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The demand for public datasets has increased as data-driven methodologies have

been introduced in the field of brain-computer interfaces (BCIs). Indeed, many

BCI datasets are available in various platforms or repositories on the web, and

the studies that have employed these datasets appear to be increasing. Motor

imagery is one of the significant control paradigms in the BCI field, and many

datasets related to motor tasks are open to the public already. However, to the

best of our knowledge, these studies have yet to investigate and evaluate the

datasets, although data quality is essential for reliable results and the design of

subject− or system-independent BCIs. In this study, we conducted a thorough

investigation of motor imagery/execution EEG datasets recorded from healthy

participants published over the past 13 years. The 25 datasets were collected from

six repositories and subjected to a meta-analysis. In particular, we reviewed the

specifications of the recording settings and experimental design, and evaluated

the data quality measured by classification accuracy from standard algorithms

such as Common Spatial Pattern (CSP) and Linear Discriminant Analysis (LDA)

for comparison and compatibility across the datasets. As a result, we found that

various stimulation types, such as text, figure, or arrow, were used to instruct

subjects what to imagine and the length of each trial also differed, ranging from

2.5 to 29 s with a mean of 9.8 s. Typically, each trial consisted of multiple sections:

pre-rest (2.38 s), imagination ready (1.64 s), imagination (4.26 s, ranging from 1

to 10 s), the post-rest (3.38 s). In a meta-analysis of the total of 861 sessions

from all datasets, the mean classification accuracy of the two-class (left-hand

vs. right-hand motor imagery) problem was 66.53%, and the population of the

BCI poor performers, those who are unable to reach proficiency in using a BCI

system, was 36.27% according to the estimated accuracy distribution. Further, we

analyzed the CSP features and found that each dataset forms a cluster, and some

datasets overlap in the feature space, indicating a greater similarity among them.

Finally, we checked the minimal essential information (continuous signals, event

type/latency, and channel information) that should be included in the datasets for
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convenient use, and found that only 71% of the datasets met those criteria. Our

attempts to evaluate and compare the public datasets are timely, and these results

will contribute to understanding the dataset’s quality and recording settings as

well as the use of using public datasets for future work on BCIs.

KEYWORDS

brain-computer interface (BCI), motor imagery, motor execution, public dataset, data
quality, meta-analysis

1. Introduction

Electroencephalography (EEG) signals interact by reflecting an
individual’s real-time state, so they can be used to predict and
classify emotions, attention, and imagination. A brain-computer
interface (BCI) uses EEG for applications in active, reactive, and
passive manners as needed (Gürkök and Nijholt, 2012). Reactive
BCIs, such as P300 based upon event-related potential (ERP) (Guy
et al., 2018) and steady-state visual evoked potential (SSVEP) (Yin
et al., 2015), manipulate applications by utilizing EEG responses
to stimuli. Motor imagery (MI) BCI uses the brainwave pattern
that occurs during an intrinsic rehearsal of movement and is an
interface method that can be controlled intuitively with active BCIs
(Annett, 1995).

Motor imagery (MI) is responsible for the cognitive processes
of motor behavior and shares neural mechanisms with actual
movements. In fact, in both imaginary and actual movements
(or motor execution, ME), the neural activation of event-related
EEG in the Mu rhythm (8−12 Hz) of the motor cortex was
observed as being functionally similar (Llanos et al., 2013).
Although there was a difference in the intensity of brain activities
during MI and ME, in a previous study that MEG, the event-
related synchronization/desynchronization (ERS/ERD) of beta
(15−30 Hz) in the contralateral motor cortex and somatosensory
cortex has been confirmed commonly (Kraeutner et al., 2014).
Based on these neurophysiological characteristics, MI-BCI is
used for the rehabilitation of brain functions in patients with
motor disorders. MI offers additional advantages to conventional
physiotherapy or occupational therapies during the rehabilitation
of movement disorders in stroke patients (Zimmermann-Schlatter
et al., 2008). In addition, the possibility of using MI in the
rehabilitation process of diseases that cause movement disorders,
such as patients with cerebral palsy (Steenbergen et al., 2009) and
Parkinson’s disease (Caligiore et al., 2017), has been suggested.

However, MI-based BCIs have a challenge occasionally,
referred to “BCI illiteracy phenomenon” in which some potential
users may not reach a sufficient performance level to control the
BCI applications (Blankertz et al., 2010). They can be considered
prospective users, as their poor performance may be attributable
to external factors such as the BCI training protocol rather
than personal characteristics (Thompson, 2019). Approximately
20% of BCI users have been considered BCI illiterate, with a
performance unsuitable for using BCI applications (Edlinger et al.,
2015). Imagination-based BCI paradigms have lower accuracy than
reactive or passive paradigms (Gürkök and Nijholt, 2012; Lee
et al., 2019). In fact, in an MI-based BCI experiment with 80 BCI

beginners, it was reported that approximately 40% were classified
as BCI poor performers (Sannelli et al., 2019).

High-quality EEG signals requires a controlled environment,
long-term recordings for calibration sessions, and expensive
equipment for reliable operation (Pfurtscheller et al., 2000; Thomas
et al., 2013). Further, unlike the reactive paradigms, the MI
task imposes a high workload and consequently fatigues subjects
because they have to imagine movement while suppressing actual
movement. These fatigue levels have been found to be related
to MI performance (Talukdar et al., 2019). Therefore, long-term
measurements in a single experiment can degrade the data quality,
so the cost of measurement data is high because it takes much time
for the experimenter to obtain a large amount of MI data.

Recently, research to improve BCI performance by using
machine learning and deep learning has been conducted actively
(Roy et al., 2019). For stable model learning, it is essential to
have a sufficient number of data and high-quality data (Jain et al.,
2020). Therefore, there is a high demand for public data among
BCI researchers. The data related to the movement paradigms, MI
and ME, are being provided through various platforms, such as
MOABB (Jayaram and Barachant, 2018), BNCI Horizon (Brunner
et al., 2015), and Deep BCI (Deep BCI, n.d.).

Although the accessibility of public data has increased, BCI-
competitive datasets the Berlin BCI (BBCI) group released in
2008 are still used the most widely (Tangermann et al., 2012; Al-
Saegh et al., 2021; Alzahab et al., 2021). There may be several
reasons why researchers still use a small dataset consisting of nine
subjects although larger datasets have been made available to the
public recently. First, researchers want to substantiate their research
results through sufficiently verified data. Therefore, they prefer to
use a dataset that compares results with those of previous studies.
Second, the reason why a new dataset is not used in addition
to a conventional dataset may be attributable to a compatibility
problem between the different datasets. The EEG signal depends
on the subjects because of its non-stationary nature, and the
environment affects it greatly because of its sensitivity to noise
(Kaplan et al., 2005). Therefore, most of the studies that have
used public datasets were evaluating the model’s performance by
building independent models for each dataset to validate the model
(Luciw et al., 2014; Miao et al., 2017; Tang et al., 2019; Tayeb et al.,
2019). Finally, researchers may not be informed sufficiently about
datasets published recently.

Experimenters can even configure the same paradigm in
various ways, such as by inter-trial-intervals (ITI) and stimuli
presentation (Sarma and Barma, 2020). The SSVEP and P300
paradigm parameters have been considered to have a significant
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effect on performance and much research has been conducted
on them (Gonsalvez and Polich, 2002; Zhu et al., 2010; Han
et al., 2022). However, in MI BCI, a similar cue-based experiment
has been used continuously in the past (Pfurtscheller and
Neuper, 1997) and in recent studies (Tibrewal et al., 2022),
although MI parameters may also influence signal quality or BCI
performance. Indeed, few studies have attempted to investigate the
MI paradigm’s effect.

