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Action observation (AO) is widely used as a post-stroke therapy to activate

sensorimotor circuits through the mirror neuron system. However, passive

observation is often considered to be less effective and less interactive than

goal-directed movement observation, leading to the suggestion that observation

of goal-directed actions may have stronger therapeutic potential, as goal-

directed AO has been shown to activate mechanisms for monitoring action

errors. Some studies have also suggested the use of AO as a form of Brain–

computer interface (BCI) feedback. In this study, we investigated the potential for

observation of virtual hand movements within a P300-based BCI as a feedback

system to activate the mirror neuron system. We also explored the role of

feedback anticipation and estimation mechanisms during movement observation.

Twenty healthy subjects participated in the study. We analyzed event-related

desynchronization and synchronization (ERD/S) of sensorimotor EEG rhythms

and Error-related potentials (ErrPs) during observation of virtual hand finger

flexion presented as feedback in the P300-BCI loop and compared the dynamics

of ERD/S and ErrPs during observation of correct feedback and errors. We

also analyzed these EEG markers during passive AO under two conditions:

when subjects anticipated the action demonstration and when the action was

unexpected. A pre-action mu-ERD was found both before passive AO and during

action anticipation within the BCI loop. Furthermore, a significant increase in

beta-ERS was found during AO within incorrect BCI feedback trials. We suggest

that the BCI feedback may exaggerate the passive-AO effect, as it engages

feedback anticipation and estimation mechanisms as well as movement error

monitoring simultaneously. The results of this study provide insights into the

potential of P300-BCI with AO-feedback as a tool for neurorehabilitation.

KEYWORDS

action observation (AO), mirror neurons, brain–computer interface (BCI), error-related
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1. Introduction

Brain–computer interfaces (BCIs) offer a methodological and
technological paradigm that allows individuals to control external
devices via mental commands without the need for physical
activity (Wolpaw, 2007). The detection of mental commands is
achieved through the measurement and interpretation of brain
activity recorded via electroencephalography (EEG) and other
methods. BCIs have become widely used in rehabilitative medicine,
serving as communicators, and neurorehabilitation tools that offer
therapeutic benefits for motor recovery (Bamdad et al., 2015;
Mrachacz-Kersting et al., 2021).

P300-based BCIs, along with other event-related potential
(ERP)-based paradigms, are frequently employed in clinical
settings to assist individuals with severe disabilities to communicate
or interact with their environment (Bamdad et al., 2015; Delijorge
et al., 2020). These BCIs present the user with external stimuli
and measure the brain’s response using EEG to determine which
stimulus the user was paying the most attention to.

On the other hand, motor-imagery-(MI)-based BCIs detect
changes in brain activity that occur when a user imagines
performing a specific action (Neuper et al., 2006). The brain
areas activated during MI overlap with the sensorimotor
networks involved in actual movement preparation and execution
(Pfurtscheller and Neuper, 1997; Pfurtscheller, 2000). Therefore,
MI-based BCIs serve in motor rehabilitation and help patients with
neurological disorders or injuries to improve their motor skills and
regain movement control (Khan et al., 2020).

However, to achieve acceptable accuracy in MI-based BCI
control, proper training of kinesthetic imagery skills is needed,
which may take time to learn. Moreover, MI-based BCIs cannot
be used by many post-stroke patients because they may have
an impaired ability to generate a vivid kinesthetic motor image
(Sirigu et al., 1996; Malouin et al., 2007; Hougaard et al.,
2022). Insufficient BCI accuracy leads to a lot of error feedback,
which can cause patients to lose control of the BCI, feel
frustrated, and lose motivation. This loss of motivation can play
a crucial role in the rehabilitation outcome (Fard and Grosse-
Wentrup, 2014; Hougaard et al., 2021, 2022). The feedback
signals resulting from the user’s intentions have the capacity to
potentiate Hebbian-associative neuroplasticity, which reinforces
the networks responsible for successful behavioral responses or
behavioral changes in the case of failure (Grosse-Wentrup et al.,
2011). Therefore, it is essential to provide appropriate feedback in
rehabilitative systems based on BCI technology.

