efferent

mechanisms after a cerebrovascular accident. Methodologically,

there are different types of synchronization or coupling between

two signals that can be estimated: phase-phase, amplitude-

amplitude, and phase-amplitude. When the estimates of interest

are related to phase synchronization between brain and muscles,

they are related to cortico-muscular coherence or CMC. Indeed,

several studies have shown that phase coupling is an effective

way to describe the communication between cortex and spinal

cord, where cortical oscillations have been related to different

aspects of motor control (Baker et al., 1997; Jackson et al., 2002;

Schoffelen et al., 2005; Baker, 2007; Bayraktaroglu et al., 2011).

In particular, CMC in the beta frequency band has been related

to the maintenance of specific sensorimotor states (Engel and

Fries, 2010), meaning that CMC can be directly linked to motor

activity. In stroke patients, it has been shown that CMC is altered

in comparison to healthy populations. The observed variations are

mainly described as a decrease of the CMC peak, in both acute and

chronic stroke (Mima et al., 2001; von Carlowitz-Ghori et al., 2014;

Guo et al., 2020). Krauth et al. (2019) investigated the effect of the

ischaemic stroke on CMC estimated with EEG and EMG signals,

during a wrist extension task. They compared CMC distributions

to those of a group of healthy subjects. Their findings revealed

that ipsilesional CMC was reduced in stroke patients in the acute

phase and increased during the process of motor recovery, relating

higher cortico-muscular coherence levels to better motor function,

as previously reported in a case study (Zheng Y. et al., 2018).

Additionally, Godlove et al. (2016) explored higher frequencies

in ECoG signals (high-gamma, 76–200 Hz), finding evidence of a

preserved correlation between perilesional high-gamma with the

muscle synergies of the affected limb during horizontal planar

movements in a human chronic stroke survivor.

Regarding alterations of CMC in response to BCI/BMI

interventions employing brain signals coupled with different

peripheral actuators and estimulators, since this technology aims

at enhancing a biologically effective coactivation of the central and

the peripheral nervous system, an increase in the CMC level of

a subject undergoing a such an intervention would be expected.

Not surprisingly, significantly increased EEG-EMG CMC levels

between the premotor cortex and a contralateral forearm extensor

muscle have been reported in chronic stroke patients in response to

a short-term rehabilitative BMI intervention coupled with a robotic

actuator (Belardinelli et al., 2017) or neuromuscular electrical

stimulation (NMES; Mukaino et al., 2014).

It seems thus, that incorporating motor information such that

a functional link between the brain and the motor output can

be established is very promising to overcome the difficulty of

accurately detecting the intention of movement from the ongoing

brain activity. Furthermore, it has the potential to at least partly

resolve previously described difficulties relating to the origin of the

signals of interest (cerebral as well as muscular), because with CMC

it is possible to estimate the cortical and motor relations of the

desired movement, discarding muscle and brain activations caused

by other unrelated processes.

That is, phase coupling measures between sources constitute the

functional link between the brain and the peripheral nerves and

muscles. Indeed, the study of cortico-muscular coherence may also

constitute a tool to assess and quantify the effect of rehabilitative

interventions on the patients’ recovery. Additionally, this measure

could potentially reveal the regions of the cortex that play a role in

the process of recovery.

An important aspect to keep in mind then is the methodology

employed to estimate cortico-muscular connectivity. In literature

several examples exist of cortico-muscular based features for BCI

data, not only to study coupling (Baker, 2007; Kristeva et al., 2007;

Colamarino et al., 2021) but also attempts to deliver neurofeedback

(Chowdhury and Prasad, 2019; Chowdhury et al., 2019; de Seta

et al., 2022) with cortico-muscular interfaces. These works are

based on sensor-space estimates. However, coupling estimation

on sensor-space data does not enable an anatomically accurate

localization of nervous system activity because each sensor records

the superposed activity of all active populations (sources) in the

brain and muscles. Furthermore, neurofeedback delivered with

sensor-based coupling measures does not reflect any specific

functional relation within the brain or between brain and muscles.

These limitations could potentially be improved with recently

developed methods that allow the maximization of CMC and

the extraction of maximally coupled brain and muscle sources

(Bayraktaroglu et al., 2011; Vidaurre et al., 2019b). One of them

has been applied in a test study to provide neurofeedback with

promising results (von Carlowitz-Ghori et al., 2014).

