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Introduction: Evidence suggests that spontaneous beta band (11–35 Hz) 
oscillations in the basal ganglia thalamocortical (BGTC) circuit are linked to 
Parkinson’s disease (PD) pathophysiology. Previous studies on neural responses in 
the motor cortex evoked by electrical stimulation in the subthalamic nucleus have 
suggested that circuit resonance may underlie the generation of spontaneous and 
stimulation-evoked beta oscillations in PD. Whether these stimulation-evoked, 
resonant oscillations are present across PD patients in the internal segment of 
the globus pallidus (GPi), a primary output nucleus in the BGTC circuit, is yet to 
be determined.

Methods: We characterized spontaneous and stimulation-evoked local field 
potentials (LFPs) in the GPi of four PD patients (five hemispheres) using deep brain 
stimulation (DBS) leads externalized after DBS implantation surgery.

Results: Our analyses show that low-frequency (2–4 Hz) stimulation in the GPi 
evoked long-latency (>50 ms) beta-band neural responses in the GPi in 4/5 
hemispheres. We demonstrated that neural sources generating both stimulation-
evoked and spontaneous beta oscillations were correlated in their frequency 
content and spatial localization.

Discussion: Our results support the hypothesis that the same neuronal population 
and resonance phenomenon in the BGTC circuit generates both spontaneous 
and evoked pallidal beta oscillations. These data also support the development 
of closed-loop control systems that modulate the GPi spontaneous oscillations 
across PD patients using beta band stimulation-evoked responses.
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1. Introduction

Parkinson’s disease (PD) affects multiple circuits in the basal 
ganglia thalamocortical (BGTC) network involved in motor control. 
Evidence suggests that high-power, spontaneous local field potential 
(LFP) oscillations in the beta band (11–35 Hz) in the BGTC circuit are 
associated with the progression of parkinsonism and the manifestation 
of rigidity and bradykinesia in PD patients (Brown et al., 2001; Brown, 
2003; Brown and Williams, 2005; Kühn et al., 2006, 2009; Chen et al., 
2007; Little et  al., 2012). These spontaneous beta oscillations are 
particularly prominent in the subthalamic nucleus (STN) and internal 
segment of the globus pallidus (GPi) (Brown et al., 2001), which are 
the primary targets for deep brain stimulation (DBS) therapy in 
PD. Low-frequency electrical stimulation pulses in the STN, delivered 
via DBS leads, have been shown to evoke beta-band responses over the 
primary motor cortex (Baker et al., 2002; MacKinnon et al., 2005; 
Devergnas and Wichmann, 2011; Walker et al., 2012; Zwartjes et al., 
2013; Miocinovic et al., 2018) and in the STN (Campbell et al., 2022). 
The resonance of the beta band evoked responses in the motor cortex 
(MC) has been shown to decrease when antiparkinsonian medication 
(levodopa) is delivered to PD patients (Eusebio et al., 2009). These data 
support the concept that resonance—the susceptibility of a circuit to 
oscillate at its natural frequency—is involved in the generation of beta 
oscillations in the sub-thalamocortical circuit in PD. Understanding 
whether stimulation in the basal ganglia evokes beta-band resonant 
oscillations in the basal ganglia is needed to characterize how beta 
oscillations are generated and propagated in the BGTC circuit in PD.

Beyond using stimulation-evoked beta band responses to 
characterize circuit dysfunction in PD, they have also been proposed 
for the development of closed-loop, real-time neural control systems 
(Escobar Sanabria et al., 2020, 2022; Sanabria et al., 2022). In a proof-
of-concept study with a PD patient, Escobar Sanabria et al. (2022) 
showed that stimulation-evoked beta oscillations in the GPi can be used 
to suppress or amplify spontaneous beta-band oscillations in the GPi 
when electrical pulses are delivered with precise amplitude and timing. 
This technique, referred to as evoked interference closed-loop DBS 
(eiDBS), is suitable to modulate frequency-specific neural activity and 
characterize the causal role of controlled changes in beta-band activity 
in the manifestation of PD. The feasibility of implementing eiDBS in 
the GPi across PD patients is yet to be determined. Understanding 
whether resonant, stimulation-evoked beta-band oscillations are 
present across PD patients in the GPi, is the first step toward 
determining this feasibility.