This study reviews movement datasets on the MI or ME
paradigms collected from various resources, such as journals,
research projects, and platforms. The ME datasets were also
included in the study so that researchers can refer to them to
find the potential biomarkers of motor function. Many EEG
public data for motor tasks have been shared, but the data’s
quality needs to be assessed. Accordingly, we evaluated usability,
paradigm parameters, classification accuracy, and compatibility
with other datasets. To use the data, sufficient information must
be provided to the user. Comparing the specifications of the
dataset, we provide information so that researchers can select
the dataset desired according to the purpose (e.g., paradigm) or
condition (e.g., environment). In addition, classification analysis
was performed on representative datasets under the same
requirements to compare objective classification accuracy, and
compatibility between datasets was inferred using the features
extracted. Finally, we report the limitations of current public
datasets from a practical perspective and suggest the direction of
future discussions about public datasets.

2. Materials and methods

2.1. Public dataset collection and
organization

We collected public datasets for motor tasks, including MI
and ME, from several resources, including journals Scientific
Data (Scientific Data, n.d.) and Gigascience (GigaScience | Oxford
Academic, n.d.), research projects (Deep BCI and BNCI Horizon),
and dataset platforms (IEEE DataPort (IEEE DataPort, n.d.) and
MOABB). The characteristics of each resource are as follows.
Gigascience and Scientific Data are journals that provide the source
of the dataset, and Gigascience shares the dataset through its
database, while Scientific Data shares the dataset through such
repositories as Figshare without requiring a separate license for
both. Deep BCI and BNCI Horizon are research projects that collect
shared datasets published in a paper or requested by the projects.
Researchers can download data directly from the BNCI Horizon
website, while Deep BCI can receive the dataset after obtaining
consent from the data owner. IEEE Dataport is a data platform
that provides a dataset and simple information, and MOABB is a
BCI benchmark that offers data and available Python APIs. Among
them were datasets released multiple times from other resources
and datasets the projects requested.

We collected a total of 25 datasets based on the following
criteria:

• Should include EEG.
• Should include healthy subjects.

• Should include datasets that do not overlap with previous data
from other resources.
• Should be available currently.
• Should be presented in English.

There were 17 MI datasets that met these criteria (Leeb et al.,
2007; Grosse-Wentrup et al., 2009; Faller et al., 2012; Tangermann
et al., 2012; Ahn et al., 2013a; Yi et al., 2014; Lee et al., 2016, 2019;
Steyrl et al., 2016; Zhou et al., 2016; Cho et al., 2017; Shin et al.,
2017; Kim et al., 2018; Ma et al., 2020; Wu, 2020; Zhou, 2020; Stieger
et al., 2021), 4 ME datasets (Luciw et al., 2014; Brantley et al., 2018;
Wagner et al., 2019; Schwarz et al., 2020), and 4 both MI and ME
datasets (Schalk et al., 2004; Ofner et al., 2017; Kaya et al., 2018;
Jeong et al., 2020). In this study, the naming of the dataset took the
form of representing the first author’s last name and the year of the
published paper or dataset. For example, Stieger (2021) indicates
the dataset in Stieger et al. (2021).

2.2. Classification and feature analysis

We conducted a quantitative analysis of eight representative
MI datasets to compare their compatibility: Ahn et al., 2013a;
Yi et al., 2014; Cho et al., 2017; Shin et al., 2017; Kaya et al.,
2018; Kim et al., 2018; Lee et al., 2019; Stieger et al., 2021. These
were selected as comparable according to various conditions, such
as device, instruction method, and cue type, and were measured
by the four EEG devices used most commonly—Neuroscan
SynAmps2, BranProduct BrainAmp, Neurofax EEG-1200, and
Biosemi—and included the basic MI paradigm, left- and right-
handed imagination. The paradigm of the dataset is similar in the
framework of imagination according to the instruction (cue) after
rest (fixation cross), but the details differed, such as cue display and
imagination methods.

To assess the data quality and compatibility with other
datasets, we calculated the classification accuracy of the binary
class problems and the feature distance among other datasets.
As each dataset has a different number of channels, sampling
rate, and signal scale, each dataset needs to be projected onto
the same feature space for comparison. We extracted the features
using the CSP, which is one of the methods to classify binary
MI problems used most commonly (Aggarwal and Chugh,
2019). Our goal was to quantify it as objectively as possible
by analyzing different datasets comparatively under common
conditions. The CSP constructs a spatial filter to maximize one
class and minimize the other class on the binary conditions
(Ramoser et al., 2000).

The time-series data that have undergone a series of pre-
processing processes extracts the CSP features through the
following process. Let xi ∈ RN × S be the pre-processed EEG signal
that consists of channels N -by-sample S as a multi-channel time
series for a particular class motor imagery i such as the left- and
right-hand. The spatial covariance matrix is Ci

∈ RN × N , given in
Eq. 1:

Ci
=

xix>i
trace(xix>i )

(1)

in which> presents the transpose of matrix. The objective function
J of CSP to optimize the spatial filter follow Eq. 2 and w ∈ RN × N

Frontiers in Human Neuroscience 03 frontiersin.org

https://doi.org/10.3389/fnhum.2023.1134869
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-17-1134869 May 16, 2023 Time: 14:33 # 4

Gwon et al. 10.3389/fnhum.2023.1134869

is spatial filter:

JCSP (w) =
w>C1w

w>(C1 + C2)w
(2)

We used filters to generate features in two ways depending on
the purpose. The first feature fi,j follows Eq. 3 given as a feature
calculation method to calculate accuracy.

fi,j = log(w>j xix
>

i
wj) (3)

in which j = {1, . . . , m} present the dimensional feature vector,
and the first and last m rows of the CSP filter maximize the features
of each class by the objective function. The second feature f i,j is the
normalized feature, which is divided by the number of samples S
to consider the sampling rate difference between the datasets, and
follows Eq. 4:

f i,j =
w>j xix

>

i
wj

S
(4)

We compared the eight features vector generated from the
CSP filter to analyze the dataset’s compatibility. The upper filter
maximizes the left-hand imagery, while the lower filter maximizes
the right-hand imagery. We selected the two upper and two
lower filters, and the left- or right-hand signals were projected on
the filters to yield eight features. We extracted the features and
calculated the accuracies for each subject, and the same subject
was considered a different subject if measured on any other day.
Therefore, the number of subjects in some data increased compared
to the results Kaya et al. (2018), Lee et al. (2019), and Stieger et al.
(2021) reported previously.

Because each dataset has a different reference electrode, the
raw signal was re-referenced through a common average reference,
and then bandpass filtered by 8–35 Hz. This frequency band was
chosen to cover a sufficient interval (Alpha and Beta rhythms) and
was based on the literature (Naeem et al., 2009; Bai et al., 2014;
Cho et al., 2017). The segmented and released datasets, they were
filtered for each trial, and the data released with continuous raw
signals were filtered and then subjected to epoching. The signal
was segmented from 500 to 3000 ms based on the cue (onset).
The window size may vary in the optimal period for each dataset,
but this was chosen for common conditions because the maximum
window size obtained from Ahn et al. (2013a) was up to 3 s. Cho
et al. (2017) had an exceptionally additional pre-process, and the
signal was divided by the signal gain value of 32.

