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There is an increasing demand within consumer-neuroscience (or

neuromarketing) for objective neural measures to quantify consumers’

subjective valuations and predict responses to marketing campaigns. However,

the properties of EEG raise difficulties for these aims: small datasets, high

dimensionality, elaborate manual feature extraction, intrinsic noise, and between-

subject variations. We aimed to overcome these limitations by combining unique

techniques of Deep Learning Networks (DLNs), while providing interpretable

results for neuroscientific and decision-making insight. In this study, we

developed a DLN to predict subjects’ willingness to pay (WTP) based on their EEG

data. In each trial, 213 subjects observed a product’s image, from 72 possible

products, and then reported their WTP for the product. The DLN employed EEG

recordings from product observation to predict the corresponding reported

WTP values. Our results showed 0.276 test root-mean-square-error and 75.09%

test accuracy in predicting high vs. low WTP, surpassing other models and

a manual feature extraction approach. Network visualizations provided the

predictive frequencies of neural activity, their scalp distributions, and critical

timepoints, shedding light on the neural mechanisms involved with evaluation.

In conclusion, we show that DLNs may be the superior method to perform

EEG-based predictions, to the benefit of decision-making researchers and

marketing practitioners alike.

KEYWORDS

neuromarketing, deep learning, neuroscience, machine learning, electroencephalogram,
consumer neuroscience, neural networks, consumer behavior

1. Introduction

In the last decade, the field of consumer neuroscience, or neuromarketing, is flourishing,
with numerous publications, academic programs, initiatives, and companies. There is a
growing community of scientists conducting studies in the field that converged into multiple
meta-analyses and reviews (Ariely and Berns, 2010; Javor et al., 2013; Fortunato et al.,
2014; Smidts et al., 2014; Hsu and Yoon, 2015; Plassmann et al., 2015; Schneider and
Woolgar, 2015; Karmarkar and Yoon, 2016; Genevsky et al., 2017; Hsu, 2017; Karmarkar and
Plassmann, 2017; Lee et al., 2017; Harris et al., 2018; Lin et al., 2018; Cherubino et al., 2019).
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There is an increased demand for objective neural measures that
quantify consumers’ subjective valuations and predict responses to
marketing campaigns. Many researchers and practitioners aspire
to measure neural and physiological activity to predict a future
decision or action of an individual or to assess the success of
possible marketing campaigns in the general population. This
aspiration is driven by the limitations of traditional marketing
techniques, such as questionnaires, focus groups, and interviews
(Hakim and Levy, 2019).

The notion that a signal for subjective value could be
obtained from neural information is based on the inception of
the “value network,” together with its growing body of evidence
(Levy and Glimcher, 2012; Bartra et al., 2013; Glimcher and
Fehr, 2014). The network is considered to compute information
from different origins, be they related to personal experience,
emotions, memories, impulses, or responses to contexts, and
translate it onto a common neural currency, with which decision-
makers may compare disparate alternatives to achieve a resolution.
Several distinct brain regions are suspected to participate in this
network, mainly the ventral striatum, ventromedial prefrontal
cortex (vmPFC), and the posterior cingulate cortex, which were
shown to be related to subjective value irrespective of reward type,
task, or stage of the decision-making process (Kable and Glimcher,
2007; Plassmann et al., 2007; Chib et al., 2009; Levy and Glimcher,
2011; Padoa-Schioppa, 2011).

One candidate technique for acquiring value-related
neural information is Electroencephalography (EEG)–an
electrophysiological method that records the electrical activity of
the brain by attaching several electrodes (electrical conductors)
along the scalp (Haas, 2003). EEG recordings provide an
approximation of neurotransmitter-mediated neural activity,
with high temporal resolution (milliseconds) but poor spatial
resolution (Luck, 2014). This technique is commonly used in
the neuromarketing industry (see NMSBA Website), and there is
accumulating evidence linking various EEG signals with value-
based choice (Sutton and Davidson, 2000; Dmochowski et al.,
2012; Fuentemilla et al., 2013; Khushaba et al., 2013; San Martin
et al., 2013). Several academic studies have already employed EEG
recordings to predict subjects’ stated valuation or actual choices
(Vecchiato et al., 2011; Kong et al., 2013; Ravaja et al., 2013; Telpaz
et al., 2015; Yadava et al., 2017; Ramsøy et al., 2018; Wei et al., 2018;
Golnar-nik et al., 2019; Kumar et al., 2019; Alnuman et al., 2020;
Pandey et al., 2020; Si et al., 2020), or population marketing success
(Dmochowski et al., 2014; Boksem and Smidts, 2015; Venkatraman
et al., 2015; Barnett and Cerf, 2017; Christoforou et al., 2017;
Guixeres et al., 2017; Shestyuk et al., 2019; Eijlers et al., 2020).
However, only a few tried to use the latest computational modeling
techniques. Importantly, previous studies relied on manual feature
extraction and had small data sets.

For example, a recent study recorded EEG data from 30
participants as they watched 220 different advertising commercials,
and used an support vector machine (SVM) model on manually
extracted features to predict participants’ questionnaire responses
that capture their purchase intent (Wei et al., 2018). Another study
predicted the effectiveness of Super Bowl commercials based on
features extracted manually from the EEG signals alongside eye
tracking and heart rate data (Guixeres et al., 2017). The authors
used a simple neural network with only two fully-connected layers
with ten and five units, respectively, and attempted to predict the

number of YouTube viewings for each commercial. Additionally,
a team from Neuromarketing Labs reported they could predict,
using features manually extracted from the EEG signals, between
successful and unsuccessful sales of shoes. They used a custom-
made “preference index computed through an internally developed
algorithm loosely associated with parameters from basic emotional
neuroscience” (Baldo et al., 2015). Another study applied a hidden
Markov model on features they extracted from the EEG signals of
40 participants while they were watching images of 14 different
products, to predict their likes/dislikes of the products (Yadava
et al., 2017). The authors also tested various other models, such as
support vector machine, random forest, and nearest neighbors.

A different study applied a probabilistic neural network
and k-nearest neighbors prediction models (Murugappan and
Murugappan, 2014) to predict preferences. In that study,
participants viewed four commercials per four different vehicle
brands while their EEG activity was measured and processed
manually to several features. Lastly, a study conducted in our
lab used a combination of a multitude of EEG measures to
predict choices that we manually extracted based on previous
literature: inter-subject correlations (ISC), hemispheric asymmetry,
and spectral power bands (Hakim et al., 2021). Subjects watched
six different product commercials while we recorded their EEG
activity. We predicted both subjects’ choices and the commercials’
success at the population level. Importantly, we showed that
adding the EEG data increased the prediction success compared
to what we could achieve when using only a standard marketing
questionnaire. To accomplish this, we utilized various machine
learning models, such as support vector machines, decision trees,
kernel discriminant analysis, and more.

Although these studies demonstrated successful predictions,
they all manually extracted the features of the EEG signal.
Moreover, each study used a different combination of features
as the input to their model. Hence, as a scientific community,
this prevents us from converging to well-established and
generalizable EEG-based neural signals that represent value
across various domains, stimuli, and environments. To overcome
these shortcomings, in the current study, we use a state-of-the-art
deep learning model both as our predictive algorithm and as our
feature extraction procedure.

The clear dogma that emerges from examining the previous
EEG-based prediction studies is that they manually extracted
various features from the EEG signal and used some classifier to
learn the conditional probability of subjective valuations on the
extracted features. As shown above, the features extracted rely on
previous findings relating these features to different aspects of the
valuation process (Hakim and Levy, 2019). We propose that this
approach to the prediction task is fundamentally limited and suffers
from issues constraining its success.

First, the properties of EEG datasets, in general, raise difficulties
for conventional machine learning and regression methods in
prediction. This is because the size of the EEG datasets is often
small, the EEG signal is high dimensional, very noisy, obscure,
non-stationary, and with high unpredictable variations between
subjects. Moreover, there is a need for elaborate and exploratory
feature extraction.

Second, in all previous attempts, the experimenters chose in
advance, based on previous studies, which EEG features to use for
their prediction. Thus, researchers limit the information that could
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be extracted from the EEG recordings to whatever can be captured
based on their specific pre-defined pre-processing and feature
extraction pipelines. However, there are unlimited possibilities of
features to use and pre-processing parameters to tune manually.
For example, assume we want to use theta frequency power band
(which is in the range of 4−8 Hz) as an input to the model.
One question that immediately arises is whether to take the entire
range from 4−8 Hz, or maybe just the range between 5−7 Hz, or
perhaps allow each subject her unique range. Moreover, researchers
must choose various parameters with which to conduct the spectral
transformation, such as the time window, overlap, frequency
resolution, and transformation technique (wavelet, STFT, etc.).
These questions only scratch the surface, as there are endless
possibilities and free parameters to decide from what time points
to extract any feature. On top of that, we can add the variety of
options available for treating specific electrodes and the signal’s
spatial components (Averaging, maximizing, ICA, etc.).

There are numerous possibilities in each feature extraction
pathway, giving the researcher countless degrees of freedom. It is
almost impossible to know in advance which exact feature, pre-
processing method, and extraction procedure will give the best
prediction. This allows the researcher to explore various procedures
and arrive at the most predictive features for his/her dataset, which
could easily result in overfitting the dataset and failing to generalize
the results on new data. We propose that this might explain the
limited success of EEG-based features in out-of-sample predictions.
In fMRI, the degrees of freedom during the pre-processing stage
were estimated to be in the order of tens of thousands (Poldrack
et al., 2017), and we contend that EEG is not different in this matter.