Here, we demonstrate that low-frequency (<3 Hz) stimulation in 
the GPi evokes long-latency (>50 ms) beta-band neural responses in 
the GPi in four PD patients (five hemispheres). We also show that the 
frequency and spatial localization of the neural sources generating 
both stimulation-evoked and spontaneous beta oscillations are 
correlated. These data support the hypothesis that the same neuronal 
pool and resonance phenomenon generates both spontaneous and 

evoked pallidal beta oscillations. Our data also provide evidence that 
beta-band stimulation-evoked responses can be employed to modulate 
GPi spontaneous oscillations across PD patients using closed-loop 
control systems (e.g., eiDBS).

2. Materials and methods

2.1. DBS lead externalization procedure

All patient procedures were approved by the University of 
Minnesota Institutional Review Board (IRB#1701M04144), with 
consent obtained according to the Declaration of Helsinki. Four 
patients with idiopathic PD implanted with DBS leads in the GPi 
participated in this study. We recorded from the two hemispheres in 
one patient to obtain five hemispheres in total. Hemispheres HEMIS 
2 and HEMIS 3 correspond to these two hemispheres. DBS lead 
targeting and postoperative lead localization were performed using 
magnetic resonance imaging (MRI) with 3T or 7T scanners (Duchin 
et  al., 2018; Patriat et  al., 2018). Electrophysiological mapping 
techniques (Vitek et  al., 1998) were employed to identify the 
sensorimotor region of GPi during implantation surgery. All patients 
were implanted with a directional “1–3–3-1” electrode (hemispheres 
1, 2, and 3 with Abbott Infinity model 6172, and hemispheres 4 and 5 
with Boston Scientific Vercise Cartesia model DB-2202-45). Figure 1A 
illustrates the location of the DBS leads relative to the GPi. After 
implantation, the lead extension was tunneled to a subcutaneous 
pocket in the chest and then connected to a research-dedicated 
extension that was externalized through an abdominal incision (Aman 
et al., 2020). Recordings from the DBS lead occurred 4–8 days after 
DBS implantation surgery. After data were collected, the patients 
returned to the hospital, where the percutaneous (research) extension 
was removed, and the implantable pulse generator (IPG) was placed 
in the chest pocket.

2.2. Neurophysiological data acquisition

Deep brain stimulation leads were connected to an ATLAS 
neurophysiological recording system (Neuralynx, Bozeman, MT, 
United States) via customized connectors to record LFPs from the GPi 
in the presence and absence of low-frequency electrical stimulation. 
The ATLAS amplifiers have a large input range (±132 mV) and a high 
sampling rate (24K Samples/s) that enabled us to recover the shape of 
short-duration stimulation artifacts and record neural data in the 
same brain region where stimulation was delivered. We used EEG 
scalp electrodes placed along the midline as a reference and ground 
for the DBS lead recordings. Spontaneous LFPs were collected during 
a period of 5.38 ± 0.09 min while the patient was sitting looking at a 
fixed point (black plus sign) in front of them.

We used two neurostimulation systems to deliver low-frequency 
stimulation for the collection of stimulation-evoked response (ER) 
data. In two hemispheres (HEMIS 1 and HEMIS 2), we employed 
the NeuroOmega mapping system (Alpha Omega, Nazareth, Israel) 
to deliver current-controlled electrical stimulation. In hemispheres 
HEMIS 3, HEMIS 4, and HEMIS 5, we  used the g.Estim 
neurostimulator (g.tec, Schiedlberg, Austria). Biphasic, symmetric, 
charge-balanced waveforms were delivered in both cathodal and 

Abbreviations: BGTC, Basal ganglia thalamocortical; PD, Parkinson’s disease; GPi, 

Globus Pallidus internus; LFPs, Local Field Potentials; DBS, Deep Brain Stimulation; 