Concluding, cortico-muscular interfaces that estimate source

related CMCmight have a greater potential for reinforcing efferent

pathways from cortical motor structures to the targeted paralyzed

muscles and have therefore been suggested as a promising approach

for stroke motor rehabilitation (Irastorza-Landa et al., 2022).

Furthermore, despite the promising preliminary results presented

in this section, further work evaluating the changes in CMC levels

in larger stroke patient cohorts enrolled in NI related therapy is

needed to demonstrate a direct relationship with gained motor

functions, hence, more controlled clinical trials are needed to test

neuro-muscular interfaces in stroke survivors.

5. Discussion

This manuscript presented an overview of neural interfaces

in stroke motor rehabilitation, highlighting the potential of

this tool to reconnect brain and muscles. As seen before,

motor control of the paretic limb can be improved using

neuro-controlled systems.
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It is hypothesized that Hebbian learning promotes motor

learning, and thus matching functional efferent and afferent

information in in terms of meaning and time is crucial. These

variables are influenced by different aspects that have been

presented in this review: the methodology employed to acquire,

condition and process neural signals. Also, we saw that the

evaluation of the patient’s state and their involvement in the therapy

are key for the success of the rehabilitative intervention.

This review also emphasizes that the success of rehabilitative

NIs mainly depends on the contingency between the desired

motor task and the feedback received by the patient. Thus,

the performance of NIs for motor rehabilitation of stroke

survivors, critically depends on the ability of the researchers to

overcome the technical challenges of these systems to improve

feedback contingency. In this work, we described methodological

aspects that should be considered in the design of these NIs

and they often revolve around increasing their accuracy and

efficacy. Because brain signals are noisy and non-stationary,

the automatic identification, rejection and/or correction of

artifactual signals poses a great challenge for researchers and

engineers. Although several recent advances exist (see Section

3.1) to date there is no method able to completely reject non-

linear artifacts. Fortunately, some recent interesting approaches

toward this goal were recently published (see e.g., Chen et al.,

2022).

Besides, the need of data to recalibrate BCI systems in each

session is also a disadvantage of current interfaces. The physical

and cognitive state of the patients, who cannot undergo long and

exhausting rehabilitation sessions, requires neuro-feedback systems

that can be speedily prepared. The session-to-session transfer of the

models used to process data has been investigated to ameliorate

setup periods (see e.g., Arvaneh et al., 2013; Azab et al., 2019). For

example, adding data from the same session has been shown to

improve performance in healthy population (Vidaurre et al., 2007a)

as well as in patients (López-Larraz et al., 2018b). Furthermore,

co-adaptation also seems like a promising a approach that can

incorporate past data and current signals to improve performance

(Nierhaus et al., 2021; Zhang et al., 2022). Nevertheless, care should

be taken on how adapt to the signals of interest to boost the

rehabilitation outcome.

The technical consideration that is continuously considered

in this review from different angles is the improvement of the

contingency between cortical activations and feedback based on

the decoding result. A correct feedback is thought to be key

to stimulate pertinent brain networks to restore motor function.

However, as seen throughout the text, the lack of specificity of brain

signals might seriously affect the decoding performance of neural

interfaces to restore movement and consequently the quality of the

feedback provided, therefore a multimodal approach might be the

most successful option.

However, the strategy followed to control the interface, that

is, how to combine signals to obtain one specific command,

is also a challenging technical requirement because it should

mainly reflect the intention of the specific movement that should

be restored. Different approaches were discussed in Section 4.

From those, the estimation of cortico-muscular coherence at

the source level vs. electrode domain seems very promising

(von Carlowitz-Ghori et al., 2014). We believe that the use of

features based on the communication between brain and muscle

sources related to the motor task of interest are key for future

NI systems for motor rehabilitation. These features should be

reliable and estimated in sufficiently short windows to ensure

online control (de Seta et al., 2022). Additionally, an external

peripheral actuator could be employed to ensure natural and

functional sensorimotor feedback. In short, efforts must be done

to ensure high control stemming from the voluntary movement

to reinforce the restoring of functional neural recruitment.

Neurophysiological data recorded in clinical studies appplying

neuro-controlled paradigms offers a valuable tool to access and

study new neurophysiological bio-targets.

Other aspects that might limit the efficiency of current

interfaces are related to the state of the specific type of patient.