We also selected four filters to extract features to calculate
accuracy, divided each dataset into ten sets, and used seven to
train and three to test a classifier model. Here, the CSP filter
was constructed using only training data. We reported mean
accuracy by shuffling the data every time, repeating this process
ten times, and the classifier model used linear discriminant
analysis (LDA) (Mika et al., 1999). We used t-distributed stochastic
neighbor embedding (t-SNE), a non-linear dimension reduction
technique that show into low-dimensional space to visualize high-
dimensional CSP features (van der Maaten and Hinton, 2008). As
it maps data to minimize the difference between the probability
distributions in a high and low-dimensional space, the similarity
relation between points is maintained while the dimensionality is
reduced simultaneously.

3. Results

3.1. Dataset specifications

This review divided the specifications into public,
environmental, and experimental specifications. We defined
them by naming them intuitively, as several papers often use
different words to describe the same specification. Each definition
is in the paper, and a complete list of definitions is provided in the
Supplementary material.

3.1.1. Public and environmental specifications
Table 1 shows the public and environmental specifications of

the MI and ME dataset, based on the reference in which they
were published. The platforms that included the dataset targeted
most in this study were 12 in MOABB, six in BNCI Horizon,
six in Scientific data, six in Deep BCI, three in Gigascience, and
two in IEEE DataPort. A popular EEG device was BrainProduct
(N = 9), followed by g.tec (N = 5), Neuroscan (N = 5), Biosemi
(N = 2), and others (N = 7). The mean number of electrodes
was 49.71, the mean sampling rate was 632.14 Hz, and the
electrodes were set based on the international 10−20 (N = 13),
10−10 (N = 3), or 10−5 (N = 2) system. In most cases, the file
format of “mat” (N = 17) available on MATLAB was released,
and in addition, “gdf,” “dat,” “set,” “edf,” “cnt,” or “vhdr” were
also released in the format available in the MATLAB EEGLAB
toolbox. Zhou (2020) used the “npz” data format that was
available in Python.

Many studies have adopted electrooculography (EOG)
electrodes (N = 12) that can be used to process EEG noise and
electromyography (EMG) electrodes (N = 9) to track motion.
In particular, in addition to EMG, the ME paradigm dataset
necessarily has sensors that can quantify movements, such as
a photodiode sensor and a force-sensing resistor sensor. When
simply comparing the mean number of citations in the same period
(2004’∼2020’), the mean of MI datasets (N = 86.92) was higher
than that of ME datasets (N = 33.5).

The essential specifications refer to the minimum component
that the public dataset defined in this paper should have, and
include signal continuity, events (type and latency), and channels.
The signal continuity indicates whether the signal is released as a
continuous signal rather than as a segmented signal according to
the trial, and the event type presents a class name (e.g., left or right)
rather than numbers alone. Triangles indicate cases in which some
data do not satisfy these conditions.

3.1.2. Experimental specifications
Table 2 shows the MI dataset’s experimental specifications,

based on the published reference. The paradigms of these datasets
consisted of the left- and right-hand (N = 16), feet or foot (N = 9),
both hands (N = 3), right hand without left hand (N = 3),
tongue (N = 2), and others (N = 3). As the type of cue was
simple, conveying information was also simple. The cue (onset)
is presented to subjects by simple arrows (N = 14), text (N = 3),
objects (moving ball and bar, N = 3), or symbolic pictures (hand
and foot figure, N = 2). Some datasets include online experiments
that provide feedback using data obtained from previous sessions
(N = 6).
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TABLE 1 Public and environmental specifications of motor imagery/execution datasets (–: no information provided).

Public specifications Environmental specifications Essential specifications

References Resources Num. of
citations

Device Num. of
electrodes

Extra
electrode

Electrode
setting

Sampling
rate (Hz)

Data
format

Signal
continuity

Event
type

Event
latency

Channels

Motor
imagery

Stieger et al.,
2021

Scientific data 11 Neuroscan
SynAmps

64 Cursor 10−10 1,000 mat x o o o

Motor
imagery,
Motor
execution

Jeong et al.,
2020*

Deep BCI,
Gigascience

25 BrainProduct
BrainAmp

60 EOG, EMG − 2,500 mat o o o o

Motor
imagery

Zhou, 2020 IEEE DataPort − Neuroscan
SynAmps2

26, 41 EOG − 500 npz o o o o

Wu, 2020 IEEE DataPort − Neuroscan
SynAmps2

122 ear-EEG 10−20 1,000 dat o o o o

Ma et al., 2020 Scientific data 11 Neuroscan
SynAmps2

64 EOG, EMG − 1,000 mat, cnt o o o o

Lee et al., 2019 Deep BCI,
Gigascience,
MOABB

171 BrainProduct
BrainAmp

62 EMG 10−20 1,000 mat o o o o

Kim et al., 2018 Deep BCI 113 BrainProduct
BrainAmp

30 − − 250 vhdr o o o o

Motor
imagery,
Motor
execution

Kaya et al., 2018* Scientific data 84 Neurofax
EEG-1200

19 − 10−20 200 mat o o o o

Ofner et al.,
2017*

BNCI Horizon,
MOABB

147 g.tec USBamp 61 EOG, EMG − 512 gdf o o o o

Motor
imagery

Cho et al., 2017 Deep BCI,
MOABB,
Gigascience

172 Biosemi 64 EMG 10−20 512 mat x o o o

Lee et al., 2016 Deep BCI 14 BrainProduct
BrainAmp

70 EOG, EMG 10−20 1,000 vhdr o x o o

Shin et al., 2017 MOABB 135 BrainProduct
BrainAmp

30 NIRS, EOG,
ECG

10−5 1,000 mat o o o o

Zhou et al., 2016 MOABB 32 − 14 − 10−20 250 cnt o x o o

Steyrl et al., 2016 BNCI Horizon,
MOABB

93 g.tec USBamp 15 − 10−10 512 mat o o o x

Yi et al., 2014 MOABB 46 Neuroscan
SynAmps2

64 − 10−20 1,000 mat x o x x
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TABLE 1 (Continued)

Public specifications Environmental specifications Essential specifications

References Resources Num. of
citations

Device Num. of
electrodes

Extra
electrode

Electrode
setting

Sampling
rate (Hz)

Data
format

Signal
continuity

Event
type

Event
latency

Channels

Ahn et al., 2013a Deep BCI 82 Biosemi,
BrainProduct
BrainAmp

19 − 10−10 512, 500 mat 1 1 1 1

Faller et al., 2012 BNCI Horizon,
MOABB

138 g.tec USBamp 13 − 10−5 512 mat o o o x

Tangermann
et al., 2012

BNCI Horizon,
MOABB

652 − 22 EOG 10−20 250 gdf o o o o

Grosse-Wentrup
et al., 2009

MOABB 178 BrainProduct
BrainAmp

128 − 10−20 500 set o o o o

Leeb et al., 2007 BNCI Horizon,
MOABB

486 g.tec USBama 3
(Central)