Lastly, and this is mainly a problem for regression approaches,
even if we can choose the best possible features without overfitting,
we still need to figure out if there are interactions between
these features and what exactly they are. For example, it is often
unclear whether we need double or triple interactions between
each feature in the model, or whether their interaction may be
non-linear, and so on.

To overcome these limitations, in this study, we use a Deep
Learning Network (DLN) (LeCun et al., 2015) that combines
several state-of-the-art techniques. Thanks to their superior
ability to learn complex representations and automatically extract
optimal features, DLNs have revolutionized many research fields,
such as Computer Vision, Brain-Computer Interfaces, Artificial
Intelligence, and more. Importantly, DLNs have already shown
success utilizing EEG signals for many applications (Khosla
et al., 2020; Gu et al., 2021). The applications vary from
epilepsy prediction and seizure monitoring (Mirowski et al., 2009;
Antoniades et al., 2016; Hosseini et al., 2016; Liang et al., 2016;
Page et al., 2016; Thodoroff et al., 2016; Golmohammadi et al.,
2017; Acharya et al., 2018), to auditory music retrieval (Stober
et al., 2014, 2015), detection of visual-evoked responses (Cecotti
and Graser, 2011; Cecotti et al., 2014; Manor and Geva, 2015;
Shamwell et al., 2016), mental workload classification (Bashivan
et al., 2015; Almogbel et al., 2019), sleep stage recognition (Supratak
et al., 2017; Sors et al., 2018; Humayun et al., 2019; Michielli et al.,
2019; Yuan et al., 2019), emotion detection (Jirayucharoensak et al.,
2014; Zheng and Lu, 2015; Kim and Jo, 2018; Teo et al., 2018; Chen
et al., 2019; Qazi et al., 2019; Zeng et al., 2019; Li et al., 2020), limb
control (Nakagome et al., 2020), biometric authentication (Jalaly
et al., 2020), and motor imagery classification (An et al., 2014;

Li and Cichocki, 2014; Sakhavi et al., 2015; Sakhavi and Guan,
2017; Schirrmeister et al., 2017; Tabar and Halici, 2017; Tang et al.,
2017; Olivas-Padilla and Chacon-Murguia, 2019; Qiao and Bi, 2019;
Tayeb et al., 2019). Moreover, a review of 154 papers found that
the median gain in accuracy of DLN approaches compared to
regression and other machine learning models was 5.4% (Roy et al.,
2019).

In our study, we developed a novel DLN architecture that
decodes EEG neural signals to predict willingness to pay (WTP)
for products. Since DLNs require a large amount of data, we
collected an extensive dataset that has over 35k samples of EEG
recordings from 213 subjects. We acquired the EEG recordings
while subjects observed pictures of products and then reported
their WTP for the observed product, as a proxy for their individual
subjective values. This paradigm could later translate to prediction
of subjective valuations of products in response to marketing
stimuli, although further research would be required to establish
this. Then, we applied a DLN to overcome the drawbacks of EEG
measurements stated above and optimally performed predictions
of subject-specific WTP. We combined several state-of-the-art
techniques that alleviate the need to manually search for features
in the EEG signal that contain value-related information, without
a priori choosing any features or preprocessing pipelines. Lastly,
we used network visualization techniques to gain insights regarding
the attributes of the signal that best predict value and thus the
neural mechanisms involved.

2. Materials and methods

2.1. Subjects

To our knowledge, none of the brain computer interface (BCI),
EEG, or Neuromarketing communities have published a dataset
with EEG recordings and corresponding continuous valuations
of products in the scale appropriate for deep learning. That is, a
dataset that would include both a large sample size and multiple
trials per participant. Although, a relevant study was conducted by
Sundararajan et al. (2017) who collected a total of 1,800 samples
of EEG recordings from 181 subjects, albeit using only binary
choices between products and not a continuous value scale such
as WTP. Therefore, we have undertaken the task of creating such a
dataset in our own laboratory. Two hundred and thirteen subjects
(96 males) participated in the study, aged 19−51 (Mean = 25.36,
STD = 5.07). We excluded 30 subjects from the analysis based on
our strict exclusion criteria (elaborated later) and a single recording
failure, resulting in a total of 183 subjects. All subjects gave written
informed consent before participating in the study, which was
approved by the local ethics committee at our university.

2.2. Stimuli

Stimuli consisted of 72 pictures of products from 6 different
categories (12 products per category). In addition to the picture of
the product, there was a short text above the picture describing the
product. See Appendix A for a full list of products. Products were
chosen such that their real-world cost exceeded the maximal bid
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amount, incentivizing subjects to bid for the products regardless
of any cost-benefit calculation related to their real-world value, but
rather to reflect their subjective value. Their market price ranged
from 45 to 99 New Israeli Shekel (NIS, Mean = 69.23, STD = 16.05).

2.3. Experimental design

For each subject, we first presented the full experimental
instructions and applied a short verbal test to verify they
understood the task. They received 50 NIS as a participation fee
and an additional 50 NIS as the endowment for the behavioral
task. Subjects were instructed to sit upright in front of the
computer screen, maintain their position with minimal movements
throughout the task.

Then, we mounted them with an 8-electrode (wet) EEG system
(StartStim 8 system by Neuroelectrics, Spain) at positions F7, Fp1,
Fpz, Fp2, F8, Fz, Cz, Pz, sampled at 500 Hz. We opted for a lean and
cost-effective 8 (wet)-electrode array to increase the applicability
of our study and to demonstrate that lean arrays can be effective
and reliable as neural-based value prediction tools. Additionally,
we focused mainly on the frontal electrodes because they are
easy to apply, require less gel, and are present in most simple
headsets used in the industry. Moreover, they have been shown
to be related to value representations in many previous studies
(Braeutigam et al., 2004; Smith and Gevins, 2004; Khushaba et al.,
2012, 2013; Koelstra et al., 2012; Ravaja et al., 2013; Luck, 2014;
Boksem and Smidts, 2015; Telpaz et al., 2015; Yadava et al., 2017).
Lastly, mounting a dense EEG device on multiple subjects could be
strenuous for researchers and practitioners, in terms of costs, effort
and discomfort. The extra effort may often not yield additional
predictive value, as electrodes that are physically close to each other
are highly correlated, on the order of r = 0.8−0.98 (Bhavsar et al.,
2018). Nevertheless, we agree that using more electrodes while
covering additional scalp locations might benefited our models’
predictions.

As can be seen in Figure 1, on each trial, while subjects watched
each product on the computer screen, they were instructed to think
how much they value the product. Each product was presented for
3.5 s. Afterward, a horizontal sliding bar appeared, and subjects
stated their maximal amount of money they were willing to pay for
the product (WTP), between 0 and 50 NIS (∼14.5$). Subjects had
up to 15 s to state their WTP. The sliding bar was accompanied by
the instruction, “Please indicate how much you would be willing
to pay for the product.” When a subject understands the task
correctly and the procedure, their WTP bid should correspond to
her subjective value for the product.

Importantly, we randomly initialized the location of the “tick”
that indicates the chosen amount on the sliding bar, such that
subjects did not know in advance whether and how far they would
be moving the cursor left or right on the sliding bar after seeing the
product. We did this to avoid motor preparation signals in the EEG
recordings, which could be correlated with value and obscure our
desired value signal. Lastly, a black screen appeared as an inter-trial-
interval (ITI) for 1 to 2 s (duration chosen at random uniformly),
and the subsequent trial would commence. See Figure 1 for an
illustration of the experimental procedure. Every 20 trials, a screen
appeared with the instruction “Remember that you must think of
the value of the product as it appears before you,” which required a

mouse click to resume. This screen served as a reminder for subjects
to think of the value of the products as they observe them, in hopes
that it strengthened the value signal in the EEG recordings.

Subjects viewed each product 3 times for a total of 216 trials
in random order. The three repetitions were intended to expand
our dataset by obtaining more samples of the same product
from each of our subjects, without overextending the experiment
or overcomplicating logistics with additional products. This also
enabled the model to reduce noise unrelated to the value signal
of a subject’s product viewing. Lastly, it could reveal severe
inconsistencies in valuations between blocks, which would point to
subject’s disengagement from the task and warrant their exclusion.

We applied the standard Becker-DeGroot-Marschak (BDM)
procedure (Becker et al., 1964), a widely popular mechanism
to elicit subjects’ WTP (Mejía-Barbosa and Malacara-Hernández,
2001; Noussair et al., 2004; Miller et al., 2011), in order to make the
experiment incentive compatible and to obtain precise estimations
of subjects’ valuations of the products. That is, after the experiment
was finished, one trial was chosen at random. The computer
randomly defined a price for the product of the chosen trial,
between 0 to 50 NIS (the size of the endowment). If the amount
the subject offered for the product in that trial was larger than the
randomly defined price–then the subject received the product at the
random price and kept the remaining change from her endowment.
A subject’s total winnings, in this case, were the product, the 50 NIS
participation fee, and the difference between the 50 NIS endowment
and the random price. If the amount the subject offered was lower
than the randomly defined price generated, then the subject did not
win the product and kept the endowment in its entirety, making his
total earnings 100 NIS.

This mechanism incentivizes participants to report their most
precise estimation, in the given scale, of their subjective value for
the product. A subject should not bid higher than her subjective
value for a product, as to not pay for it excessively had the randomly
defined price surpassed her subjective value toward the product.
Also, the subject should not bid lower than her subjective valuation
for the product, so she would not lose the opportunity to purchase
the product if the randomly defined price were higher than her
bid, but lower than or equal to her valuation. In summary, the
structure of the task incentivizes participants to bid their best
estimation of their subjective value for the product, regardless of
its real-world cost (which is irrelevant) or its ensuing price (which
is not yet known), in an arbitrary scale from zero to the size of the
endowment. Therefore, the value of each bid on the scale, the WTP
value, can be viewed as a measure of subjects’ own subjective value
for the product.