In contrast to MI-BCIs, the P300-based paradigm has several
significant advantages. Research has demonstrated that P300 can
be detected in the electroencephalography (EEG) of post-stroke
individuals with an accuracy rate of approximately 70–80%, which
is lower than the accuracy achieved by non-disabled individuals but
still sufficient for successful BCI control (Guger et al., 2009; Ortner
et al., 2011; Anitha et al., 2019). Additionally, P300 BCIs allow users
to choose a target stimulus by switching attention to that stimulus,
so the number of possible BCI commands depends only on the
system design. With the advantage that MI-BCIs do not require
an external stimulus environment, they offer a smaller number of
commands and are typically limited to three or four recognizable
motor images (Wang et al., 2012; Pei et al., 2021).

All of these factors make the P300 paradigm an attractive
tool for creating a closed-loop BCI-based rehabilitation system
with high reliability in realizing the patient’s intentions. However,
P300-based BCIs have only recently been considered as a tool for
motor rehabilitation (Kaplan et al., 2016). So, Delijorge et al. (2020)
proposed using the P300-based BCI to control a hand exoskeleton,
which allows users to control all exoskeleton fingers with high
accuracy, while MI-based paradigms are limited in their ability
to provide fine movements of finger control. Several studies have
proposed combining exoskeletons, virtual reality, and electrical
stimulation to restore both upper limb (Bulanov et al., 2021;
Hernandez-Rojas et al., 2022) and lower limb (Ninenko et al.,
2022) mobility in individuals with paralysis, using the P300-BCI to
control the robotic-manipulator and electrical stimulation.

In a previous study, we demonstrated that observation of
virtual hand movements in a BCI-P300 loop resulted in increased
corticospinal excitability compared to passive observation of the
same movements (Syrov et al., 2019). Our approach aims to
employ P300-BCI to enable paralyzed patients to control the
movements of a virtual avatar. Action observation has been
widely used in post-stroke therapy to activate sensorimotor circuits
via the mirror neuron system (Ertelt et al., 2007). We propose
that observation of movements within the BCI feedback could
enhance the passive AO effects by engaging feedback anticipation
and estimation brain mechanisms, as well as movement error
monitoring. Our suggestion is that mirror neurons may play
a role in BCI-feedback processing by comparing the observed
action with the intended movement and detecting discrepancies
between them, which could activate areas involved in motor-
error monitoring (Bates et al., 2005; Pyasik et al., 2022). In EEG
studies, activation of sensorimotor areas during action observation
has been observed via the evaluation of mu and beta rhythm
event-related desynchronization (ERD), which indicates a relative
decrease in amplitude of oscillatory activity (Frenkel-Toledo et al.,
2014; Lapenta et al., 2018).

Moreover, beta synchronization (beta ERS) was detected during
the observation of incorrect movements (Koelewijn et al., 2008).
Beta ERS has been proposed as a marker of primary motor cortex
inhibition, which suggests that the observation of motor errors
triggers M1 deactivation as a mechanism for correcting mirrored
movements. In our study, we aimed to investigate the amplitude
of sensorimotor EEG activity during the observation of virtual
hand movements presented as feedback in the P300-BCI loop.
We compared the dynamics of mu and beta ERD and beta ERS
during the observation of correct feedback and errors. In addition,
we explored error-related potentials (ErrPs) to confirm that error
monitoring occurs.

2. Materials and methods

2.1. Participants

We recruited 20 healthy adult right handed participants (age
range: 25 ± 3 years-old; 12 females). All participants reported
no history of neurological or psychiatric disorders, and were
not taking any medication that could affect the central nervous
system. Participants provided written informed consent prior to
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participating in the study. The experimental protocol was approved
by the Lomonosov Moscow State University Committee for
Bioethics (protocol no. 111-ch) and was conducted in accordance
with the Declaration of Helsinki Ethical Principles for Medical
Research Involving Human Subjects.

2.2. Experimental procedure

The individuals taking part in the study were seated
comfortably in an armchair. They were instructed to keep their
hands relaxed while performing two tasks involving visual stimuli
displayed on an 18-inch LCD screen located 50 cm in front of them.
Prior to the experimental session, the participants were asked to
perform a brief set of voluntary finger movements. For this task, the
subject was shown the name of the finger to move on the monitor
screen, followed by a command to move it after a second. During
the task, both EEG and EMG were recorded. The purpose of this
task was to evaluate the individual spatial-frequency characteristics
of the sensorimotor rhythms ERD/S.