EOG − 250 mat o o o o

Motor
imagery,
Motor
execution

Schalk et al.,
2004*

MOABB 2,915 − 64 − 10−20 160 edf o o o o

Schwarz et al.,
2020

BNCI Horizon 19 g.tec USBamp 58 EOG,
Force-sensing
resistor sensor

− 256 mat o o o o

Schwarz et al.,
2020

BNCI Horizon 19 EEG-
VersatileTM
system

32 EOG,
photodiode
sensor

− 256 mat o o o o

Motor
execution

Schwarz et al.,
2020

BNCI Horizon 19 EEG-HeroTM
headset

11 photodiode
sensor

10−20 256 mat o o o o

Wagner et al.,
2019

Scientific data 8 g.tec USBamp 108 EMG, EOG,
goniometers

10−20 512 set o o o o

Brantley et al.,
2018

Scientific data 20 BrainProduct
BrainAmp

60 EOG, EMG 10−20 1,000 mat o − − o

Luciw et al.,
2014

Scientific data 87 BrainProduct
BrainAmp

64 EMG − 500 mat o − − o

For essential specifications, o, satisfied, M, partially satisfied, and x, unsatisfied.
*These datasets contain both motor imagery and an execution paradigm.
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The number of subjects ranged from 4 to 109, with an mean
of 26.23 ± 25.93 for all datasets and an mean of 22.10 ± 18.15
excluding Schalk et al. (2004). In that reference, if the subjects’ age
was given only as the range, the mean of the ranges was reported.
The subjects’ ages ranged from 23 to 39 years, and the mean age
was 26.52 ± 3.52 years. The experiments were conducted largely
with young adult males and females. The mean proportion of male
subjects was 55.68%, which was balanced according to the average
of all datasets, but the proportion of men and women within the
dataset was often not balanced.

Because the act of imagining can be ambiguous, experimenters
have tried to clarify imagination methods often to help the subjects.
We divided the instruction method into three types. If the reference
included the instruction to imagine muscle movements or to
engage in kinetic motor imagery clearly, it was classified as kinetic
movement instruction (KMI, N = 7). It was classified as explicit
movement instruction (EMI, N = 8) if the imaginary behavior
was described accurately in detail, such as opening and closing
the hands. On the other hand, if only the hand direction was
mentioned, it was classified as simple movement instruction (SMI,
N = 6).

Each paper defined the experimental block with various names,
but we used the term adopted commonly in most papers. The
session is an experiment a subject performs on different days with
the same paradigm, and the “run” is a block performed for a
day, although it has a rest interval of several minutes, considering
the subject’s condition. The number of trials per class for the
entire session reported in Table 2 was based on more than half
of the subjects. For example, Wu (2020) reported 80 data points
because approximately 83% (N = 5) of subjects had 80 trials, and
approximately 17% (N = 1) had 40 trials. However, Stieger et al.
(2021) described it as a range because the number of trials was
composed evenly, and the mean value of the range was used to
calculate the mean number of trials in all datasets. We attempted
to avoid confusion by marking information that was not presented
clearly in the source of each dataset as unknown (−).

The number of trials per class for the entire session on a single
subject ranged from 30 to 4,950, with mean of 331.2 ± 880.71.
In the experiment, 11 datasets were divided into several sessions,
seven of which were conducted for 1 day (session), and five were
unknown. The mean number of runs per session was six, and
the mean number of trials per run was 57 ± 66.42, including all
classes. The product of the number of runs per session and trials
per run represents the total number of trials conducted per day.
For example, Wu (2020) performed ten runs of 16 trials and thus
obtained 160 trials per day. This is the sum of all classes, and as its
dataset consists of one session, the number of trials per class for the
entire session was 80.

3.1.3. Specification analysis
Figure 1 shows the progression of publishing public datasets

for motor imagery with respect to the number of publications and
components based on the datasets collected. The number of public
datasets published has increased since 2004, particularly in the last
5 years. In addition, we divided the MI data collected into groups
to analyze trends over time: the BCI competition datasets; the
old datasets (2009–2013), and the released most recently datasets
(2017–2021) based on 5 years. The BCI competition datasets,
Leeb et al. (2007) and Tangermann et al. (2012), were analyzed

separately because they are the datasets the most widely used in
many studies, and the old datasets did not include them, although
the periods overlap.

We investigated the way the components of the datasets have
changed over time because they can vary depending on how the
BCI fields grow and the research focus. The MI dataset released
recently had a relatively large number of subjects, with an average
of 28.40, followed by 10.67 for the old datasets and nine for the BCI
competitive dataset. The mean number of electrodes and sampling
rate were 57.2 and 847.4 Hz, 45.5 and 443.5 Hz, and 3 and 250 Hz
for the recent, old, and BCI competition datasets, respectively. For
the mean number of trials per class for the entire session, BCI
competition, recent, and old datasets contained 192, 187.5, and
103.3 trials, respectively. We note that the mean number of trials for
the recent datasets is 616.67 when Stieger et al. (2021) is included,
but it was excluded here to avoid bias.

Figure 2 shows the block’s duration and stimuli type that
constitute each dataset’s paradigm based on the reference. MI
paradigms are distinguished by five blocks: pre-rest, imagination
ready, imagination, feedback, and post-rest. All datasets took the
form of pre-rest, imagination, and post-rest, but there was a
difference in the latency. We reported only visual stimuli and
omitted sound stimuli except those used to indicate differences
between sub-blocks.

The length of one trial differed considerably from at least
2.5−29 s, with a mean of 9.8 s. The pre-rest, a sub-block in
which subjects have help to gaze their eyes or take a break
before the imagination, was 2.38 s on average, and the fixation
cross was presented most often (N = 13). Some data have sub-
block to call attention immediately before the imagination, which
prepares for imagination by instructing the class or presenting
a stimulus different from the pre-rest. This had mean of 1.64 s.
The imagination block ranged from 1 to 10 s, and averaging
4.26 s. There were some datasets in which feedback continued
from the imagination block until the brain wave reached specific
thresholds. The post-rest was 3.38 s on average, and unlike pre-
rest, blank stimuli were often presented. In some cases, ITIs were
set differently and, the intervals between stimuli were randomized
to prevent subjects from predicting when the next stimulus
would be presented.

Table 3 shows the experimental specifications in ME datasets
based on data the reference published. For datasets that performed
both MI and ME, such as Schalk et al. (2004), Ofner et al. (2017),
and Jeong et al. (2020), both were performed with the same
paradigm for comparison. Because it is challenging to design a
self-paced MI paradigm without an onset cue, Kaya et al. (2018)
performed a self-paced ME in which only two subjects pressed the
button. In the case of ME, the paradigm consisted of largely more
complex and dynamic motion than MI. For the subjects to perform
the motion task, most of the cue displays were presented with actual
objects (N = 4).

The number of subjects varied from 2 to 109, with a mean
overall of 29.5 ± 34.57 and a mean of 18.14 ± 13.80 excluding
Schalk et al. (2004). The mean the subjects’ ages in each dataset
ranged from 22.5 to 29.1 years, and the average age overall was
27.18 ± 1.53 years. The mean proportion of male subjects was
55.15%, but the proportion of males and females in a single dataset
was not balanced. Many experiments were conducted continuously
on the ME dataset, and it was often difficult to distinguish trials.
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TABLE 2 Experiment specifications of motor imagery datasets (–: no information provided).