For example, stroke survivors often suffer from loss of muscle

volume and tone, but most of them retain residual muscle activity.

Thus, including EMG signals in the interface would tackle muscle

involvement and thus, muscle atrophy. In the same line, FES

could be a valuable tool to increase muscle tone. Moreover,

changes in bio-mechanics, mainly due to tendon and muscle

shortening, can be a key factor limiting recovery and movement

rehabilitation. Indeed, this could be an underestimated factor

influencing spasticity measures (Mahmoud et al., 2023). In this

context, neuro-controlled body actuators might be the key to open

the gateway to spasticity reduction (Ramos-Murguialday et al.,

2013).

Not only spasticity is present after stroke, but also maladaptive

muscle synergies or patterns may prevent coordinated multi-

joint movements to occur. Therefore, EMG-based control of body

actuators might be necessary to re-adapt or re-learn appropriate

muscle control (Cheung et al., 2018). However, in case of distal

activity only, the top-down volley might not coincide correctly

with distal activity, especially if spasticity is a result of changes

at subcortical and also spinal neural structures. Therefore and

as previously discussed, properly assessed hybrid brain-muscle

control of the body actuator, for example with the help of source

phase coupling estimators (Vidaurre et al., 2019b), might assist the

re-learning process in a more efficient manner.

Finally, longitudinal MRI studies indicated that clinical

improvements were associated with an increased activation of the

ipsilesional hemisphere (Caria et al., 2011). In light of this, it could

be expected that interventions that aim to reverse these alternative

motor control mechanisms and enforce the primary control

mechanism would have an effect on spasticity expression. The

evident effectiveness of some recent interventions lends support

to this argument. Indeed, it has been reported that successful

therapeutic NI-based intervention produces restoration of motor

function mediated by re-lateralization of motor cortical activation

(Ward et al., 2003; Schlaug et al., 2008; Ramos-Murguialday et al.,

2013; Song et al., 2014; Ray et al., 2020).

Regarding feedback modalities, it is important to consider that

although sensory function is compromised in stroke patients, most

of them present sufficient afferent input to the brain to be able to

learn and use proprioception (Ramos-Murguialday et al., 2013) or

sensory electrical stimulation (Tu-Chan et al., 2017) as feedback.

Compromised sensory systems need to be assessed, as well as
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behavioral, neurophysiological and clinical status, since patients’

triage is key for therapy individualization and success.

Moreover, NI designed as serious games and immersive systems

could help motivate patients. Having extra sensors to optimize

their performance (measuring cognitive and physical fatigue and

attention) can help adjust intervention difficulty and intensity,

thereby easing adoption, acceptance, and engagement.

6. Conclusion

This work presented the main methodological and

neurophysiological considerations on the design of neural

interfaces for rehabilitative purposes. While most of designs

are proposed and tested in healthy subjects, translating

these findings into a clinical population requires some

important adjustments.

Advanced methods are being developed to keep improving

the performance of BCI/BMIs. Maybe, the primary target

when designing rehabilitative systems should be the careful

assessment of a direct link between the “correct/functional”

neural activity and the feedback. Higher performances can

result in an unsuccessful intervention if feedback provided

relies on unrelated activity (i.e., the subject has learned

to control the interface via compensatory movements or

biased signals). Because of this, features directly linked with

neurophysiological events are highly recommendable for

rehabilitative purposes.

When designing rehabilitative neural interfaces for stroke, one

should consider other several aspects: the neurophysiological state

of the patients, residual neural signals conveying motor-related

information, preserved and maladapted motor functions, etc.

Customized therapies as well as standardized approaches

are essential for building evidence and reach consensus

in research. Reporting complementary analyses of

neurophysological changes as an effect of rehabilitative

interventions in addition to standard (subjective) clinical

scales is of paramount importance to understand

the plasticity mechanism happening at central and

peripheral levels.

Novel neural interfaces should be designed to use and

reinforce neurophysiological features that have been found

to correlate with motor function recovery. Furthermore,

there is a clear lack of studies longitudinally investigating

the chronic phase and the development of the sensorimotor

system in stroke, including plasticity and spasticity mechanisms

conditioning the rehabilitation potential of neural interfaces.

Special attention should be paid to the design of scientifically based

rehabilitation tasks (movements) that can be executed by neural

controlled body actuators, which can leverage and generalize NIs

rehabilitative effects.
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