STN, Subthalamic nucleus; MC, Motor Cortex; eiDBS, Evoked interference closed-

loop Deep Brain Stimulation; IPG, Implantable pulse generator; ER, Evoked 

response; ASD, Amplitude spectral density; PSD, Power spectral density; FDR, 

False Discovery Rate.
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anodal (reversed polarity) configurations. A patch, skin-surface 
electrode, was placed on the patient’s chest for the current return 
in the monopolar montage. The monopolar or bipolar stimulation 
montages and corresponding amplitudes used for analysis in each 
hemisphere are reported in Table 1. The stimulation montages that 

evoked responses with the highest signal-to-noise ratio were 
selected for analysis. We  delivered stimulation pulses with a 
frequency less than or equal to 3 Hz. Table 1 indicates the times 
when the stimulation-related recordings took place relative to the 
times when the patients took their levodopa medication. These 

FIGURE 1

(A) Left: MRI segmentation of the GPi with corresponding lead localization and stimulation channels (marked in red and with an asterisk) for each 
hemisphere. Center: Segmentations’ orientation-A, Anterior; S, Superior/Dorsal; L, Left. Right: Abbott Infinity model 6172 lead. All images shown here 
are on a lateral-anterior plane (horizontal sections). (B) Illustration of ER computation methodology. Left: Artifact removal procedure with raw averaged 
potential (black) and artifact template (green, dotted). The gray arrow shows the stimulation time. Right: processed ER in anodal (blue) and cathodal 
(red, dotted) stimulation configurations. The gray arrow shows the stimulation time. The zero line indicates zero-volts, and the values above this line 
are positive. The DC offset of the pre-stimulus data segment in the stimulation-evoked responses was removed.

TABLE 1 DBS lead manufacturer, target hemisphere, stimulation parameters, and time when the data were acquired relative to medication 
administration for each hemisphere.

Hemisphere 
ID

Lead Target Time 
after 
meds

Stim 
channels

Stim 
amplitude

Recording 
montage

Number of 
differential channels 

used in spatial 
correlation

Stimulator

HEMIS 1 Abbott Left GPi 12 min 3c-patch 3 mA 2a–3a N/A (no clear beta peak in 

ASD)

Neuro- Omega

HEMIS 2 (same 

patient as HEMIS 3)

Abbott Right GPi 150 min 2c-3c 3 mA 2b–4 N/A (only one channel with a 

clear stimulation-evoked 

response due to long-lasting 

stimulation artifacts)

Neuro- Omega

HEMIS 3 (same 

patient as HEMIS 2)

Abbott Left GPi >8 h 2abc-patch 2 mA 1–4 6 g.Estim

HEMIS 4 Boston 

Scientific

Right GPi 11 min 3abc-patch 3 mA 2a–4 7 g.Estim

HEMIS 5 Boston 

Scientific

Right GPi >8 h 3abc-patch 3 mA 2a–4 6 g.Estim

*Boston Scientific contacts 5, 6, and 7 correspond to 3a, 3c, and 3b, respectively.
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times are reported here since levodopa may influence the amplitude 
of the ERs, as discussed in the Limitations section.

2.3. Data analysis and statistics

2.3.1. Spectral characteristics of spontaneous 
LFPs

All analyses were performed using customized scripts in 
MATLAB (MathWorks, 2019). Differential recordings were computed 
from spontaneous LFP of non-stimulating channels across ring levels. 
These differential potentials were band-pass filtered using a bandpass 
Butterworth filter with cut-off frequencies 0.1 and 500 Hz. Amplitude 
spectral density (ASD) curves were calculated from 5 s segments of the 
filtered spontaneous LFP using the Welch method (pwelch command 
in MATLAB). The ASD at each frequency is equal to the square root 
of the PSD. The median ASD across ASD curves derived from the 5 s 
LFP segments was used for the analyses. To compute the ASD curves, 
we used 216 discrete Fourier transform points, a Hamming window 
with 213 points, and an overlap of 212 samples (50% overlap). The 1/f 
trend of these curves was removed using a template approach in the 
frequency domain to compare the relative differences in the amplitude 
of LFPs in the beta band across recording channels (Corbit et al., 2007; 
Ouyang et al., 2020; Gerster et al., 2022). Briefly, we constructed an 
interpolated signal that followed the trend of the ASDs at low 
(0.25–5 Hz) and high frequencies (40–200 Hz) and removed this 
interpolated trend from the original ASD curve to obtain the 
de-trended ASD curves for analysis. Of note, the ASD was used 
instead of the power spectral density (PSD) to determine linear 
correlations (instead of quadratic) between the amplitudes of 
spontaneous and stimulation-evoked potentials across recording sites. 
We sought to determine linear relationships because they are more 
straightforward to visualize and characterize than nonlinear ones.