References Class type Instruction
method

Feedback
(online)

Cue
type

Average
age

Number of

Subjects Males Classes Trials per
class

Sessions Runs per
session

Trials per
run

(regardless
of classes)

Stieger et al., 2021 Left/right/both hand EMI Y Object 39 62 26 3 3,150∼4,950 7∼11 6 −

Jeong et al., 2020 Arm-reaching (forward/ backward/ left/ right/ up/
down), hand-grasping (cylindrical/ spherical/
lateral), wrist-twisting (pronation/supination)

EMI N Arrow,
Figure

28 25 10 11 300 3 − 550

Zhou, 2020 Left/right hand, feet, idle SMI N Arrow 23.2* 20 11 4 420 7 6 40

Wu, 2020 Left/right hand EMI N Arrow 25 6 2 2 80†
− 10 16

Ma et al., 2020 Right hand, right elbow KMI N Text 23 25 19 2 100 1 5 40

Lee et al., 2019 Left/right hand EMI Y Arrow 29.5 54 29 2 100 2 2 50

Kim et al., 2018 Left/right hand, right foot SMI N Arrow 28* 12 11 3 30 − − −

Kaya et al., 2018 Left/right hand, left/right foot, tongue, five fingers EMI N Figure 27.5 13 8 10 − − 3 300

Ofner et al., 2017 Elbow flexion/extension, forearm
supination/pronation, hand open/close

KMI N − 27* 15 6 6 120 2 10 42

Cho et al., 2017 Left/right hand EMI N Text 24.8* 52 33 2 100† 1 5 40

Lee et al., 2016 Left/right hand, foot SMI N Arrow 26* 52 28 3 50 1 − −

Shin et al., 2017 Left/right hand KMI N Arrow 28.5* 29 15 2 30 1 3 20

Zhou et al., 2016 Left/right hand, foot SMI N Arrow 25 4 1 3 150 3 2 75

Steyrl et al., 2016 Right hand, feet KMI Y Arrow 25 13 − 2 80 1 8 20

Yi et al., 2014 Left/right/both hands, feet, left hand with right foot,
right hand with left foot

KMI N Text 24 10 3 6 90 1 9 60

Ahn et al., 2013a Left/right hand SMI N Arrow 25.3 10 8 2 60 1 3 40

Faller et al., 2012 Right hand, feet KMI Y Arrow 24.8* 12 7 2 100 5 − 40

Tangermann et al.,
2012

Left/right hand, feet, tongue SMI N Arrow − 9 − 4 144 2 6 48

Grosse-Wentrup
et al., 2009

Left/right hand EMI N Arrow 25.6* 10 8 2 150 − − −

Leeb et al., 2007

Left/right hand KMI Y Arrow
(offline)

24.7* 9 6 2 240 2 6 40

Object
(online)

240 3 4 40

Schalk et al., 2004 Left/right/both hands, feet EMI Y Object − 109 − 4 − − − −

For instruction method, KMI, kinetic movement instruction; EMI, explicit movement instruction; SMI, simple movement instruction.
*The average was manually calculated since only the range of ages are provided in the study.
†The number of trials per class for the whole session reported were based on more than half of the subjects.

Fro
n

tie
rs

in
H

u
m

an
N

e
u

ro
scie

n
ce

0
8

fro
n

tie
rsin

.o
rg

https://doi.org/10.3389/fnhum.2023.1134869
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-17-1134869 May 16, 2023 Time: 14:33 # 9

Gwon et al. 10.3389/fnhum.2023.1134869

FIGURE 1

The information of public datasets by years: brain-computer interface (BCI) competition datasets, Leeb et al. (2007) and Tangermann et al. (2012),
the old datasets (2009∼2013); and the recent datasets (2017∼2021). Schalk et al. (2004), called PhysioNet project, was excluded due to its
exceptionally large number of subjects and being too outdated. Stieger et al. (2021) was excluded from the recent datasets group only in calculating
the number of trials per class. The error bar represents the standard deviation.

Therefore, we did not track paradigm information in detail, such as
the MI datasets in Table 2.

3.2. Assessment of classification
accuracy and compatibility between
other datasets

Table 4 presents the brief recording settings of representative
datasets for CSP analysis based on actual data that can be
mismatched from what the references reported. The table consists
of the parameters that may affect the compatibility between the
datasets, such as device, paradigm, and the parameters. The signal
power indicates the mean of the signal envelope of the pre-
processed Cz channels during the entire session. However, in
Ahn et al. (2013a), seven measured by Biosemi were calculated
as the mean of the entire channel because there was no channel
information. It can infer the range of amplitudes in each dataset.

As shown in Figure 3 and Yi et al. (2014) had the highest
accuracy of 75.71 ± 14.69%, followed by 71.92 ± 15.70% for Lee
et al. (2019), 69.27 ± 13.03% for Cho et al. (2017), 65.65 ± 15.17%
for Stieger et al. (2021), 62.54 ± 9.01% for Kaya et al. (2018),

62.08± 10.20% for Ahn et al. (2013a), 62.47± 17.22% for Kim et al.
(2018) and 58.45 ± 15.17% for Shin et al. (2017). Yi et al. (2014),
Cho et al. (2017), and Lee et al. (2019) have high accuracy and
the distribution of accuracy forms a normal distribution, including
both good and poor performers.

The MI-BCI poor performer is typically one who demonstrates
a 60%–70% accuracy (Ahn et al., 2013b), and we considered the
minimum critical criterion 60%. Yi et al. (2014) had the lowest rate
of 20%, followed by 28.9% for Cho et al. (2017), 29.63% for Lee
et al. (2019), 40.0% for Ahn et al. (2013a), 46.51% for Kaya et al.
(2018), 49% for Stieger et al. (2021), 54.55% for Kim et al. (2018),
and 62.1% for Shin et al. (2017). The grand mean accuracy of 861
subjects (or sessions) was 66.28%, and the BCI poor performer ratio
was 45.30%. However, of 861 subjects, Stieger’s work included 589,
which may have biased the grand mean. We calculated the mean
of each dataset’s normalized accuracy distribution (right panel of
Figure 3) was 66.49%, and the BCI poor performer ratio, the black-
filled area, was 36.49%.

Figure 4 illustrates eight CSP features for each dataset that are
the grand mean of all subjects within the dataset overall. This figure
indicates directly how well the CSP filter constructed the features to
maximize the characteristics of each class in each dataset. Although
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FIGURE 2

The block information of a trial in each motor imagery dataset. The timings are based on the bagging of pre-rest (0 s). The number next to the
stimuli represents the timing when it appeared and the number next to the bar represents the duration of the block in seconds. The gray bar
indicates the adjustable time within sub-blocks. *Only the duration of the imagination is provided due to the lack of information in Steyrl et al. (2016).

TABLE 3 Paradigm specifications of motor execution datasets (–: no information provided).

References Class type Cue type Average age Number of

Subjects Males Classes

Schwarz et al., 2020 Palmar grasp, lateral grasp Object 22.5* 45 24 2

Jeong et al., 2020 Hand (forward, backward, left, right, up, down),
hand-grasping (cylindrical, spherical, lateral), wrist-twisting
(pronation, supination)

Figure 28* 25 10 11

Wagner et al., 2019 Walking, preferred cadence walking, acceleration/
deceleration walking

Auditory 29.1 18 11 4

Brantley et al., 2018 Level ground walking, stair descent, stair ascent, ramp
descent, ramp ascent

Object 24.5* 10 5 5

Kaya et al., 2018 Left/right hand (bottom press) No(self-paced) 27.5* 2 2 2

Ofner et al., 2017 Elbow flexion/ extension, forearm supination/pronation,
hand open/close

− 27 15 6 6

Luciw et al., 2014 Prevailing contact surface (sandpaper, suede, silk)× weight
(165 g, 330 g, 660 g)

Object 27* 12 5 9

Schalk et al., 2004 Open and close left/right fist, Open and close both fists, feet Object − 109 − 4

*The average was manually calculated since only the range of ages are provided in the study.

the pattern of the features was similar according to the filter, the
feature scales differed for each dataset.