To reduce any chance of confusion, and to make sure subjects
understood the mechanism correctly and report their WTP values
according to their subjective value, we explained all these points
thoroughly in the instructions before each run, both in text and
verbally. In addition, we explicitly stated in the instructions that
they are not required to estimate the products’ prices, but to report
their WTP for them regardless the products’ real-world prices, since
the actual product price would be randomly defined between 0 and
50 NIS. Also, we tested subjects with several simulated scenarios
to verify that they understood the mechanism. Lastly, we explicitly
asked subjects in every screen prompt on each trial, just above the
WTP scale, to indicate how much they would be willing to pay
for the product.
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FIGURE 1

Experimental design. Subjects first received instructions, were mounted with an 8-electrode EEG cap, and received their 50 NIS endowment. Then,
they performed the BDM task, for 72 different products, each repeating three times in a random order for a total of 216 trials. On each trial, subjects
watched a screen with a plus icon for 1–2 s, then observed the product for 3.5 s, and finally had 15 s to mark how much they were willing to pay for
the observed product, from 0 to 50 NIS. Importantly, the starting point of the tick marker on the bid scale (in red) was randomly located in each trial.
Every 20 trials a reminder screen appeared to remind subjects to think on their bid as they observe a product. At the end of the task, one trial was
chosen at random, and a random price was given to the product at that trial. If the bid was larger than the price, the subject won the product and
the remainder of the endowment (50 NIS minus the price of the product). If the bid was lower than the price, the subject did not win the product,
but kept the full endowment.

2.4. EEG preprocessing

The EEG recordings were down-sampled by 2 (from 500 hertz
to 250 hertz) and divided to separate epochs, such that each
recording during a product observation served as a single sample
in the dataset. Down sampling is not mandatory, but recommended
for more compact networks, as long as it does not harm accessing
the relevant frequency range. An epoch included 3.5 s of product
observation and 1 s from the previous ITI, which the model used as
the baseline. We discarded the recordings while subjects stated their
WTP values, so we would not confound a signal for subjective value
with motor execution. The EEG sensors could pick up the cortical
activity related to moving the mouse cursor to a selected WTP
value, so removing this motor information from the data assured
that our model would only identify value-related information.
Thus, a sample consisted of 8 channels and 1,125 time points (4.5 s
sampled at 250 hertz).

We wanted to minimize any manual pre-processing and
filtering, so we could provide the model with the closest data to a
raw signal and have the model perform any pre-processing within
it. Hence, the only pre-processing steps we conducted was first,
to apply a bandpass filter on the whole experiments’ recording of
each electrode separately (before dividing into epochs), between 0.5

hertz and 100 hertz (second-order Butterworth), and second, we
subtracted the mean signal per sample per electrode. Applying the
bandpass infused the model with domain knowledge, namely, that
the relevant frequency bands to search for are within this band’s
range. Subtracting the average is common normalization practice
so gradients do not go out of control. Moreover, we defined criteria
to exclude samples with excessive noise. For a given sample, any
electrode recording with a standard deviation higher than 50 mV or
with a maximal amplitude higher than 400 mV was discarded and
replaced by a neighboring electrode (Delorme and Makeig, 2004). If
a given sample had four or more electrodes, which correspond with
these exclusion criteria, then the entire sample was discarded. Out
of all samples from the relevant subjects, 7.37% of the samples were
removed following these criteria. One subject was removed due to
a failure in recording.

Aside from preparing the EEG data for the network, we
also wanted to inspect the data outside of the network, so we
created spectrograms of each sample. We transformed each trial’s
EEG signal recorded from the FPZ electrode to a spectrogram,
using MATLAB’s “spectrogram” function. We used a window
size of 1.5 s, with 0.01 s overlap between windows, and
inspected frequencies between 0.5 Hz to 70 Hz (with a 0.5 Hz
interval). The result was the Power Spectral Density [W/Hz] for
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every time window and frequency, also termed a “spectrogram,”
for each trial.

2.5. Behavioral preprocessing

Foremost, we divided all WTP values by 50 (the maximal
amount) to normalize them to the range between 0 to 1. Each WTP
value served as the label for the EEG recordings of its corresponding
product observation. Thus, we attempted to learn and predict
these WTP values based on the EEG recordings as specified in the
previous section.

We enforced several behavioral exclusion criteria, according to
subjects’ WTP values, in order to ensure that the task was able
to elicit genuine subjective values in our subject pool. Including
subjects that did not perform the task seriously or sincerely would
damage our dataset and hinder our model’s ability to identify the
relationship between the neural signal and actual individual value.
If a given subject provided WTP values smaller than 5 NIS (10% of
the maximal amount) for more than half of her trials, the subject
was excluded entirely from the dataset (Figure 2A). This type of
subject had demonstrated that she was disinterested in most of
the products offered in the task and therefore could not provide a
reliable value signal in her recordings. Additionally, we also tested
whether a given subject exceeded 45 NIS (90% of the maximal
amount) for more than half of her trials (Figure 2B). This subject
would likely be over-enthusiastic to purchase any item without
weighing their subjective value properly.

Additionally, we wanted to examine the consistency of
valuations between the three different blocks to estimate whether
subjects reported persistent values for each item they saw. So, we
tested the correlation between the WTP values for the same items
in all three blocks. In the exclusion criterion for this analysis, we
used only the correlation between the second and third blocks
to exclude subjects. This was because we estimated that these
correlations should be the highest across our sample since subjects
should converge to a constant valuation of a product the more
times they evaluate it. Therefore, a subject with an exceptionally
low correlation between her second and third blocks was more
likely to be a candidate for exclusion. We excluded subjects with
a correlation coefficient lower than 0.5 (Figure 2C) since they
seemed far apart in their coefficient compared with the rest of the
subjects, which at least arrived at 0.74 (Figure 4). These subjects
were too inconsistent in their valuations, raising suspicion that
their reported valuations were more random. For comparison, an
ideal subject would exhibit consistent behavior across the three
repetitions of the BDM blocks and have highly varied valuation
across products, with a high correlation between the second and
third block, and low bid rate below 5 NIS and above 45 NIS
(Figure 2D).

Twenty-nine subjects failed in at least one of these criteria,
bringing our subject pool to a total of 183 subjects. For all these
excluded subjects, the task failed to elicit varied WTP values for
the products presented, so their exclusion does not reflect any
shortcomings of the DLN and its predictions.

Moreover, before fitting a neural network to the data, we
wanted to examine the general behavior in the BDM task and
whether valuations of each product varied between subjects, and

if subjects were consistent with their valuation of a product across
blocks. It is problematic if all subjects have similar WTP values
across all products since then predicting a product’s value could
be a matter of identifying its image’s particular pattern of neural
response, rather than basing the prediction on the subjective value
signal it elicited for each subject. If this was the case, the model
could hypothetically use the similar WTP values across subjects at
the product’s identifier and employ shared neural responses to the
product for its prediction instead of predicting each subject’s unique
valuation. We addressed this possible problem, in part, by including
72 products in the experiment. This makes it very difficult for a
model to hypothetically learn 72 unique product identifiers based
on common neural responses to products but instead makes it more
likely for the model to learn neural value representation. However,
to even further negate the possibly that the network learned unique
product identifiers based on common neural responses to products,
we inspected how much the WTP values varied between subjects.
So, per product, we observed the averaged valuations of products
across all subjects and blocks.

2.6. Network architecture

We propose a proprietary DLN architecture that considers the
unique characteristics of the EEG signal and offers several types of
processes and components that account for the signals’ spectral,
spatial, temporal, and subject-specific dependencies. This unique
architecture accepts the raw EEG signal as input, implements classic
signal processing procedures within the network to extract features
automatically, provides interpretability throughout these steps, and
finally outputs a prediction of WTP. In the first layer, bandpass
filters with trainable cuttoff frequencies are applied to the raw
EEG multi-channel signal. These create unique “spectral maps”
per filter. Then, a spatial convolution is performed on maps from
each band separately, accounting for the information from different
electrode channels independently for each band. Afterward, the
high-dimensional information from the spatial maps is integrated
using an economical and parameter-cheap technique, resulting in
time-series feature maps. These are fed into recurrent layers and an
attention mechanism that captures the relationships between the
different temporal sections of the representations extracted from
the previous layers, accounting for time-dependencies. Finally, we
apply a SoftMax activation function on the final two nodes of
the network for the probability of that sample to belong to each
class (= High/Low WTP), or we directly output a final node as a
single regression output. As meta procedures, we optimized our
hypermeters using the Parzen Estimator approach (TPE) (Bergstra
et al., 2011) and used an ensemble of networks with random
initializations for each prediction. Unfortunately, as there is a
patent pending on the architecture of the DLN, we cannot reveal
its full details in this paper. However, these will be made available
upon request.

2.7. Training and evaluation

We conducted several predictions to address our main aims.
We wanted to test the ability of the network to conduct both binary
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FIGURE 2

Behavioral exclusion criteria. These graphs demonstrate the WTP values for all three blocks, sorted by the second block (lowest to highest value), for
four example subjects. (A) Subject 12 was excluded since she bid less than 5 NIS over 85% of her trials, representing very low variability in WTP across
products. We excluded 27 subjects based on this criterion. (B) Subject 40 was not excluded and is considered a good subject. Note that she bid
above 45 NIS in only 47% of her trials and was therefore not excluded. No subjects were excluded based on this criterion. (C) For subject 149, the
correlation between the second block and third block was 0.41, representing very high variability in WTP values. This might suggest that this subject
did not report its “true” valuations but answered randomly or that her actual valuations change very quickly on a block-by-block basis. Two subjects
were excluded based on this criterion. (D) Subject 172 exhibited consistent behavior across the three repetitions of the BDM blocks and, in addition,
highly varied valuation across products. Her correlation coefficient between blocks 2 and 3 was 0.97, her bid rate below 5 NIS was only 12%, and her
bid rate above 45 NIS was only 8%.