2.3.2. Stimulation-evoked responses
ERs for both cathodal and anodal pulses were computed by 

averaging differential LFP segments aligned with stimulation (−100 to 
+300 ms around the stimulation peak). We collected 523 ± 291 LFP 
segments in each of the studied hemispheres for the ER computation. 
To suppress the stimulation artifacts, we used a template subtraction 
method (Campbell et al., 2022; Escobar Sanabria et al., 2022). Briefly, 
we used the averaged data segments to create templates of the electric 
artifact (anodal and cathodal) and obtained the stimulation responses 
(neural response + artifact). The artifacts were characterized by a short-
latency, high-frequency component followed by a low-frequency drift 
(Figure 1B). To compute the artifact templates, we did the following:

 1. Inspected the anodal and cathodal LFP averages and confirmed 
the presence of neural responses whose polarity was invariant 
to the stimulation setting (anodal vs. cathodal). This nonlinear 
phenomenon is specific to neural responses but not to electrical 
artifacts (Baker et al., 2002).

 2. Employed the mean between the averaged cathodal and anodal 
ERs to minimize the amplitude of the artifacts.

 3. Selected a sample time (n_0) when the short-latency 
artifacts ended.

 4. Visually selected samples along the LFP averages to interpolate 
the template model so that low-frequency drifts were captured.

 5. Interpolated the data from sample (n_0) to the final sample in 
the averaged data segment using a piecewise cubic interpolation 
(spline command in MATLAB, MathWorks, 2019).

 6. Set the template’s first (n_0) samples equal to the averaged 
segment to preserve the short-latency artifacts in the artifact 
template model.

The ERs were computed by subtracting the artifact template from 
the average data segments. Figure 1B shows an example of the artifact 
template and neural evoked responses (cathodal and anodal).

2.3.3. Spectral characteristics of stimulation-evoked 
responses

The amplitude of ERs in the time and frequency domain was 
characterized using the continuous wavelet transform (cwt command 
in MATLAB with the analytic Morse wavelet).

2.3.4. Statistical assessment of stimulation-evoked 
responses

Surrogate ERs were computed from spontaneous LFPs as a 
control condition. The surrogates were calculated by averaging 
differential LFP segments aligned with randomly generated time 
samples (−100 to +300 ms around the selected sample). The resulting 
averages underwent the same artifact removal and signal processing 
described above for the ERs. A permutation test without replacement 
was performed to assess whether the amplitude of the detected ERs 
was the result of chance (Romano and Tirlea, 2022). We evaluated 
whether the amplitude at each frequency and time point was 
significantly greater than the chance distribution via a permutation 
test based on the LFP surrogate ERs. p-values were corrected with the 
False Discovery Rate (FDR) method for multiple comparisons across 
frequencies and times (Benjamini and Hochberg, 1995). Clusters of 
wavelet amplitudes with corrected p < 0.05 were considered significant.

2.3.5. Spatial correlation between the locations 
where spontaneous and stimulation-evoked beta 
oscillations were generated