Figure 5A presents a t-SNE map of the eight-dimensional CSP
features using the Mahalanobis distance. The reason why it was
used here is that we examined the distribution between the datasets
considering the distance of each subject. Each circle is a single
subject or session, and the marginal distribution represents the
distribution of datasets and the relation between them datasets.

As there is a scale difference between the features (Figure 4), it
was remapped to normalize them by variance (Figure 5C). This
mitigates the difference in the scale between datasets, and it is
possible to confirm the t-SNE map based on the features’ pattern.

Stieger et al. (2021) was widely distributed in the t-SNE
maps of CSP features, while the other datasets were generally
cohesive between same datasets (Figures 5A, C). There were cases
in which the distributions of datasets overlapped, such as Cho et al.
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(2017) with Lee et al. (2019), and Shin et al. (2017) with Kaya
et al. (2018) and Yi et al. (2014). Ahn et al. (2013a) forms two
clusters, and Kim et al. (2018) is distributed widely compared to
the number of data points.

Figures 5B, D represents the Euclidean distance between
datasets based on the center points as each dataset’s mean in the
eight-dimensional features’ space. This was used here rather than
the Mahalanobis distance because the straight-line distance of each
dataset’s central point was obtained. It is the distance in the feature
space, so the unit and the size of the number are meaningless and
can be interpreted as a relative size.

In the distance between the raw CSP features (Figure 5B), the
mean of the log distance value from the other datasets was 12.75
for Stieger et al. (2021), 7.56 for Lee et al. (2019), 7.41 for Yi et al.
(2014), 7.36 for Kim et al. (2018), 7.35 for Cho et al. (2017), 7.31
for Kaya et al. (2018), 7.26 for Shin et al. (2017), and 7.21 for Ahn
et al. (2013a). The dataset closest to each other were as follows: 4.61
between Ahn et al. (2013a) and Kaya et al. (2018), 5.20 between Shin
et al. (2017) and Ahn et al. (2013a), 5.45 between Yi et al. (2014)
and Cho et al. (2017), 5.58 between Lee et al. (2019) and Yi et al.
(2014), 6.2 between Kim et al. (2018) and Shin et al. (2017), and
12.75 between Stieger et al. (2021) and Lee et al. (2019).

In the distance between the normalized CSP features
(Figure 5D), the mean of log distance value from the other datasets
was 1.57 for Ahn et al. (2013a), 1.56 for Cho et al. (2017), 1.34 for
Stieger et al. (2021), 1.332 for Shin et al. (2017), 1.31 for Lee et al.
(2019), 1.29 for Kim et al. (2018), 1.27 for Yi et al. (2014), and 1.21
for Kaya et al. (2018). The datasets closet to each other were as
follows: −0.272 between Shin et al. (2017) and Kaya et al. (2018),
0.19 between Ahn et al. (2013a) and Cho et al. (2017), 0.24 between
Kim et al. (2018) and Lee et al. (2019), 0.29 between Yi et al. (2014)
and Kaya et al. (2018), 0.67 between Stieger et al. (2021) and Yi et al.
(2014).

4. Discussion

4.1. Review dataset specifications

The number of public datasets has been increasing recently,
but for them to be used actively, researchers need sufficient
information to be available for comparative selection. Therefore, we
scrutinized the details of datasets, which have been covered before
rarely. This provides guidelines to which researchers can refer
when using public datasets and confirms the trends in movement-
related studies.

Among the datasets collected, the MI datasets were more
numerous than the ME datasets, and both were focused on the MI
paradigm (Table 1). Schalk et al. (2004) had the only data with more
than 100 subjects for MI and ME. Except for that datum, there were
only four MI datasets with 50 or more, and the remainder had 30
or fewer. Schwarz et al. (2020) had 30 or more ME datasets. It was
confirmed that datasets that recruited far more subjects than BCI
competitive datasets were released.

We compared and analyzed the BCI competitive datasets that
are used frequently and the groups of datasets based on the public
year they were released publicly (Figure 1). Although the number
of samples is insufficient to analyze the trends by year, research
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FIGURE 3

Classification accuracies of left-right motor imagery. In each dataset, the filled dot represents the individual subject’s accuracy and the average
(horizontal line) and median (white circle) of the accuracies are presented. The dotted red line denotes the threshold accuracy (60%) for identifying
the low performers (BCI illiterates). In the right panel, the accuracy distributions obtained by Kernel Density Estimation are overlaid and the average
of the normalized accuracy distributions is presented in the black lines. The area of low performers based on the threshold accuracy is highlighted in
black color and the estimated percentage of the population is written. Kim et al. (2018) was excluded from obtaining the average of normalized
accuracy distribution.

trends can be confirmed by comparing BCI competitions released
approximately 10 years ago, datasets released at that time, and those
released recently.

We found that not only has the number of published datasets
increased each year, but also the size of a single dataset has increased
with respect to the number of subjects, electrodes, and sampling
rate. Recent datasets include a larger mean number of trials than
do old ones, and the datasets in 2020 and 2021 consisted often
of multi-sessions measured over several days. In particular, the
number of subjects per dataset has also increased in the recent
datasets. Compared to the number of BCI competitive datasets
with 9 subjects, the mean number of subjects in datasets in the
past 5 years was 29.5, a significant increase. The dataset released
recently tend to collect big data because data-driven deep learning
and machine learning are used actively now in BCI research
(Altaheri et al., 2021).

In the measurement environment, a relatively heavy device
was preferred to a lightweight one. However, recently, an
increasing number of BCI research studies are using lightweight
EEG devices. LaRocco et al. (2020) reported the possibility of
drowsiness detection studies based on lightweight EEGs, such as
MindWave, EmotionalEpoc, and OpenBCI, and Krigolson et al.
(2017) quantified ERP using a portable MUSE EEG system.
On the other hand, high-cost, high-resolution EEG devices are
relatively preferred in the MI and ME research studies. The datasets
published more recently show a trend toward higher sampling rates
and a greater number of electrodes. The public datasets were also
measured in whole brain regions, except for Leeb et al. (2007) and
Tangermann et al. (2012), which released data from constrained
environments for competition purposes.

In addition, MI and ME had differences in the difficulty of
conducting experiments by subjects. MI included primarily simple
and discrete tasks because it is difficult when confirming the
conduction of the work, while ME consists of relatively complex
tasks that are performed as delicate movements, such as the object’s
weight and tactile differences. Because both paradigms are sensitive
to noise due to movement, additional electrode measurements
have been preferred rather than lightening the environment in
practical terms. Many datasets also measured electrodes capable of
post-processing noise, such as EOG and EMG electrodes, and in

particular, all ME datasets included motion-tracking sensors. This
trend overall requires signals obtained with reliable EEG devices, as
biomarker extraction in MI-BCI is complex and requires as many
EEG resources as possible for accurate analysis (Lee et al., 2019).

4.2. Importance of paradigm parameters

The basic framework of the current MI paradigm is a cue-
based format in which a subject gazes at the fixation cross (pre-
rest), instructions are presented, such as directions (cue), and
then imagination is conducted for a certain period. There are
often paradigms in which feedback from images is presented using
models learned from data obtained during calibration sessions
(Mousavi et al., 2017). Many MI studies follow the conventional
Graz BCI motor imagery paradigm (Pfurtscheller et al., 1993).
Thus far, information about paradigms in MI experiments has
not been considered important. The MI paradigm is fixed only in
composition; according to this investigation, there are no specific
established details.