FIGURE 3

WTP values per product. The above shows the average WTP values across subjects and blocks as “filled” large dots, and the actual values scattered
around them as semi-transparent smaller dots, so a more popular value for a product will appear as more saturated and denser dots. The right of the
graph shows the frequency of each WTP value across all products and subjects, binned to a width of 1 NIS. The percentages signify the propensity of
all WTP values binned to a width of 10 NIS each, from 0 to 50. Error bars signify the standard error of the mean (SEM).

classification and continuous predictions (by simply removing the
final Soft Max layer in the network). First, we divided the dataset
into 80% training, 10% validation, and 10% testing. In our main
analysis the split is random across the entire dataset, but we delve
into additional types of splits in the next section. The validation set
was used for the hyperparameter tuning (TPE) procedure and for
early stopping during training.

For training the network in all binary prediction attempts,
we took the bottom 0−35% of WTP values and labeled them
as class 0, while the top 65−100% was labeled as 1. There was
no specific reason for choosing these precise cutoff thresholds,
other than to remove the middle third of the data (35−65%
of WTP values), and to avoid over fitting these thresholds by
selecting them after observing the results. For training the network
for continuous value predictions, we used the same data but
with the original WTP values. The rest of the samples in the
training set were discarded (35−65% WTP). This was done to
boost the network’s ability to identify distinct value information
while learning, since the 35−65% of WTP values are the closest
in value terms, and hence, would be the hardest between which
to distinguish. This was also reflected in another analysis we did,
where the two mid-ranged quartiles were much more similar to

one another than the two quartiles further apart (see Figures 8, 9
below).

For all binary predictions, we report the area under the
curve (AUC) score and the accuracy score, while for the

FIGURE 4

Correlation of valuations between blocks. The correlation between
valuations of the same products between every two blocks, per
subject. Correlations between blocks 2 and 3 were significantly
larger than correlations between blocks 1 and 2 [t(181) = 8.39,
p < 0.001] and blocks 1 and 3 [t(181) = 10.15, p < 0.001].
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continuous predictions, we report the root mean square error
(RMSE) score. We report prediction scores that are based on
the 10% held-out test set that was randomly pooled out from
the entire dataset before training. We conducted several binary
predictions, wherein each prediction attempt, the test set was
divided based on different WTP percentiles. That is, we report
accuracy, AUC, and RMSE on prediction of the top and bottom
20% WTP values (0−20%/80−100%), then on the following 15%
(20−35%/65−80%), then the middle 15% (35−50%/50−65%), and
finally the overall scores for the entire range of WTP values within
the test set. We segmented the reported results in this fashion to
provide a better understanding of the model’s performance across
diverse levels of difficulties in prediction, instead of only providing
result metrics over all the data. We would expect that prediction
between the bottom and top 20% WTP values would be easiest
and therefore more accurate, as the neural representation would be
more distinct. This is in line with the notion of “neural distance,”
as detailed in our previous study (Levy et al., 2011; Telpaz et al.,
2015; Hakim et al., 2021). The most adjacent 15% of WTP values
would be, therefore, harder to predict. For clarification, all reported
prediction scores were based on the same single model that was
trained on the bottom 0−35% and the top 65−100% WTP values
out of the training set, for either binary or continuous predictions.

In order to test the general success of the prediction results
of our network, we compared them to the prediction results of
several state-of-the-art benchmark techniques and other more
standard approaches. First, we shuffled the labels with respect
to the samples to obtain a baseline “random” prediction. Next,
we manually extracted the same features from the EEG data and
used the same procedure as in our previous study (Hakim et al.,
2021). Namely, we extracted the inter-subject correlation (ISC),
the spectral power, and the hemispheric asymmetry for all five
standard frequency bands (Delta, Theta, Alpha, Beta, Gamma).
Additionally, we extracted the three ERP components we identified
in the current study (see results of our ERP analysis below) to
increase the prediction capabilities of these manually extracted
features. We used XGBoost (Chen and Guestrin, 2016), SVM,
and Linear/Logistic Regression (depending on whether it was a
binary or a continuous value prediction) as the machine learning
models. Out of the three models we tested, XGBoost scored
the highest, and therefore we present it here and compare it to
the performance of our network. Additionally, in order to boost
this approach as best as we could, we attempted several feature
selection techniques. Namely, we tried PCA, Stepwise elimination,
and importance thresholding using XGBoost’s feature importance.
Using the importance thresholding outperformed the other two
approaches, so we present its results in Table 1. In this technique,
we first train the model on the entire set of features to obtain their
importance via XGBoost’s internal importance scoring technique.
Then, we sort features by their importance, and train and evaluate
the model on an increasing number of features, from highest to
lowest importance, until the optimal accuracy is obtained. This
resulted in excluding 30% of features compared to the naïve model.
We believe that the manual feature extraction approach we used
alongside the machine learning model was a legitimate contestant
to the automatic feature extraction performed via our deep learning
network. We think that this comparison can test if our claim
regarding the superiority of the DLN framework in prediction
holds.

We also added two well-known and often used deep learning
models–DeepCovNet (Schirrmeister et al., 2017) and EEGNet
(Lawhern et al., 2018). The first is a standard convolutional neural
network, and the second is a popular network with architecture
specialized for EEG decoding and prediction. Moreover, to stand
on par with the latest available state of the art networks, we
implemented and compared our results to three additional deep
learning networks (Amin et al., 2019; Ingolfsson et al., 2020; Khare
and Bajaj, 2021). We optimized all the additional models using the
same TPE procedure we used for our network.

Lastly, we performed a hyperparameter tuning procedure to set
various parameters of our network. The TPE process was evaluated
with a validation dataset consisting of 10% of the data and provided
the hyperparameters we used for the final predictions on the test set.
These parameters include kernel sizes, number of filters, dropout
probability, learning rate, batch size, and more. The dropout
probability was set to 0.23 throughout the network, the learning
rate was set to 0.001, and we used the standard “Adam” optimizer.

2.8. Leave-out procedure

An important aspect that must be examined is the
generalizability of the network’s architecture, whether it could
successfully predict when dividing the data into train and test in
various ways. Therefore, in addition to our main prediction results,
we examined how our model performs compared to the best
alternative model frameworks in different generalization problems.
In all the following analyses, we conducted the same procedures
for producing results as in the previous section, but for brevity,
we report only the prediction results on the entire test set, without
examining different quantiles.

First, we split the data to the train and test sets based on subjects’
IDs (1-Subject-Out). That is, there was no data from the same
subject in both the train and test sets. We conducted this split,
training and evaluation procedure multiple times, each time leaving
a single subject in the test set and train on the other subjects, until
we tested all our subjects. This way, we could examine our model’s
ability to generalize over subjects, which would be necessary when
using the model to predict on a new subject. However, since
training on all subjects but one resulted in very small test sets,
we conducted the same analysis but left 20 subjects out in the
test set on each split, which account for nearly 10% of the data
(20-Subjects-Out).

Next, we wanted to inspect how well our model generalized
over products (12-Products-Out) and product-categories (1-
Category-Out). This analysis was important to show that our model
could predict WTP competitively even on products or product-
categories that it had never seen before. This would reflect cases
where the model is used to predict on new products, but using
some existing data on the subject from previous products (i.e.,
model-tuning on a subject). So, using the same procedures, we split
the data according to the products, such that in each split, data
belonging to a different set of random 12 products was left out in
the test set. This provided us with six different test sets that included
12 different random products each (out of 72). To further increase
robustness, we tested three additional randomizations of this 6fold
split. Additionally, we used the same splitting and testing procedure
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on a product-category basis, such that in each split a different set
of 12 products, belonging to the same product-category, were left
out of training. That is, the model evaluation was conducted on
products from a single category on each split, while the model was
trained on all other categories.

Finally, we combined the 20-Subject-Out with the 1-Category-
Out procedure, leaving 1 category in each test set (a 6fold split),
while also preserving 20 random subjects entirely in the test
set (three randomizations in each fold). This procedure is more
applicable in the real world and provides more generalizability since
it reflects a scenario where the model must perform a prediction on
a product and a subject it has never seen before.

2.9. Interpreting the network

Deep learning models are typically regarded as black boxes.
Although these models reach impressive prediction accuracies,
their nested non-linear structure makes them highly non-
transparent. That is, it is not clear what information in the input
data makes the model arrive at its predictions (Samek et al., 2017,
2019; Dosilovic et al., 2018; Xie et al., 2020). The use of deep
neural networks (DNNs) in neuroscience has created a heated
debate about their scientific value and has spurred a discussion
whether they are only valuable as predictive tools or might also offer
helpful explanations of phenomena (Cichy and Kaiser, 2019). Cichy
and Kaiser establish three different perspectives from which DNNs
have explanatory power: (i) they provide teleological explanations;
(ii) despite their deceptive appearance, they provide the same
explanations as traditional mathematical theoretical models; and
(iii) owing to their complexity, they have strong potential for
post hoc explanations.