2.2.1. BCI action observation task (BCI-AO)
The present study employed a BCI-AO task utilizing the

P300-based paradigm, whereby finger movements of the virtual
anthropomorphic hand were presented on the screen as feedback
within the BCI loop. Figure 1A shows the scheme of this condition.
A virtual hand was displayed on a screen located in front of each
participant (an 18.5-inch LCD monitor was placed in front of the
subject at 50 cm from their eyes). During each trial, participants
were tasked with inducing finger flexion via mental commands
transmitted through the BCI. Each participant completed a total
of 40 trials. In accordance with the P300-based BCI paradigm,
within each trial, all fingers were sequentially highlighted in a
random order, with each finger being highlighted 10 times for a
total of 40 flashes per trial. Each highlight lasted for a duration
of 100 ms, with a 200 ms interstimulus interval. To elicit the
movement of a particular virtual finger (i.e., the target finger),
participants were instructed to selectively attend to the highlighting
of that finger: they were asked to mentally count the number
of target flashes to help them focus their attention. When non-
target fingers were highlighted, participants were not required to
take any action, so non-target flashes were ignored. The EEG
responses elicited in response to finger highlights were utilized
to determine the direction of attentional focus and initiate the
flexion of the target finger. A linear discriminant classifier from
the SciKit-Learn Python library v0.23.2 (Pedregosa et al., 2011)
was utilized with default settings. To provide a sufficient number
of erroneous feedback, we included a random component in the
decision algorithm that randomly chose a finger to move differently
from what was chosen by the participant. Such errors occurred in
15 cases out of the total attempts, resulting in an average accuracy
of not more than 62.5%. The participants weren’t aware of this
invasion.

2.2.2. Passive action observation task
In the passive action observation condition, participants

observed intransitive finger movements identical to those in the
BCI feedback, except that they were presented outside of the BCI

FIGURE 1

Schematic diagram of the experimental pipeline for all conditions.
(A) AO-BCI condition, where participants controlled virtual finger
flexions with P300-BCI. Each trial includes the presentation of visual
stimuli, a period of anticipation, and the presentation of feedback in
the form of a video sequence with finger movements. (B) Passive
AO condition, where half of all trials included an anticipatory
cross-presentation 1 s before movement onset to warn participants
of the action.

loop. The stimuli lasted for 2 s, with 1 s for finger flexion and 1 s
for finger extension. The virtual finger movements were presented
to participants in a pseudorandom sequence. During the intervals
between finger movements, a resting hand was displayed on the
screen, with a gray cross positioned before the fingers to fixate
the participant’s gaze in that field. The duration of the resting
period varied randomly from 2.5 to 4.5 s. In total, 60 actions were
demonstrated to a participant. The fixation cross changed its color
to yellow (“anticipatory cross”) in half of the cases 1 s before the
movement onset, signaling the start of the finger movement to the
participant (see Figure 1B). This created two types of conditions in
the passive AO task: the anticipated action observation condition
(referred to as “AAO”), in which participants were warned about
the hand movement in a random order during 50% of trials, and
the “AO” condition, in which the finger movement was launched
unexpectedly for the participant (the cross did not change color).

2.3. EEG recording and preprocessing

The EEG was recorded using an NVX52 DC amplifier (MKS,
Russia) with 48 Ag/AgCl scalp electrodes, placed according to the
“10–10” international system in the following positions: Fp1, Fp2,
F5, F3, F1, F2, F4, F6, FT7, FT8, FC5, FC3, FC1, FCz, FC2, FC4, FC6,
C5, C3, C1, Cz, C2, C4, C6, CP5, CP3, CP1, CPz, CP2, CP4, CP6, T7,
T8, P7, P5, P3, P1, Pz, P2, P4, P6, P8, PO3, POz, PO4, O1, Oz, and
O2. The contact resistance for each of the electrodes was kept below
20 k�. The signal was sampled at 500 Hz with a 50 Hz notch filter.

The EMG signal was also recorded synchronously from the
flexor digitorum superficialis muscle (FDS) and extensor digitorum
communis muscle (EDC) of the right hand to check muscle activity.
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The EEG data was preprocessed by first visually inspecting
the raw signal to remove epochs with poor signal quality. The
signal was then filtered using a 4th order Butterworth filter with
a frequency range of 1–40 Hz. Independent component analysis
(ICA) was applied to identify and remove eye blink and muscle
artifacts from the EEG data. Frontally localized ICA components
with high correlation with Fp1 and Fp2 channels were classified
as EOG artifacts, while those distributed on T7-T8 channels were
classified as muscular artifacts. Finally, the EEG data was re-
referenced to the average reference. The MNE-Python toolbox
was utilized to perform these preprocessing steps (Gramfort et al.,
2013).