Each experimental parameter can influence brain activity
as a form of stimulus, and ultimately is likely to lead EEG
signal differences between datasets, even when based on the
same paradigm. The public datasets collected had enormous
differences in the details about the paradigm parameters, such
as block duration and cue type (Figure 2 and Table 2). The
stimulus presented on the screen during the break before and after
imagination largely used a fixation cross or blank. They could be
used as a stimulus to minimize the effect and serve merely for eye
fixation. There were various cue types in the imagination block: 14
for arrow; 3 for text; 3 for object; and 2 for figure. The length of the
imagination block ranged from 1 to 10 s, and the length of one trial
varied considerably from a minimum of 2.5 to a maximum of 29 s.

Brain-computer interface (BCI) researchers overlook the
method of imagination among parameters often, which can make
the differences in brain waves. It has been reported that the
EEG of KMI corresponds to sensory imagination performs better
in classifying MI than the EEG of visual motor imaging (VMI)
corresponds to the visual network (Yang et al., 2021). Among
the datasets in this study, seven provided instruction using only
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FIGURE 4

Eight common spatial pattern features for each dataset. The four CSP filters were applied to left trials and right trials, and the eight features were
concatenated. The presented features are the averaged features over all sessions/subjects in each dataset. Note that the first two CSP filters are
designed to maximize the variance of left motor imagery trials, and the last two CSP filters does that for the right motor imagery trials. The error bar
represents the standard error.

class information (SMI), eight clarified movement tasks (EMI), and
six instructed the subjects to focus their muscles on movement
(KMI). In the case of SMI datasets, information may have been
omitted because the matter was not considered an essential
factor to researchers.

Practicing the same movement to improve the imagination
before the experiment, or helping the subject by clarifying the
way to imagine, can also affect the results. Some datasets, such
as those of Yi et al. (2014), Cho et al. (2017), and Ofner et al.
(2017), explained that the subjects engaged in a practice process
before MI, but most datasets cannot confirm this explanation. It
was confirmed that the activity in the motor-related area increased
more with the method of performing MI after the actual motion,
not with a simple verbal instruction method (Hasegawa et al.,
2017). Lorey et al. (2009) found that brain activation occurs more
strongly in MI from the first-person perspective than the third-
person perspective. Thus, researchers can improve MI performance
through paradigm details that aid imagination.

We confirmed that the detailed elements of the experimental
paradigm differed across datasets, and we believe that these need
to be considered because it is quite possible that they affect
brain waves. O’Shea and Moran (2017) pointed out that MI and
ME research has been conducted continuously according to the
motion simulation theory (Jeannerod, 2001), but there is a lack
of understanding of the cognitive mechanisms that underlie MI.
To study this in more detail, researchers need to share sufficient
information about the paradigms they employ. Therefore, in the
future, they need to design paradigm details more delicately in MI
experiments and describe them in their papers.

4.3. Comparing the quality of
representative MI datasets

We confirmed the dataset’s quality by comparing the CSP
accuracies calculated under the same conditions. There is one
limitation, in that we did not calculate each dataset’s optimal
accuracy to equalize the conditions. If the length of the CSP input

signal is increased further or the frequency band is widened, then
some datasets may have increased accuracy. We also agree that
the quality of signals and datasets can be quantified in many
ways, and it is inappropriate to define quality unconditionally
according to only mean accuracy. We evaluated the data’s quality on
the assumption that researchers who use public datasets collected
high-quality data for MI classifier model generation or explored
MI biomarkers, and thus evaluated the data quality based on
the mean accuracy and MI-BCI poor performer rate based on a
threshold of 60%.

The mean accuracy was good in the order of Yi et al. (2014),
Lee et al. (2019), Cho et al. (2017), Stieger et al. (2021), Kaya
et al. (2018), Ahn et al. (2013a), Kim et al. (2018), and Shin et al.
(2017). The low performer rate was low in the order of Yi et al.
(2014), Cho et al. (2017), Lee et al. (2019), Ahn et al. (2013a), Kaya
et al. (2018), Stieger et al. (2021), Kim et al. (2018), and Shin et al.
(2017). Lee et al. (2019) and Cho et al. (2017) can be considered to
have obtained high-quality data because they had a vast number
of samples that were distributed normally. The mean accuracy
and poor performer rates of the entire datasets were 66.28 and
45.30%, respectively, but this may be a biased result because Stieger
et al. (2021) accounted for more than the majority of the entire
sample. Therefore, the mean accuracy and poor performer rate
obtained from the dataset’s normalized distribution were 66.49%
and 36.49%, respectively. A meta-analysis of 861 people in different
environments confirmed that approximately one-third of all MI-
BCI users were the poor performers.

Poor BCI performer is a challenge that must be solved
for BCI technology to develop. As with Kim et al. (2018)’s
research objectives, many studies have attempted to improve BCI
performance (Vidaurre and Blankertz, 2010), and we found that
one-third of the many datasets we collected corresponded to theirs.
In addition, although there was a difference in the ratio for each
dataset, the fact that all of them included a certain ratio of poor
performers suggests that they cannot continue to be excluded
simply from the analysis.

When public datasets are used in MI studies, it may be
necessary to take poor performers into account and analyze them.
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FIGURE 5

Visualization of CSP features. (A,C) t-SNE maps of eight-dimensional raw CSP features and normalized CSP features of each subject that was
compressed into a two-dimensional space. The color lines along each axis display the marginal distribution of each dimension computed by Kernel
Density Estimation. (B,D) Euclidean distance (in arbitrary units) among centroids of datasets in the eight-dimensional raw CSP features’ and
normalized CSP feature’ space.

It has been found that it is better to use only subjects who have
achieved a certain level of performance or more than all subjects
to create a generalized model for MI (Won et al., 2021). As in
this study, researchers would need to choose the optimal data
because they vary depending on the study’s purpose. They can
select datasets with a large number of high performers to form an
MI-optimized model or datasets with a high proportion of poor
performers to analyze their neurophysiological characteristics. In
particular, the poor performers will be very important research
subjects in future efforts to commercialize BCI. If this is not
addressed, one-third of those who attempt to BCI technology will
not be able to do so, even if they purchase it, which could be
fatal to the interface technology. Because our study evaluated data
quality based on accuracy, undervalued datasets may be a suitable
sample for this study.

4.4. Inferring the compatibility between
representative MI datasets

We inferred compatibility between datasets by referring to
CSP features extracted under the same conditions. The expectation
might be that the closer the distance to the other datasets within
the feature space, the higher their compatibility, while the more
heterogeneous the distribution, the lower the compatibility. This
assumes that the signals can be compared in the same dimension
because they were moved to the feature domain using the same
methodology, but still reflected dataset-specific characteristics.

Figure 4 shows the difference in the scale of the CSP feature in
each dataset that is related to the power value of the pre-processed
signal in Table 4. The sum of the mean and the standard deviation
of the signal power is more prominent in Stieger et al. (2021) than
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FIGURE 6

The example of a structure for the recommended dataset with a MATLAB data structure preview.

others, and the scale of the CSP feature is also the largest. Yi et al.
(2014) and Lee et al. (2019) showed a relatively similar mean of CSP
features value, but there were significant difference in the variance
of the CSP features and the signal powers: 3.28 ± 1.52 for Lee
et al. (2019) and 7.75 ± 5.30 for Yi et al. (2014). It is expected
that the CSP features reflect the signal’s power and the dispersion
of the individual data that constitute the dataset. However, the CSP
feature is an indicator that is not affected by power alone. Kaya et al.
(2018) and Kim et al. (2018) had similar signal power ranges, but
there was a large difference in the feature scale. This is because the
signal reflects multiple data information in addition to signal power
as it transposes to the CSP feature domain.