To determine whether the location of neural sources generating 
spontaneous beta-band activity matched the location where beta-band 
ERs originated, we studied the correlation between scalar measures of 
the ASDs (spontaneous activity) and the wavelet transform (ERs) across 
recording montages (sensing sites). The ASD scalar measures were equal 
to the sum of ASD values in the band centered at the peak ASD 
frequency (4 Hz bandwidth). The wavelet scalar measures were equal to 
the sum of wavelet spectrogram values in the band centered at the peak 
frequency (4 Hz bandwidth) and time. Correlations between the ASD 
and wavelet scalar measures across differential electrode recordings were 
evaluated using the Pearson correlation coefficient. A high correlation 
indicates that monopolar or dipolar current sources producing the 
electric potentials associated with the spontaneous activity, and ERs are 
located within the same region and are likely linked to the same neuronal 
population. The rationale behind this argument is that two current 
sources (dipolar or monopolar) located within the same region in a 
volume conductor generate the same electric potential profile in space 
(Poisson equation of electrostatics) (Nunez and Srinivasan, 2006; 
Griffiths, 2017). This correlation analysis excluded differential LFP 
channels with elevated noise and small signal-to-noise ratios that did not 
allow us to characterize spontaneous activity or ERs. This exclusion was 
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based on our visual inspection of the raw, spontaneous LFP data, ASD 
curves, ER time series, and ER wavelet spectrograms. We excluded 
spontaneous LFP channels with elevated wide-band noise observed in 
the time series and ASD curves. We also excluded LFP channels in 
which noise and stimulation-induced electrical artifacts limited our 
ability to observe and characterize stimulation-evoked neural activity 
even after applying the artifact suppression approach described above. 
In HEMIS 1 and 2, we excluded differential LFP channels due to the 
stimulation-induced artifacts’ long duration and elevated amplitude. In 
HEMIS 3, we excluded channels due to excessive noise levels in the 
spontaneous LFP recordings. The number of channels used for the 
spatial correlation analysis is reported in Table 1.

2.3.6. Correlations between the frequencies of 
spontaneous and stimulation-evoked beta 
oscillations across subjects

To understand whether the resonant frequencies of the spontaneous 
oscillations and ERs matched across the studied PD hemispheres, 
we calculated the Pearson correlation between the peak frequencies of 
the ASDs (spontaneous activity) and wavelet spectrograms (ERs).

3. Results

3.1. Spontaneous LFP activity exhibited 
amplitude peaks in the beta-band in 4/5 
hemispheres

The ASD curves of the spontaneous LFPs exhibited a peak at 
24 ± 4 Hz in 4/5 hemispheres. In one hemisphere (HEMIS 1), a beta 
peak in the spontaneous LFPs was not clearly identified. Figure 2 
shows the ASD curves associated with the selected recording montage 

(from differential LFPs). Supplementary Figure S1 shows the ASD 
curves for each hemisphere and all montages that did not exhibit 
elevated noise to enable clear data visualization.

3.2. Stimulation pulses evoked neural 
responses in the beta-band in all 
hemispheres

The amplitude of the ERs was significantly greater than the chance 
distribution in the beta-band in all hemispheres. The mean latency 
from the stimulus to the peak of the ER was 42.5 ± 11.8 ms with a peak 
frequency of 23 ± 6 Hz (Figure 2).

3.3. Stimulation-evoked responses in the 
GPi oscillated at the peak frequency of the 
GPi spontaneous oscillations

The peak -frequencies of the ER spectrograms and the LFP-ASDs 
were significantly correlated across the 4/5 hemispheres whose ASDs 
exhibited elevated beta-band activity (value of p: 0.01, R: 0.99). 
Figure  3 illustrates the scatter plot of the peak frequencies across 
these hemispheres.

3.4. The neural sources generating the 
spontaneous and stimulation-evoked beta 
oscillations were correlated in space

In hemispheres, HEMIS 3, HEMIS 4, and HEMIS 5, the 
maximum amplitudes of the ASD curves and ER spectrograms 

FIGURE 2

ERs and spontaneous (differential) LFP recording from selected montages in each hemisphere. (A) Top row: Spontaneous LFP-ASD curves after 1/f 
detrending. (B) Middle row: ER time series. The gray arrow indicates the stimulation time. (C) Bottom row: ER spectrograms (time-frequency maps). 
The vertical line shows stimulation time.
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(beta-band) were correlated across differential potentials computed 
between pairs of DBS lead contacts not used for stimulation. The 
within-subject correlations were equal to 0.97, 0.80, and 0.92 for 
hemispheres HEMIS 3, HEMIS 4, and HEMIS 5, respectively (p-
values were 0.0013, 0.023, and 0.0025). Figure 4 shows the scatter 
plots of ASD and ER spectrogram amplitudes in the beta-band in 
these hemispheres. Hemisphere HEMIS 1 did not exhibit a clear beta-
band peak in the ASD curve; therefore, this hemisphere was excluded 
from the spatial correlation analysis. Due to the limited number of 
differential potentials with a large signal-to-noise ratio in hemisphere 
HEMIS 2, we excluded this hemisphere from the spatial correlation 
analysis. Supplementary Figure S1 shows the ERs and spontaneous 
LFP-ASD curves for each hemisphere and all montages that did not 
exhibit elevated noise.