Therefore, in addition to our DLN’s ability to decode EEG data
optimally and adequately, we designed the structure of the layers
and their resulting weights in such a way that after the model
learned the training data, we can gain insights into what the model
deemed most predictive. Thus, we believe that the deliberate design
of our layers allowed us to interpret the model’s output in line with
Cichy’s and Kaiser’s arguments. The spectral filters embedded in our
DLN provide insights into the neural frequencies most predictive
of value. The spatial filters demonstrate the spatial distribution of
the importance of each frequency, and the attention layers provide
information regarding the critical time points for prediction. All
these increase our understanding of the neural representation of
value and its prediction in general.

2.10. Standard EEG analysis

Inspecting Event-Related Potentials (ERP) is a common
technique when analyzing EEG signals. In ERP analysis, we average
the EEG recordings across different trials of each condition and
examine if there are differences in the averaged electrical potentials
between conditions. Differing neural responses could shed light on
the neural mechanism that is at work in relation to the experimental
manipulation between conditions. Therefore, after conducting the
primary analysis using our DLN, we conducted several standard
ERP-based analyses.

In a typical ERP design, there are multiple repetitions in each
experimental condition in order to average out the noise in the
signal. However, our experimental design was not a classic ERP
design, as there were only three repetitions for each of the 72
products. Therefore, to have a better chance to observe distinct EEG
components, and to gain more power in the statistical analysis, we
created discrete conditions with a higher number of trials in each
condition and averaged them, in order to clean the noise from
the signal. So, we divided the data into four quartiles (serving as
conditions) based on the WTP values. That is, we created four
groups that correspond to the bottom 25% WTP values, 25−50%,
50−75%, and 75−100% of WTP values. We then averaged all
the EEG activity from electrode FPZ for trials from each quartile
across subjects and examined the signal within a 4.5-s time window
(3.5 s of product presentation plus 1 s from the previous ITI). We
chose to examine the three frontal electrodes because we previously
showed that they carry value-related information (Hakim et al.,
2021). Moreover, because the correlations across the three frontal
electrodes were very high (r = 0.8–0.95 across all subjects), it was
enough to focus on the middle electrode, FPZ, as a representative
for frontal activity.

In addition, the components derived from the event-related
potentials often do not reveal the complete story, as they only
expose task-relevant fluctuations in the time domain. Therefore,
another popular technique for analyzing the EEG signal is to use
spectral decomposition, which adds another perspective of analysis.
Thus, we conducted a spectral analysis (as detailed in the Section “2.
Materials and methods”) and arranged the spectrograms according
to the WTP quartiles. As a first-order analysis, similar to what we
have shown in our previous studies (Telpaz et al., 2015; Hakim et al.,
2021), we wanted to examine if there is a difference between the
spectrograms of the top and bottom WTP quartiles and whether
this difference was more pronounced than the difference between
the two middle quartiles. Thus, we averaged the spectrogram within
each quartile and subtracted the top quartile average spectrogram
from the bottom quartile average (Figure 9A), and from the third
quartile average spectrogram, we subtracted the second quartile’s
average spectrogram (Figure 9B).

3. Results

3.1. Behavioral results

As can be seen in Figure 3, there was a gradual increase
in WTP across products averaged over subjects. Products from
the “Experience” category were the most preferred products, as
six products from this category had the highest WTPs. In the
bottom end, the “Office” category was most prevalent, with seven
products from that category at the bottom 15 least preferred
products. Notably, the WTP values spread around the average of
each product, such that no value could be said to correspond to a
singular product uniquely. To further substantiate this claim, we
tried to predict High/Low WTP values (using the same procedure
as in the Section “3.2.1. WTP prediction”), based on the item
name and its category, coded as dummy variables (or one-hot
vectors). If product identity did not predict WTP values, then it
would be highly improbable that EEG-based prediction of WTP
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was mediated by product identity. We reached 58% prediction
accuracy using logistic regression, showing that the identity of
products could predict WTP values to a small degree, but not
nearly enough to explain the EEG-based predictions of WTP that
we demonstrated with our model in the following subsections.

Regardless of this issue, we could also see that subjects seemed
to prefer bidding rounded values, with zero and 50 being most
prominent, but also 5, 10, 15, and so on. This can be seen on the
histogram chart that appears on the right of Figure 3, which shows
the relative frequency of each WTP value across all products and
subjects.

Next, for each subject, we calculated three Pearson correlation
coefficients across all the valuations of products; Between their
valuations in the first and second blocks (Mean = 0.845,
STD = 0.087), between the first and third blocks (Mean = 0.821,
STD = 0.096), and between the second and third blocks
(Mean = 0.911, STD = 0.072). We found that 99% of all correlations
for all subjects were above 0.5, while 90% of correlations were above
0.75, and 38% of all correlations were above 0.9. This demonstrates
that subjects were highly consistent in their valuations across
blocks. To corroborate our approach to exclusion of subjects
using the correlations between the second and third block, we
performed one-way dependent t-tests, hypothesizing that subjects’
correlation between the second and third blocks are higher than
the other correlations. Indeed, correlations between block 2 and
3 were significantly larger than correlations between blocks 1 and
2 [t(181) = 8.39, p < 0.001] and blocks 1 and 3 [t(181) = 10.15,
p < 0.001], as can be seen in Figure 4.

3.2. Prediction results

In this subsection we provided all prediction results as
described in the Section “2. Materials and methods.” These
include WTP prediction, both binary and continuous, from our
network as well as other state-of-the-art networks and machine
learning approaches. Additionally, we show results for the leave-
out procedures.

3.2.1. WTP prediction
Results in Table 1 show that our DLN, termed DeePay,

achieved better prediction scores compared to the other DLNs, the
classic machine learning model using manual feature extraction
with or without feature selection, and the model trained on
shuffled labels. Only when trying to differentiate between the
percentiles closest to each other and to the median (i.e., a
binary classification between 35−50% and 50−65%), our DLN
framework did not outperform other models, as differentiating
between such close WTP values was a difficult challenge for
any model. Indeed, no model achieved significant results for
this slight percentile difference, and their prediction accuracies
were most likely obtained by chance, yielding no superior model.
For a more elaborate evaluation of our main test results, the
prediction of low (0−20%) versus high (80−100%) quantiles
with DeePay, including the confusion matrix, precision, recall,
and F1 scores, see Appendix E. We will gladly provide the
same elaboration for any of our other prediction attempts upon
request.

3.2.2. Prediction generalizability
Results from all leave-out procedures described in the Section

“2. Materials and methods” are available in Table 2. In the
first column, we show the average results over all 1-subject-
out splits, while in the second column we show the results
for the 20-subject-out procedure. Next, the average results
over all splits for the 12-product-out procedure are presented
in the third column, and the average results from the 1-
category-out procedure are described in the fourth column.
Finally, the last column shows results for the combined 1-
category-out and 20-subject-out analysis. As can be seen in
Table 2, our network successfully generalized over subjects,
products, and categories. Importantly, our network still exhibited
impressive prediction accuracies over these generalization tests
and scored better than other DLNs and feature extraction-based
frameworks.

3.2.3. Dataset size
We also wanted to examine the general effect of the number

of subjects on the model’s performance, and whether we reached
an optimal number of subjects or could benefit by adding more
subjects. Therefore, we investigated the relationship between the
total accuracy and the number of subjects used in the training set,
using the same procedures as described in Section “2.7. Training
and evaluation.” We trained the model on different number of
subjects, starting from only 10 subjects and increasing by steps
of 10 until reaching the maximum number of subjects, while
cross validating each number 10 times and keeping the training
set at the same relative size (10%). The results in Appendix
B show that the prediction accuracy increased as a function
of the number of subjects in the training set. This increase
was best explained by a logarithmic function, which showed
that the accuracy performance is starting to plateau near the
maximal number of subjects, since when adding the last 40
subjects, the accuracy almost did not change (74−75%). However,
based on this fitting procedure, it appeared that more subjects
would improve the model’s accuracy even further. However,
as in any prediction task, we must balance the prediction
accuracy we want to achieve with the cost and time of collecting
a larger dataset.

3.3. Network interpretability

3.3.1. Spectral filters and spatial filters
Thanks to the network’s architecture, we were able to interpret

the first layer as bandpass frequency filters and the following
convolution as band-specific spatial filters. Thus, we can observe
the network’s learned parameters in these layers and the process
in which it extracted information. From these observations, we
can learn what neural information did the network deem most
predictive of WTP. In Figure 5A, we plotted 3 example sinc
functions that resulted from parameters in the first layer of the
network. Below them, we show the results of an FFT analysis for
these filters, exemplifying the frequency band that was passed in
each of these filters. To understand which frequency bands the
network utilized most for prediction, Figure 5B shows all bandpass
frequency ranges that the network provided (horizontal lines)
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and the overall probability of each frequency (gray histogram).
As can be seen in Figure 5B, we found that frequencies most
prevalent in the first filters of the layer of the trained network
(pink triangles and dotted pink lines) were within the beta
band 12−30 Hz, peaking at 14 Hz, 17−18 Hz, 20 Hz, and
23 Hz. Additionally, several additional smaller peaks can be
found in the delta band (at 2−4 Hz) and the alpha band (at
8−12 Hz).

In addition to learning which frequency bands were the
most informative for the networks’ predictions, each bandpass
filter generated by the network has five unique convolutional
“spatial” filters that integrate the information from the different
electrodes for each time point separately. We plotted these
weights on topographic maps to illustrate how each spectral
map, resulting from a bandpass filter, could be combined in
various ways with respect to the electrode dimension. However,
since our electrode layout did not densely cover the scalp, the
interpolations that yielded these maps produced some artifacts in
areas further away from our eight electrodes. We urge readers
to ignore these areas and focus only on those proximal to the
existing electrodes. Figure 6A shows these five maps for the

three bandpass filters shown in Figure 5A. They show that while
some maps may be redundant and include similar weights (like
in column number 3–row 1 and 4, or in column 2–row 4 and
5), others may represent varied and even opposite integrations
(as in column 1).