We analyzed the dataset’s feature distribution using raw
features, including each signal’s the power information
(Figure 5A). In addition, we examined the distribution based on the
pattern using the normalized CSP features (Figure 5C). Individual
sessions within the same dataset may have formed clusters because
they may be superior to that in other datasets. Although the shape
of individual sessions’ (subjects) the distribution in Figures 5A,
C differ the overlapping dataset distributions are nearly the same.
There is overlap between Yi et al. (2014), Shin et al. (2017), and
Kaya et al. (2018), and between Cho et al. (2017), Lee et al. (2019).
Interestingly, Ahn et al. (2013a)’s data formed two distribution
clusters, which may be due to measurements with two devices.
In Figure 5, one cluster overlaps Cho et al. (2017) measured by
Biosemi, and the other overlaps Shin et al. (2017) measured by
BrainProduct. This is consistent with the finding that EEG devices
can affect the data significantly (Melnik et al., 2017).

This is confirmed more clearly in Figure 5D, which shows the
distance between datasets in a more eight-dimensional normalized
feature space. Ahn et al. (2013a) and Cho et al. (2017) measured
by Biosemi, Kim et al. (2018) and Lee et al. (2019) measured
by Brainproducts, and Yi et al. (2014) and Stieger et al. (2021)
measured by Neuroscan were the closest datasets to each other.
Figure 5B shows that the scale of the signal affects the compatibility
between the data greatly. Stieger et al. (2021) has a large signal
power compared to other datasets and was the farthest from all
other data. It is expected that if the signal scale is solved, the

compatibility between datasets measured with the same company’s
equipment will be the best.

As explained in section “4.2. Importance of paradigm
parameters,” the paradigm parameters, such as the cue type, may
affect the distance. Figure 5B shows that Shin et al. (2017) was
closest to Ahn et al. (2013a) and Kim et al. (2018) was closest
to Shin et al. (2017), who used an arrow stimulus. Yi et al.
(2014) was closest to Cho et al. (2017), who a used text stimulus.
Figure 5D shows that Kim et al. (2018) was closest to Lee et al.
(2019) who used a text stimulus. Another factor is the method
of instruction used. Figure 5B shows that Stieger et al. (2021)
is closest to Lee et al. (2019), and in Figure 5D and citeBR80
is closest to Kaya et al. (2018), who used the same instruction
method as EMI.

Although not confirmed in this study, details of EEG devices,
such as electrode types, may affect signal compatibility as well. EEG
was sensitive to noise previously, so electrodes were attached with
gel to reduce impedance. Recently, however, several pin types have
been developed as dry EEG with wet device quality for convenience
(Di Flumeri et al., 2019; Heijs et al., 2021). Habibzadeh Tonekabony
Shad et al. (2020) confirmed that the input impedance of the latest
EEG system of dry electrodes and amplifiers is more than 100 M�,
while the impedance of conventional wet electrodes is less. The
electrode type can affect the signal power because of impedance,
and the resulting baseline difference between EEG signals can
affect compatibility. However, in our study, we could not confirm
this because only some studies provided information about the
electrode type, such as Kaya et al. (2018), Jeong et al. (2020), and
Ma et al. (2020), who used a gel type electrode.

4.5. Recommendations for a public
dataset

We found that there are cases in which data are disclosed
that lack important details (see Supplementary Material 2). These
can have a significant effect on the analysis, and some can lead
to distorted results if not taken into account. To avoid this
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problem, we suggest that BCI researchers give attention to certain
considerations when they release future datasets.

The EEG-BIDS project was established to develop a standard
format to organize and share brain imaging datasets between
laboratories better (Pernet et al., 2019). The format contains
sufficient information for data analysis. We believe that BIDS
could facilitate better use of public datasets and ultimately
foster an open science trend in the field. However, some
information may not be available in certain experiments,
and collecting all of the information for BIDS or related
standard formats may be another burden to researchers.
Indeed, among the datasets, only Ma et al. (2020) was
provided in BIDS format. Therefore, using a well-organized
standard format is obviously encouraged, but what to include
is another important issue when it is not an option to use
standard. Here, we will discuss the minimal components that
researchers should consider when they share their datasets
with the public.

Here, we present components that researchers who cannot
follow the BIDS form must have when they release data. The list
includes only the bare minimum of information to encourage the
dataset to be published. The essential components that a dataset
must contain are as follows:

• EEG data (continues EEG signal)
The EEG signal shares the continuous raw signal rather than
the segmented signal. It takes the form of a matrix of channel
x time, and the file format recommends “mat” and “npy.”
• Event information (event type, latency of event)

Event types provide the onset triggers of each block and
describe the corresponding information clearly. The event’s
latency is the data point at the occurrence of an event
consistent with the EEG data.
• Environmental information (electrode, sampling rate)

Electrodes are provided by channel name and location on the
scalp for visualization. Sampling rates are provided based on
published data and not on the measurement environment.

We recommend sharing both the MATLAB file format, used
conventionally in EEG analysis, and the Python file format, whose
use is increasing with deep learning research. It is recommended
that the signal be released as consecutive signals rather than as
separate signals by trial. As there is a concern about the edge
effect in the bandpass filtering used commonly for short-length
signals in EEG analysis, we encourage opening the raw signal to
maximize the possibility of analysis. In addition, this may help infer
paradigm specifications, such as ITI, which is not presented to the
user through event information. Approximately 71% of the MI and
ME datasets collected met this recommendation, and the datasets
that can be loaded into the MATLAB, even if they are not “mat”
format exceptionally, were included.

One crucial point is that all information should be included
in the data structure so that experimental information can be
confirmed only with a data file alone (Figure 6). Information
in collected the public datasets we collected was scattered, for
example, papers’ references, separate text or word files, and
variables within the data file. To prevent the users from having to
make unnecessary efforts, the essential information at least needs to
be presented intuitively within the data.

5. Conclusion

Brain-computer interface researchers have used public datasets
to increase efficiency or to validate their findings. However,
until now, they have been using primarily small datasets
of classical paradigms that were released 10 years ago. BCI
researchers need to move beyond conventional datasets and use
the numerous public datasets reported in this study actively. The
expansion of data offers objectivity to research, and verification
through multiple datasets can increase replicability in various
environments. To accomplish these goals, it is necessary to use
at least three public datasets and select datasets that consider the
environmental factors.

Many labs need to release datasets actively. Other research areas
tolerate of open sources through Github already and share data with
models, which has created a knowledge explosion. Because BCI is a
study of human subjects, it is clear that more caution is needed, but
there are advantages that can be achieved through sharing data. In
the case of deep learning, pre-training models are already used to
improve performance, even in different domains.

Although the paradigm parameters have not been considered
as important in conventional MI studies, new consideration is
needed because they can influence brain waves and may be
related to differences between datasets. Many studies collect
subjects’ information, but they are not actively used in relation
to brain waves analysis. Even factors beyond the experimenter’s
control should be provided with public datasets for researchers
to explore.

We believe that this review contributes as a guideline for the
use of public datasets on the part of many researchers at this time in
BCI research where data are critically important. There have been
many review papers on specific research topics in BCI studies, but
only a few studies have addressed the data themselves. However,
the recent trend in research is changing to data-based research and
particularly given that the data themselves are valuable because of
the nature of BCI research, this trend could be meaningful and
valuable when reviewing the data at this time.
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