4. Discussion

4.1. Existence of beta-band evoked 
responses in the GPi

Previous studies have shown that single bipolar stimulation 
pulses, delivered in the STN or GPi of PD patients at low frequency, 
evoked short latency and high-frequency as well as long latency and 
low-frequency evoked responses on scalp EEG recordings over the 
MC (Eusebio et al., 2008; Walker et al., 2012; Miocinovic et al., 2018; 
Romeo et  al., 2019). More recent studies characterizing neural 
responses in basal ganglia (GPi and STN) evoked by stimulation in 
the basal ganglia (GPi and STN) have shown that short-latency, high-
frequency responses, likely associated with synchronized neuronal 
firing, are also present in these brain nuclei (Schmidt et al., 2020; 
Awad et al., 2021). Here, we demonstrate the existence of long-latency, 
low-frequency (beta-band) neural responses in the GPi evoked by 
stimulation within the GPi across four patients (five hemispheres). 
These low-frequency, beta-band evoked responses are likely 
associated with synaptic currents generated within the GPi, whose 
synchronization results in the observed electric potentials (Izhikevich, 
2006; Herreras, 2016). While the circuit dynamics underlying the 
generation of long-latency, beta-band ERs in the GPi are unknown, 
we argue that these long-latency responses are associated with the 
activation of multi-synaptic feedback loops in the BGTC circuit. The 
STN-GPe feedback loop has been implicated in the generation of 
spontaneous beta oscillations in parkinsonism in experimental and 
computational studies (Bevan, 2002; Rubin and Terman, 2004; 
Johnson and McIntyre, 2008; Wilson and Bevan, 2011; Alavi et al., 
2022; Madadi Asl et  al., 2022). A possible explanation for the 
generation of GPi beta oscillations evoked by GPi stimulation, which 
aligns with the studies cited above, is that the STN-GPe loop is 
antidromically activated by GPi stimulation, resulting in the onset of 
beta oscillations in the STN-GPe loop and the propagation of these 
oscillations to the GPi via the STN or GPe.

FIGURE 3

Correlation between the peak frequency of the ER spectrograms and 
the ASD curves of the spontaneous LFPs across hemispheres. R is the 
regression coefficient, pV is the value of p, and PS is the linear 
regression slope.

FIGURE 4

Correlation between the amplitudes of the ERs and spontaneous LFPs at the peak beta-band frequency for hemispheres HEMIS 3 (19–23 Hz), 
HEMIS 4 (17–21 Hz), and HEMIS 5 (19–23 Hz). Each point represents a differential potential. Regression coefficients (R), p-values (pV), and linear fit 
slope (PS) for each hemisphere were as follows. HEMIS 3: R  = 0.97, pV = 0.001, PS = 0.37. HEMIS 4: R  = 0.81, pV = 0.02, PS = 1.25. HEMIS 5: R  = 0.94, 
pV = 0.001, PS = 2.19. The gray 1-2a label in HEMIS 5 represents a negative value that is out of the chart (Spontaneous LFP Amplitude: −0.0476, 
ER Amplitude: 0.7232). This amplitude value from the ASD curve is negative because of the 1/f curve subtraction described in Materials and 
methods section.
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The striatum and the striatum-GPe interconnection have also been 
linked to the origin of spontaneous beta oscillations (McCarthy et al., 
2011; Corbit et al., 2016). The stimulation-evoked beta oscillations in 
the GPi could emerge from antidromic activation of the striatum, 
resulting in the onset of beta oscillations within the striatum. These 
oscillations could then propagate to the GPi via the GPe and STN. While 
our data cannot clarify whether beta oscillations in PD originate in 
STN-GPe or striatal loops, future studies directed at characterizing 
which specific GPi neuronal elements and connections need to 
be activated to evoke beta oscillations in the GPi could provide insights 
into identifying circuitry involved in the generation of both spontaneous 
and stimulation-evoked beta oscillations in the basal ganglia in PD.