2.3.1. Event-related potentials processing
Event-related potential analysis was performed to assess error-

related processing (correct vs. erroneous actions) in the AO BCI
condition and in the passive action observation condition to
estimate differences in action-related potentials in the AAO and
AO trials. EEG signal was epoched into [−1; 1] s intervals locked
to the movement onset, mean value in [−1; −0.2] s interval was
used for baseline correction. Epochs were then averaged for each
subject according to condition.

Error-related potentials were statistically compared with EEG
responses from trials with correct feedback. To avoid multiple
comparisons, we used a non-parametric spatio-temporal cluster-
based test with a threshold of 20 and 10,000 permutations (Maris
and Oostenveld, 2007). The significance level was set at 0.05.

2.3.2. Analysis of sensorimotor rhythms
(de-)synchronization
2.3.2.1. Common spatial pattern algorithm for ERD/S
sources extraction

To ensure the sensorimotor specificity of the analyzed
ERD/S responses related to action observation and to eliminate
contamination from occipital alpha activity, we used the common
spatial pattern (CSP) algorithm. The CSP algorithm is a commonly
used method for extracting features related to motor imagery
from multi-channel EEG data (Rithwik et al., 2022). It involves
a linear transformation of the multi-channel EEG data from
two different conditions into a low-dimensional common spatial
subspace, achieved by a set of spatial filters that maximize the
variance of two-class signal matrices. In our study, these two
classes were defined as the “active state,” i.e., action observation
(or BCI feedback observation), and the “resting state,” which
involved observation of a motionless hand. We have successfully
used CSP for the extraction of AO-related changes in sensorimotor
EEG (Syrov et al., 2022). In order to create sensitive spatial
filters for ERD/S analysis, we determined subject-specific frequency
subranges that corresponded to the mu (6–15 Hz) and beta (12–
30 Hz) frequency ranges where the ERD and ERS occurred. These
subranges were determined through visual inspection of time-
frequency perturbations in action execution trials.

The EEG data was then filtered according to these subranges.
The data were then divided into epochs corresponding to “active
state” (2 s from 0 to 2 s after movement onset) and “resting state”
(0.5–2.5 s after movement onset for the passive AO condition and
4–2 s before feedback presentation for the AO-BCI condition). The
anticipation period was not used in the CSP fitting for both the
AAO and AO-BCI conditions. The implementation of the CSP

algorithm was taken from the Python library MNE 0.23 (Gramfort
et al., 2013) with modifications [a procedure for cleaning the
covariance matrix by removing unrepresentative “noisy” epochs
was added, as suggested in Cohen (2022)].

Spatial filters with only central (over the sensorimotor areas)
localization of spatial patterns were taken for further analysis. They
were applied to the broadly filtered data obtained in the pre-
processing step. This procedure transformed the raw data into
components that could be interpreted as a complex mixture of
signals from the original EEG data, including specific components
of a target mental state [see Arvaneh et al. (2011) and Kim Y.
et al. (2016) for more details]. The selected spatial patterns were
then averaged and visualized (see Figures 2, 3). The spatial pattern
visualization helps to understand the topographic distribution of
the features extracted from the raw EEG signal that are most
informative for distinguishing between the two different states, i.e.,
action observation and REST.

2.3.2.2. Time-frequency analysis and ERD/S evaluation

For the time-frequency analysis, we utilized the Morlet wavelet
transform, using a set of complex Morlet wavelets with a variable
number of cycles for different frequencies. The frequencies of
the wavelets ranged from 3 to 30 Hz in steps of 0.3 Hz. The
full width at half maximum (FWHM) was set to 140 ms, which
corresponds to a spectral FWHM of 4.5 Hz. To calculate the
desynchronization value, the signal power in the action observation
conditions was divided by the median of the signal power in the
resting state (median was taken over all trials and time stamps).
The resulting values were then converted to decibels, with negative
values corresponding to ERD and positive values corresponding
to ERS. The temporal dynamics of ERD/S were obtained by
taking the median across all epochs and within subject-specific
frequency subranges.

For statistical analysis, we used a non-parametric cluster-
based test with threshold-free cluster enhancement and 10,000
permutations. To identify significant differences in ERD during the
feedback anticipation period, we compared the temporal dynamics
of mu/beta desynchronization with the zero-level corresponding
to the resting state. We also compared ERD/S dynamics between
incorrect BCI output trials and correct feedback trials. In addition,
we compared mu/beta ERD dynamics between AO and AAO
conditions to explore the effects of action monitoring awareness.