Thus, as in Figure 6B, we opted for an overall interpretation
of these filters, by averaging the spatial weights within each of
the standard EEG frequency band ranges. These demonstrated
that, on average, the network utilized information from the frontal
electrode FPZ the most, in all bands but Alpha. We could also
see a substantial positive contribution to prediction in frontal
Delta, Beta, and Gamma. Meanwhile, the Alpha band showed
hemispheric asymmetry in the averaged weights, such that the right
hemisphere was positively related to a positive prediction, while the
left was negatively related.

3.3.2. Attention layer
The attention layer provides a weight for each time point

in the original EEG signal. These weights can be interpreted
as the “importance” of each time point to the following
prediction. Figure 7 shows the distribution of weights, normalized

TABLE 1 Prediction results.

WTP quantiles 0−20%/80−100% 20−35%/65−80% 35−50%/50−65% Total

Score Acc AUC RMSE Acc AUC RMSE Acc AUC RMSE Acc AUC RMSE

DL: DeePay 80.71% 0.894 0.316 67.46% 0.738 0.211 55.75% 0.587 0.194 75.09% 0.832 0.276

DL: EEG-TCNet 76.24% 0.867 0.348 64.81% 0.716 0.235 57.13% 0.617 0.205 71.82% 0.804 0.307

DL: Amin et al., 2019 74.53% 0.845 0.372 65.48% 0.721 0.243 56.17% 0.608 0.231 70.18% 0.768 0.319

DL: EEGNet 72.77% 0.798 0.403 60.93% 0.649 0.342 56.81% 0.593 0.263 67.67% 0.737 0.342

DL: Khare and Bajaj, 2021 72.96% 0.832 0.382 62.36% 0.671 0.286 55.46% 0.576 0.275 68.54% 0.743 0.358

DL: DeepCovNet 73.58% 0.828 0.397 60.71% 0.660 0.358 54.44% 0.568 0.280 68.13% 0.761 0.353

DL: ShallowCovNet 73.74% 0.820 0.389 59.41% 0.632 0.363 54.08% 0.564 0.291 67.82% 0.746 0.348

ML: XGBoost–FS 67.13% 0.728 0.421 62.84% 0.648 0.351 56.01% 0.570 0.281 62.25% 0.673 0.365

ML: XGBoost 65.57% 0.713 0.443 61.24% 0.652 0.350 55.17% 0.573 0.286 60.73% 0.659 0.382

ML: Regression (logistic/Linear) 63.72% 0.694 0.481 60.33% 0.618 0.359 53.82% 0.546 0.304 59.13% 0.635 0.406

DL: DeePay (shuffled) 52.32% 0.49 0.512 50.09% 0.491 0.437 54.12% 0.523 0.326 51.82% 0.51 0.447

Accuracy, area under the curve (AUC), and root mean square error (RMSE) for seven different prediction procedures/models, as detailed in the left-most column. We report each of these scores
for four different subsets of the dataset–the first and last 20% of WTP values in the data (0−20%/80−100%), the next 15% of WTP values from the top and bottom of data (20−35%/65−80%),
the following 15% that represent the center of WTP values (35−50%/50−65%), and finally the results on the entire dataset. Results in bold mark the best score in each column.

TABLE 2 Generalization results.

Leave-out procedure 1-Subject-out 20-Subjects-out 12-Products-out 1-Category-out Subject and category-out

Score Acc AUC RMSE Acc AUC RMSE Acc AUC RMSE Acc AUC RMSE Acc AUC RMSE

DL: DeePay 74.14% 0.830 0.253 69.41% 0.764 0.346 72.82% 0.797 0.291 71.44% 0.783 0.315 69.29% 0.755 0.349

DL: EEG-TCNet 71.36% 0.795 0.312 65.17% 0.733 0.361 69.76% 0.765 0.325 68.13% 0.752 0.338 64.68% 0.721 0.372

DL: Amin et al., 2019 70.29% 0.772 0.328 64.39% 0.691 0.358 68.25% 0.752 0.336 66.78% 0.744 0.356 63.98% 0.685 0.367

DL: EEGNet 68.82% 0.766 0.330 63.67% 0.658 0.355 67.38% 0.739 0.341 67.19% 0.735 0.344 63.44% 0.654 0.370

DL: Khare and Bajaj, 2021 67.82% 0.751 0.341 63.58% 0.682 0.349 68.05% 0.741 0.348 66.30% 0.739 0.340 62.87% 0.649 0.359

DL: DeepCovNet 67.59% 0.752 0.339 64.56% 0.708 0.342 66.72% 0.745 0.353 65.47% 0.734 0.357 64.23% 0.693 0.363

ML: XGBoost - FS 64.13% 0.698 0.358 59.81% 0.645 0.409 63.04% 0.652 0.372 61.94% 0.639 0.366 58.93% 0.627 0.433

DL: DeePay (shuffled) 50.65% 0.503 0.439 52.08% 0.511 0.450 51.38% 0.516 0.447 51.52% 0.521 0.445 51.71% 0.508 0.457

Accuracy, area under the curve (AUC), and root mean square error (RMSE) for eight different prediction procedures/models, as detailed in the left-most column. We report these scores for
five different leave-out procedures, as described in Section “2. Materials and methods”. Results in bold mark the best score in each column.
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FIGURE 5

Bandpass filters. (A) Top–3 examples of filters from the trained network; bottom–the Fourier transform of each filter. (B) Aggregation of all sinc
bandpass filters from the network. Each horizontal line represents a single bandpass filter, such that the line starts and ends at the filter’s cut-off
frequencies. The histogram in opaque gray shows the overall proportion of each frequency across all filters.

between zero and one for better visualization, across all
subjects and trials, and their median (represented as the blue
line). Between time points −1 to 0 s (red area), subjects

FIGURE 6

Spatial frequency illustration. The interpolated spatial distribution of
weights from the second layer plotted as topographic maps. Note
that artifacts appeared in areas further away from the existing
electrodes, due to limitations on the interpolation procedure, and
should be ignored. (A) There are five spatial filters for each sinc
bandpass filter, shown as five rows of maps in the figure. Each
column represents a corresponding sinc filter, from left to right, as
shown in Figure 5A. (B) The average spatial weights per frequency
band. Spatial weights from the second layer of the network were
divided into their respective band (or nearest band), according to
the bandpass filter to which they belong from the previous layer.
Then, all spatial weights averaged within each band to yield eight
final weights per frequency band.

watched a black screen (the ITI); therefore, the importance
is low for these time points. In time points 0.9−1.3 s from
stimulus onset (orange area), we can see an increase in
importance, likely signifying initial processing of the stimulus’s
value.

From time point 2.5 s to 3.5 s, we can observe a substantial
increase in importance (green area). This suggested that the
most predictive information appeared after internal deliberation
and evaluation of the stimulus (the last second of stimulus
observation) and right before the execution of the decision
was made possible (when the stimulus was replaced by the
BDM scale). However, importantly, even after we removed the
final second from analysis, the model could still retain results
which are much higher than chance, although losing some
accuracy (from 75.09 to 67.15%, Appendix C). This reduction
strengthens our claim that some of the predictive information
was present in the final second before subjects could start making
their decision but plenty of value information was also present
before the last second of product observation. However, the
reduction in accuracy after removing the last second could not
directly attest to the reason why the final second had predictive
power. This could be either because of motor preparation, value
information, or both.

Therefore, in order to further strengthen the notion that the
final second of product observation contributed to prediction
because it contained value information and not a motor
preparation signal, we conducted an additional analysis on
subjects’ reaction times (RTs). We calculated the cumulative
distribution of RTs over all trials (see Appendix D). We can
see that in 94% of the trials, subjects responded more than
1 s after the end of the observation phase, and in almost 60%
of the trials, subjects responded more than 2 s after the end
of the observation phase. Previous studies had shown that the
signal for motor preparation, as evident in the EEG, appears
between 0.25 s to 0.6 s, on average, before motor execution
(Georgopoulos et al., 1989; Bai et al., 2011; Lew et al., 2012).
In our study, most of subjects’ decisions started a lot longer
(1−2 s), which extremely reduces the chances that a motor
preparation signal contributed to the predictive information of
our model.
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FIGURE 7

Distribution of weights from the attention layer. When the input
reaches the attention layer, it is comprised of 75 time points (due to
average pooling), each with its individual weight that is generated
per input. We passed all samples through the final network and
saved all weights. Thereon, we plotted a violin distribution of all
weights per time point to generate this figure. Between time points
–1 to 0 s (red area), subjects watched a black screen, between
0.9–1.3 s from stimulus onset (orange area), there was a slight
increase in importance, and from time point 2.5 onward, we can
observe a substantial increase in importance (green area).

3.4. Standard EEG analysis

3.4.1. ERP results
As can be seen in Figure 8A, three components of interest

emerged. The N150 (negative potential after 150 ms), P220
(positive potential after 220 ms), and N300 (negative potential after
300 ms) showed varying amplitudes across the WTP quartiles.
The N150 has a lower amplitude for the highest and lowest
WTP quartiles, perhaps measuring a response to the saliency of
the products. We averaged the signal between 140 and 160 ms
per sample and found a significant difference between quartiles
for this component [F(3) = 5.12, p < 0.001, one-way ANOVA].
We conducted post hoc multiple comparison testing (Tukey),
which revealed that the highest quartile had significantly lower
N150 compared to the first (p < 0.001) and second (p < 0.05)
quartiles. The P220 and N300 components, in contrast, seem to
exhibit sensitivity to value by having the lowest amplitude for
the highest WTP quartile, perhaps encoding valuations. Again,
we averaged the signal between 210 to 230 ms and 290 to
310 ms and found a significant difference between quartiles for
these components as well [P220: F(3) = 10.12, p < 0.001; N300:
F(3) = 9.58, p < 0.001, one way ANOVA]. The same post hoc
analysis revealed that the 4th quartile was significantly lower than
all other quartiles in both components (p < 0.001 in all cases).
We also broke up the analysis and examined the activity for every
0.5 s, starting at 0.5 s from stimulus onset, up to 3.5 s from
the onset. However, these time points did not yield significant
results.