4.2. Evoked responses and PD 
pathophysiology

Spontaneous beta-band oscillations are associated with the 
manifestation of parkinsonism in animal models of PD as well as with 
medication- or DBS-induced changes in motor performance in PD 
patients (Brown et al., 2001; Brown, 2003; Brown and Williams, 2005; 
Kühn et al., 2006, 2009; Eusebio et al., 2009; Little et al., 2012; Escobar 
Sanabria et al., 2017). The ERs we identified in the studied hemispheres 
resonate in the beta band, where spontaneous oscillations were also 
observed in 4/5 hemispheres. Our data also indicate that the beta-
band ERs were observed in regions of the GPi where the spontaneous 
beta-band oscillations were localized. This spatial correlation suggests 
that the same neuronal elements may be responsible for the generation 
of both spontaneous and stimulation-evoked beta-band oscillations 
in the GPi of PD patients. The spectral correlation between the 
spontaneous and stimulation-evoked oscillations points to the 
possibility that resonance—the susceptibility of a circuit to oscillate at 
its natural frequency—may be a fundamental mechanism underlying 
the generation of beta oscillations in the basal ganglia in PD. Of note, 
resonant, linear dynamical systems, perturbed with an impulse-like 
input as the electrical stimulation pulses used here, produce a response 
that oscillates at the system’s natural (resonant) frequencies and is 
damped out based on the damping associated with each natural 
frequency (Ogata, 1992, p. 367). Because the impulse-like inputs have 
components across all frequencies (i.e., the Fourier transform of the 
impulse is a constant across frequencies), the system’s output response 
elucidates the resonant frequencies of the studied system. Therefore, 
the impulse response can be  used to characterize the resonant 
properties of a dynamical system operating within or close to the 
linear regime. Since brain circuits are dynamical systems, we argue 
that the stimulation-evoked oscillations reported in this study reveal 
the resonant frequencies of circuitry connected to the GPi. Escobar 
Sanabria et  al. (2022) support this argument as they showed that 
neural responses in the GPi evoked by stimulation in the GPi and their 
associated resonant frequency can be  characterized using linear 
differential equations.

4.3. Evoked responses as biomarkers for 
DBS implantation and programming

Approaches based on spontaneous or stimulation-evoked activity 
recorded from scalp EEG and intracranial LFPs have been proposed 

to identify optimal electrode contacts to deliver DBS therapy. Data 
from previous studies have shown that spontaneous beta-band 
oscillations are present in the sensorimotor region of the STN and 
GPi, where electrical stimulation through DBS electrodes is effective 
in alleviating motor signs in PD patients (Zaidel et al., 2010; Bour 
et al., 2015; Fernández-García et al., 2017; Petersson et al., 2020; Shah 
et al., 2022). Because of this spatial correlation, spontaneous beta-
band activity has been proposed as a biomarker for DBS lead targeting 
(surgery) in the STN and programming of directional DBS leads in 
PD patients (Zaidel et al., 2009; Bour et al., 2015; Tinkhauser et al., 
2018). Other studies have shown that stimulation of the sensorimotor 
region of the STN and GPi results in the generation of both short-
latency, high-frequency, as well as long-latency, low-frequency ERs on 
scalp EEG over the MC. These studies suggest that these EEG-evoked 
responses can be used to define the stimulation location and thereby 
automate DBS programming (Walker et al., 2012; Miocinovic et al., 
2018; Romeo et al., 2019). More recently, Awad et al. (2021), showed 
that short- and mid-latency (0.31 ± 0.1 ms and 4.5 ± 1.1 ms), high-
frequency neural responses in the STN or GPi evoked by stimulation 
in the STN or GPi can be measured in directional DBS leads. They also 
showed that the amplitude of mid-latency ERs (4.5 ± 1.1 ms) in the 
STN or GPi is correlated with the power of spontaneous beta-band 
oscillations in the STN or GPi, suggesting that these ERs can also 
be used for DBS surgical targeting and programming. In this study, 
we demonstrate the existence of ERs in the GPi with much longer 
latency and slower frequency content than those previously reported. 
Additionally, we demonstrated that these ERs and spontaneous beta-
band oscillations display strong spectral and spatial correlations. 
These spatial correlations suggest that long-latency, beta-band ERs 
could also be markers of DBS lead localization and programming. 
Because the beta-band ERs result from averaging LFP segments in the 
time domain, the signal-to-noise ratio of these ERs can be greater than 
the one of spontaneous beta oscillations. Therefore, we argue that 
beta-band ERs can be more robust markers for DBS lead localization 
than spontaneous beta-band oscillations alone. Furthermore, the 
long-latency, beta-band ERs shown here can be  combined with 
stimulation-evoked responses with other latencies (e.g., mid-latency 
4.5 ms ERs) and frequency content as well as spontaneous beta-band 
activity to build robust classification algorithms for DBS surgical 
targeting and programming.