3. Results

Figure 4 shows an example of the time-frequency dynamics
for one subject. It is notable that both action anticipation in
passive action observation and within BCI feedback perception
induce desynchronization in the mu range, which increases further
during the observation of a finger movement. A similar pattern of
event-related desynchronization (ERD) was also discovered during
voluntary finger flexions, as ERD appeared in the same frequency
range. It’s noteworthy that the amplitude decrease occurred almost
1 s before the movement onset, and its maximum corresponded
with the moment of maximum EMG activity power. The central
distribution of the most pronounced desynchronization in all
conditions suggests that the mu rhythm was elicited during
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FIGURE 2

(A) The averaged temporal dynamics of mu/beta ERD during action anticipation and observation in AAO (blue line) and AO (red line) conditions.
Colored shapes with asterisks indicate significant differences. The vertical lines delimit the 2-second time intervals during which a finger movement
was presented. On the right, the averaged spatial patterns corresponding to each EEG reaction are displayed. (B) Averaged evoked potentials related
to action observation in two different conditions. The ERP evoked by anticipatory cross occurred before action presentation and is marked as
“iCNV”. Above the topography distribution of its amplitude is shown. The first dashed line indicates the moment of anticipatory cross presentation,
while the second indicates the moment of finger flexion onset.

action observation and BCI feedback observation, indicating the
activation of sensorimotor regions.

An analogous spatial pattern in the mu ERD distribution was
also revealed in the averaged CSP patterns. Figure 2A displays the
averaged mu/beta ERD CSP-sources and the average dynamics of
the spectral power in these frequency bands, which were obtained
using selected spatial filters.

It is noteworthy that the mu ERD spatial pattern is
skewed toward the parietal area, while the beta ERD pattern
demonstrates bilateral fronto-central localization. The analysis of
the desynchronization dynamics revealed a gradual decrease in
both mu and beta oscillations during action observation. A cluster-
based permutation test was performed, which found one temporal
cluster starting just before the action onset. Within this time

Frontiers in Human Neuroscience 05 frontiersin.org

https://doi.org/10.3389/fnhum.2023.1180056
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-17-1180056 April 27, 2023 Time: 14:35 # 6

Syrov et al. 10.3389/fnhum.2023.1180056

FIGURE 3

The averaged temporal dynamics of mu/beta ERD and beta ERS (bottom) during anticipation and observation of actions presented as BCI feedback.
The blue line denotes observation of CORRECT actions, while the red line denotes observation of ERRONEOUS actions colored shapes with
asterisks indicate significant differences. The vertical lines limit the 2 s time intervals during which the BCI feedback was presented. On the right, the
averaged spatial patterns corresponding to each EEG reaction are shown.

interval, the test indicated a significantly greater ERD in the mu
range related to virtual finger action anticipation. However, no such
effects were found in the beta band. Summarized results of the
statistical tests applied are presented in Table 1.

Figure 2B shows the average ERPs locked to the onset of finger
movement in two action observation conditions. The ERPs consist
of several peaks, and it can be observed that the early potentials are
similar in simple AO and anticipated (AAO), but the late positive
potential (in the 400–600 ms time range) in the AO condition
begins with a slight delay compared to the AAO. However, the

results of the cluster-based permutation test did not reveal any
significant differences between the two conditions.

We analyzed the time course of mu/beta ERD during the BCI
control, and found a significant decrease in the mu rhythm, but not
in the beta rhythm, amplitude during the feedback anticipation.
A cluster-based permutation test revealed a significant difference
between the pre-action mu ERD and zero value (p = 0.005, mean
F-score = 11.38, see Figure 3). Both the mu and beta oscillations
decreased during the action observation, which was presented
as BCI feedback. It is important to note that the correctness
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FIGURE 4

Example of the time-frequency dynamics of the ERD/S value
obtained prior to CSP application for a participant. The data
corresponds to channel “C3”. All conditions are shown: AO, passive
action observation; AAO, passive action observation with action
anticipation; AO-BCI, observation of actions presented as BCI
feedback; AE, action execution. The spatial distribution of ERD/S for
each condition is shown on the right.

of the presented feedback (correct vs. error) did not have an
effect on either the mu or beta ERD. We also analyzed the
synchronization reaction in the low-beta range (average frequency
range of beta ERS for all participants is 12–17 Hz) and found
that it reached significantly higher values during error observation,

TABLE 1 Results of statistical tests.