However, note that many other characteristics of the signal
could be different between the quartiles, in addition to what
we captured by the three components identified (N150, P220,
and N300). First, we demonstrated in the Section “3.2.1. WTP
prediction” that predictions based on manually extracted features,
including these components, were inferior to the automatic
extraction by the neural network, aiding the conclusion that there
were likely additional value-related signal characteristics that the

FIGURE 8

Average ERP per quartile of WTP values. EEG recordings of
electrode FPz (A), F7 (B), and Cz (C), after averaging for each WTP
quartile, across subjects and products. The product image appeared
at time zero, marking the start of a trial. Opaque bounds around a
line signify the SEM at each data point. Cleary, each electrode
recorded different responses and required diverse feature extraction
procedures, further demonstrating the need for optimized and
automatic feature extraction. The shaded areas mark time points
where no difference between WTP quartiles was found. Dotted lines
indicate the 150, 220, and 300-ms mark, respectively.

DLN found than those captured by these components. For instance,
as is common in the field, we manually and arbitrarily (by “visually
inspecting the data”) decided in which time window to average
the signal and on which to conduct our statistical analyses. There
are endless possibilities for manually choosing the onset and offset
time points, and the window size for the analysis. It is very hard
to know, a priori, what would be the best combination of time
window parameters to use. Moreover, any post-decision could lead
to an inflated type one error and over fitting the data. To further
highlight this problem, we repeated the exact same analysis for
electrodes F7 and Cz (see Figures 8B, C, respectively). Even without
explicitly conducting a formal statistical analysis, it is clear that in
these electrodes, the ordering of the quartiles is different for the
three ERP components mentioned above. It might be that we could
find in electrodes F7 and Cz other components, which would be
significantly different between the WTP quartiles in a meaningful
manner (either ascending or descending as a function of WTP
values). However, finding these components could mean that we
would need to examine endless combinations of time window
parameters. This further strengthens the need for automatic feature
extraction that would be sensitive to various time points, window
sizes, and electrodes, as we incorporated in our deep learning
network. We suggest that this manual procedure is most likely
sub-optimal for prediction compared to deep learning.

Frontiers in Human Neuroscience 13 frontiersin.org

https://doi.org/10.3389/fnhum.2023.1153413
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-17-1153413 May 30, 2023 Time: 16:38 # 14

Hakim et al. 10.3389/fnhum.2023.1153413

FIGURE 9

Spectrogram differences for WTP quartiles. (A) The difference between the average spectrogram of the top and bottom average spectrogram
quartiles. (B) The difference between the average spectrogram of the mid-high and mid-low average spectrogram quartiles. The product image
appeared at time zero, marking the start of a trial. The dashed pink circle surrounded a substantial difference in the log PSDs.

3.4.2. Spectral analysis
As can be seen in Figure 9A, there is a substantial difference

between the top and bottom average spectrograms at the lower
frequency range (0.5−10 Hz), around 0.5 s after the stimulus has
appeared. This is indicated by the pink circle around a large dark
blue dip at that time point, which reached a nearly −0.2 difference
in log PSD. Importantly, additional frequencies at varied time
points differed between high and low WTP values, as indicated by
the dark red and blue colors, which represent a log difference of
nearly 0.1 and −0.2 PSD, respectively.

The fact that there are numerous time points and frequencies
that are significantly different between the top and bottom
quartiles strengthens our notion that it would be futile to
attempt to identify the most statistically relevant time points and
frequencies, which would undoubtedly result in false positives
even after correction for multiple comparisons. This suggests
that the subjective value represented in the frequency domain is
very complex. Trying to quantify subjective value representation
into several features with any feature selection technique would
probably be suboptimal and less generalizable. This serves as
another testament as to why we advocate extracting features from
the EEG signal automatically. The manual alternative, laboriously
handpicking specific frequencies and time points, or aggregating
frequency ranges to frequency bands (Alpha, Delta, etc.) or across
time points, is suboptimal and involves information loss, as
we demonstrated in the previous section based on the network
prediction results.

4. Discussion

In this study, we showed that using a state-of-the-art DLN, it
is possible to predict subjects’ WTP values of products based on
EEG recorded from the same subjects while they observed an image
of the product. The unique network architecture, specially geared
for EEG decoding and interpretation, alongside the meta-processes
we used, reached 75.09% accuracy predicting above and below the
median WTP value, with 0.832 AUC. The network also achieved
0.276 RMSE when predicting the continuous WTP values. In all

cases, our network was better than other deep learning networks,
exceeded results from a machine learning approach that utilized
manual feature extraction, and surpassed random results (shuffled
labels) by a large margin.

Moreover, we showed that our model was able to generalize
over products, subjects, and categories, through the various leave-
out procedures we conducted. Mostly, we found that our model was
able to maintain competitive results for a more difficult, applicable,
and generalizable setting–1-category-out and 20-subjects-out. This
result may especially interest practitioners, who hope to apply the
model on both subjects and products that the model had not trained
on. Furthermore, the generalization over categories was particularly
important, since some categories included more higher-valued
items on average, while others were more homogenous with lower-
value items. This could confound our results with an alternative
interpretation, that the model identified different categories rather
than high/low valuations. However, the 1-category-out results
showed that removing an entire category, be it one containing lower
valued items on average, or another containing higher valued items,
did maintain near-maximal performance, while reducing it by a
small amount (from 75.09 to 71.44%). It is unlikely, therefore, that
the model identified information related to the category in the EEG
signal, which is by itself a higher-level and more abstract concept
to extract from EEG. Nonetheless, the reduction in performance
when comparing the 1-category-out analysis to our general analysis
using all products could suggest that some information related to
the category of products was used. However, a different explanation
could be that prediction of valuations from a new category, which
the model was not trained on, was more difficult. Another possible
reason for this reduction is that removing a high-valued category,
or a low-valued category, reduces the disparity between lowest and
highest valued items in the dataset, making it more difficult for
the model to differentiate between valuations. Regardless of these
possible reasons, which could all be true at once, this examination
further emphasizes the need for multiple categories and products
in the data, with highly varied valuations for each, to make
sure that models are able to identify value-related information
rather than stimulus-related information (such as product identity,
category, and so on).
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Our results strengthen our notion that a DLN framework
approach, where the network itself determined the most relevant
features and their appropriate weightings, was better than an
approach where one must determine, a priori, the exact features to
input the model. Because there are endless possibilities and degrees
of freedom to this process, we strongly suggest moving beyond
manual feature extraction toward automated feature extraction
based on deep learning approaches.

Importantly, we showed that prediction scores were dependent
on the extremity of WTP values. That is, prediction scores were
superior for the prediction of the most extreme WTP values
(0−20%/80−100%) and decreased as WTP values became closer to
each other. This reflects the notion of “neural distance” that was also
found in previous studies, which states that as the distance between
subjective values increase, so does their neural representation, and
prediction becomes better (Levy et al., 2011; Telpaz et al., 2015;
Hakim et al., 2021).

We conducted several vital analyses of the behavioral results to
ensure that the WTP values elicited by the BDM task were a close
proxy to the subjective values that subjects had for the products,
and that we predicted these values and not product identity. First,
across subjects, there was a wide distribution of bids for each
product, indicating a variety of valuations on the offered products
between subjects. Second, we used a large number of products
(Cecotti et al., 2014), which further reduced the probability that
the network could identify neural information related to the
product stimuli when predicting WTP, as WTP values would
have to align similarly across all products for all subjects. Third,
attempting to predict WTP based on product identities resulted
in a prediction accuracy that was only slightly above shuffled
data. Lastly, subjects demonstrated broadly consistent bids for
each product across blocks, as demonstrated by high correlations
between the bids across each pair of blocks. This suggests that
subjects’ bids were stable, and therefore, we could use them as
a reliable representation of subjective value, and hence, as stable
prediction labels.

We also analyzed our EEG data using standard approaches
commonly used in the literature. We manually extracted features
from specific time points and pre-defined frequency bands to look
for components that could help predict WTP values. We wanted
to show that this manual feature extraction and inspection, while
it may lead to insightful observations, is very arbitrary and yields
suboptimal predictions.

First, we conducted an event-related analysis. Based on this
analysis, we found several interesting time points in the EEG time-
series, averaged across all subjects and trials for each quartile of
WTP. The average signal for the highest WTP quartile was lower
than other quartiles on the 150-ms negative peak, 220-ms positive
peak, and 300-ms negative peak. Event-related components within
this time range were found to be related to value in various studies,
such as the N200 (Folstein and Van Petten, 2007; Telpaz et al., 2015;
Gajewski et al., 2016; Goto et al., 2017). Finally, the average signal
of the lowest quartile of WTP values showed the highest increase in
voltage after the 300-ms mark, which could be related to the P300
component, that has been shown to be involved in valuation and
decision making (Miltner et al., 1997; Gehring and Willoughby,
2002; Holroyd and Coles, 2002; Yeung and Sanfey, 2004; Hajcak
et al., 2005, 2007; Sato et al., 2005; Toyomaki and Murohashi, 2005;
Yeung et al., 2005; Luu et al., 2009; Holroyd et al., 2011; Proudfit,

2015; Mushtaq et al., 2016). Importantly, by visually inspecting
the EEG times-series, averaged by WTP quartiles, we showed that
different electrodes produced various components with diverse
relationships to value.