4.4. Evoked responses to modulate 
spontaneous beta-band oscillations in 
real-time using closed-loop control

There is increasing interest in characterizing and better 
understanding the causal role of frequency-specific neural activity in 
brain disease and advancing the development of precise, patient-specific 
therapies. Escobar Sanabria et  al. (2022), recently developed an 
experimental approach capable of predictably suppressing or amplifying 
frequency-specific (low-frequency) oscillations in the basal ganglia of 
nonhuman primate models of parkinsonism and patients with PD 
(Escobar Sanabria et al., 2020, 2022). With this technique, referred to as 
evoked interference closed-loop DBS (eiDBS), low-frequency neural 
oscillations (ERs) evoked by electrical pulses can suppress or amplify 
spontaneous low-frequency oscillations (synaptic related) via destructive 
or constructive interference when the pulses are delivered with precise 
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amplitude and phases (Escobar Sanabria et al., 2020, 2022). eiDBS was 
tested postoperatively in a PD patient implanted with a directional DBS 
lead in the GPi (Escobar Sanabria et al., 2022). This technique could 
suppress or amplify GPi oscillations in the 16–22 Hz range in real-time 
by delivering stimulation in the GPi. Evoked responses in the GPi, 
mediating the modulation of eiDBS, resonated in the beta-band at the 
same frequency where the spontaneous beta-band oscillations were 
observed. The data presented in this article suggest that beta-band ERs 
in the GPi are present across PD patients and correlate with the location 
and frequency of spontaneous beta oscillations. Therefore, these data also 
indicate that eiDBS could be implemented across PD patients implanted 
with DBS leads in the GPi and support the development of clinical 
studies directed at understanding the degree to which controlled changes 
in beta-band oscillations relate to the manifestation of PD motor signs.

4.5. Limitations

The time when recordings were made relative to when medication 
was administered is inconsistent across subjects. Medications may 
have an impact on ER dynamics. Therefore, the ER amplitudes 
reported here may be  under or overestimated for the studied 
hemispheres. In hemisphere HEMIS 1, we did not observe a peak in 
the beta-band of the spontaneous LFPs, which limited our ability to 
characterize the relationship between the ERs and spontaneous 
oscillations in this hemisphere. A small signal-to-noise ratio, possibly 
related to the location of the recording lead contacts relative to the 
neural sources generating the beta oscillations, could explain why the 
beta oscillations were observed in the ERs but not in the spontaneous 
LFPs. Supporting this hypothesis, the amplitude of the ERs in HEMIS 
1 exhibited a small amplitude (0.1 uV) as compared to other patients 
whose ER amplitudes were in the 0.5–2.0 uV range. Because 
we  averaged multiple LFP segments to obtain the ERs, we  could 
remove noise not correlated with the stimulation pulses and thereby 
see the stimulation-evoked beta oscillations in the ER time series. 
However, we do not discard the possibility that beta band activity was 
not present or was negligible in HEMIS 1.
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