The multitude of optional components to choose from, which
depend on varying scalp locations and varying time points, makes
it very unlikely that a manual approach to feature extraction would
allow for an accurate and generalizable model. Critically, we could
not have known in advance to take these precise components, as
we only found them through “peeking” into our prediction labels.
This means that even if these features would contribute to WTP
prediction, as they likely would in our case (since they fitted our
data), they would not necessarily be found as the most contributive
in another dataset. Moreover, when we added these components
for the prediction of WTP using ML models, it still resulted in
far worse predictions than the DLN approaches. Hence, the large
variety of optional ERP components, the lack of explicit directions
on how to choose among them, and the inferior results from the ML
prediction approach using manual extraction further substantiate
our claim that automatic feature extraction should surpass any
attempt to capture value-related information hidden in the EEG
signal manually.

In addition to maximizing our deep learning network’s
prediction accuracy, we also engineered it so that we could interpret
the results, and therefore, learn from it regarding the neural
representation of value. Based on examining the output of the
first and second layer of the network, we found evidence that
some EEG features previously shown to be related to prediction
of subjective value also contributed to prediction in our network.
Specifically, based on the output of the network’s first layer, we
learned that the beta band was most important for the prediction
of WTP, in correspondence with previous research (Braeutigam
et al., 2004; Boksem and Smidts, 2015), while alpha and delta bands
also contributed substantially (Braeutigam et al., 2004; Smith and
Gevins, 2004; Astolfi et al., 2008; Khushaba et al., 2013; Ravaja
et al., 2013). Besides, by averaging the spatial weights from the
second layer within each of the standard frequency bands, we found
that the network relied mainly on the frontal electrode FPZ for
its prediction, in correspondence with previous research which
related frontal cortical activity with value (Hakim and Levy, 2019).
Meanwhile, we found evidence for hemispheric asymmetry in the
alpha band, such that the right hemisphere was positively related to
a positive prediction, while the left was negatively related. This EEG
measure is commonly considered as a measure of engagement, or
approach/avoidance (Davidson, 1998; Sutton and Davidson, 2000;
Ohme et al., 2009, 2010; Vecchiato et al., 2010, 2011; Koelstra et al.,
2012; Ravaja et al., 2013; Venkatraman et al., 2015; Cartocci et al.,
2016; Ramsøy et al., 2018). Another EEG measure inspected in our
previous paper (Hakim et al., 2021), “Inter-Subject Correlation,”
is a measure of similarity between subjects, and therefore, we
could not find means to relate it to the results in the current
study. However, comparing the results from the individual spectral
and spatial filters found in our study to EEG results found in
previous literature would be amiss. We can see that out of all
filters that the network generated, some frequencies and electrodes
correspond with results from previous studies, while others do
not. This provides further evidence that, while literature-based
manual feature extraction could provide predictive information
and meaningful insights, there could still be vast possible features
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that contain critical information that researchers could be unable
to find through manual exploration.

Moreover, the frequency bands we identified in the first
layer and the scalp distribution of each of the spectral maps
from the second layer were both highly varied. As in the case
of the event-related analysis, this demonstrated that it is near
impossible to manually identify the most predictive frequencies
and their most fitting scalp distribution. Unfortunately, this is
often the approach in many EEG studies. It is very unlikely that
researchers could estimate which frequencies to extract and how
to combine their scalp information. We propose that using a DLN
framework approach provides an automated and better solution to
address this. Moreover, studies often combine information from
electrodes in a single manner, such as averaging or conducting
an Independent Component Analysis (ICA), and combine the
electrodes for all frequency ranges using only one method (Luck,
2014). In contrast, our network architecture defined several unique
electrode combinations for each bandpass filter separately, enabling
substantially larger expressiveness in extracting features from
the signal. The network produced several sets of weights for
the electrode dimensions for each spectral map produced by a
bandpass filter. Some were unique while others were redundant,
thus enabling varied ways to combine the electrodes’ information
that were specialized and independent per bandpass filter, without
the need for relying on the popular frequency bands (alpha, beta,
gamma, delta, and theta).

Finally, the attention layer was able to expose the time points
that were most important for WTP prediction. Averaging the
attention weights across all samples revealed an uplift in predictive
information 1 s after stimulus onset. This possibly reflected
early processing of the stimulus’s value without converging to
a final valuation yet. Thereon, the averaged weights increased
substantially until reaching their highest just before decision
execution. Moreover, removing the last second from the analysis
still resulted in a robust predictive model, although with slightly
diminished performance likely due to losing important value-
related predictive information present in the last second. The sharp
increase in importance toward the end of stimulus observation
might be interpreted as motor preparation toward moving the
mouse cursor to either the left or right of the scale–and not as value
information. However, we do not think this is the case because
we randomized the initial location of the marker on the scale,
so subjects could not have known in advance whether and by
how much they would need to move the mouse cursor to the
left (low value) or the right (high value) to reach their desired
bid. Hence, there might be a general motor preparation signal in
the EEG, but it cannot be correlated with the actual value (WTP
bid) subjects were planning to mark on the scale. In addition,
the response time analysis showed that most subjects took more
than 2 s to respond after stimulus offset. This time frame is far
beyond the scope of the motor preparation time frame evident
in the EEG signal, as previous studies showed (Georgopoulos
et al., 1989; Bai et al., 2011; Lew et al., 2012). Therefore, the
predictive information hidden in the EEG signal from the last
second of product observation cannot be attributed to a motor
preparation signal for moving the value scale. We propose that
the rise of importance toward decision execution demonstrates
that subjects thought about and determined their bid gradually
while they watched the product, and that it peaked just before they

had to report it. This process resembles the well-known evidence
accumulation models for describing choice (Ratcliff, 1978; Gold
and Shadlen, 2007; Krajbich et al., 2010).

In this study, we tackled several of the difficulties in EEG
modeling mentioned in the In this study, we tackled several of
the difficulties in EEG modeling mentioned in the introduction.
First, to address the small sizes of EEG datasets, we created a
large new dataset in our lab, with more than 200 subjects and
with 216 trials per subject. Moreover, we used neural network
layers that are compact, efficient, and low in parameters, that
can accommodate smaller datasets. Second, to avoid the elaborate
manual feature extraction often required in EEG studies, we fed
the full EEG data into the DLN without almost any preprocessing,
artifact rejections or filtering, and designed its layers to perform all
feature extraction “automatically” through training. These layers
essentially replaced the standard practice of (to our opinion
arbitrary) selection of the “classic” frequency bandpass filters
(alpha, beta, gamma, delta, and theta). Moreover, some of the layers
served as spatial filters that identified the optimal weights across
the electrodes, and other layers identified important components
in the time domain (Bi-LSTM and attention) instead of arbitrarily
defining the time window for analysis. Third, regarding the
high dimensionality of EEG data, we used a small number of
electrodes to reduce this dimensionality and demonstrate that
prediction can still be accomplished when using low density
electrode arrays. Next, to handle the intrinsic noise of EEG data,
the summation layers decrease the dimensionality of the data
substantially, facilitating noise reduction by forcing compression.
Lastly, the variation in the EEG’s signal between subjects using
neural network approaches is theoretically difficult to tackle.
Although our DLN does not include specific means to handle this,
we were able to generalize across subjects, with our results on
subject-out prediction. A better solution to this issue would be a
great opportunity for future work.

There are several avenues of research that could expand our
study. First, our predictions were limited to valuations elicited
immediately after recording the EEG response, but future studies
could examine the ability to predict lasting valuations elicited
an hour or a week after EEG was recorded. The consumer
neuroscience field and the neuromarketing industry are interested
in predicting durable and stable subjective values, so this study
can provide the basis for researchers to examine to what degree
these long-term valuations can be predicted. Also, researchers may
want to examine other methods for preference elicitation and not
WTP, such as binary choices. Additionally, marketers often desire
to predict a product’s success in the general population rather
than predicting individual subjective valuations. Future research
could also inspect whether EEG recordings can predict valuations
on products in the general population, as estimated via general
sales, YouTube measures, or other accepted metrics. Finally, our
study was limited to valuations over products introduced via
product images. Researchers could build upon these findings and
examine whether they could predict valuations of products from
EEG recorded while subjects observe real marketing material, such
as ad images or commercials. Demonstrating that WTP could
still be predicted based on more complex and ecological stimuli
would provide neuromarketers with valuable evidence of the EEG
signal’s capability as a tool to assess ad effectiveness and predict
marketing gains.
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5. Conclusion

We were able to show that a deep-learning approach with
carefully constructed architecture could be ideal for EEG-based
prediction of WTP, surpassing both manual approaches and
generic DLN frameworks. Our DLN generated features to a
degree of complexity, spatially, and spectrally that could not
have been achieved through manual inspection and feature
extraction. Importantly, our data-driven approach shed light on
some aspects of the valuations process, as reflected in the EEG
signal, that were not previously investigated or were unlikely
to be included in a prediction model that uses manual feature
extraction. The network employed an abundance of frequencies,
spatial distributions, and time points, focusing mainly on the
aftermost time points. Thus, neuromarketing practitioners can
utilize our DLN framework to enhance their attempts to predict
WTP based on EEG data, albeit on real marketing stimuli or using
long-term preference elicitation methods. Meanwhile, EEG and
decision-making researchers can employ this framework to learn
more about the valuation process by investigating the network’s
resulting parameters and exploring which neural features the
network deemed most essential for prediction.
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