ERD/S in action anticipation

Frequency
range

Cluster’s time
range, s

Mean F p-Value

mu-ERD −0.2 to 0.25 11.38 0.005

ERD/S in BCI feedback

mu-ERD −0.7 to 0.0 14.84 0.001

beta-ERS 0.8 to 1.75 4.1 0.04

oErrP in BCI feedback

Cluster’s
spatial points

Cluster’s time
range, s

Mean F p-Value

F1, FC1, C1, FCz,
Cz, FC2

0.470 to 0.520 9.3 0.0002

i.e., observation of wrong fingers, which differed from what the
participant tried to choose with the BCI (see Figure 3).

It’s important to note that the chosen spatial filters applied to
EEG had central localization of the spatial patterns. The average
weighted CSP patterns for mu/beta ERD and beta ERS reactions
are shown in Figure 3. They display a predominantly contralateral
distribution of the CSP features, which maximizes the variance of
EEG signals in target frequency ranges between action observation
and “rest” conditions.

In order to examine the temporal dynamics of the error
feedback processing, we conducted an event-related potential
(ERP) analysis. Our analysis revealed that the ERP response
triggered by the virtual hand action presented as BCI feedback
consisted of several peaks that differed between correct and error
outputs in the time ranges of 200–300 ms (corresponding to the
error-related negativity, Ne), 450–600 ms (error-related positivity,
Pe), and the latest deflection with a latency of around 700 ms, which
corresponds to the interaction potential (Ip). A spatio-temporal
permutation test showed a significant difference between the ERP
curves in a temporal cluster that coincided with the Pe latency
(cluster from around 470 to 520 ms with the mean F-score = 9.3,
p = 0.0002). The cluster was located at central F, FC, and C electrode
sites, as can be seen in Figure 5, which presents an F-score map
with highlighted significant channels. This is consistent with the
resulting fronto-central topographic distribution for the Pe peak
amplitude (see Figure 5B). The calculation of the effect size for
the identified cluster, based on the data extracted from the channels
and time interval corresponding to the cluster, revealed a significant
effect with a large magnitude (Cohen’s d = 1.23).

As shown in Figure 5B, the error-related negative potential and
the interactive potential were more negative during the observation
of incorrect actions, but neither reached significance.

4. Discussion

The study of feedback anticipation and estimation is a crucial
aspect in the realm of brain-computer interaction. The examination
of error-related (feedback-related) potentials is a widely-used
approach to gain insight into the neural basis of these processes. In
this study, our focus was on examining the changes in sensorimotor
EEG activity during observation of BCI feedback that was in the
form of an anthropomorphic palm finger. It is well-established
in the literature that the mu and beta ERD/S over sensorimotor
cortical areas decrease during action observation and are sensitive
to action characteristics and correctness. However, there are few
published findings to date on the ERD/S during the process of
anticipation of an upcoming action and estimation of an action
presented within BCI feedback processing.

4.1. Mu and beta desynchronization
during action anticipation and
observation

Our results align with previous studies that have shown
mu/beta event-related desynchronization during both action
execution and observation, suggesting that cortical networks
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FIGURE 5

(A) Significant differences from the cluster-based permutation test. On the left is the F-score map, with significant channels highlighted. The average
ERPs waveform for the spatial cluster is shown on the right, with the time interval containing significant differences highlighted (p = 0.0002). The
vertical line indicates the onset of the finger action. Panel (B) is a color map that depicts the temporal evolution of the amplitude of the difference
ErrP (Error–Correct) at the midline and nearest electrodes. Specific ErrP components are denoted: Ne, error-related negativity; Pe, error-related
positivity; Ip, interaction potential. Corresponding topographic maps are presented below.

involved in mu/beta sensorimotor activity are part of the mirror
neuron system or the action observation network (van Schie et al.,
2008; Lapenta et al., 2018). Both mu and beta activity exhibit a
decrease in amplitude that occurs synchronously with the observed
finger flexion: ERD increases during flexion, reaching a maximum
value at the moment of maximal flexion aperture, before returning
to baseline during the extension phase. This result aligns with
previous findings (Avanzini et al., 2012; Syrov et al., 2022). The
study also revealed a differential development of mu and beta
ERD during the anticipation phase of actions, suggesting distinct
roles of these rhythms in action anticipation and supporting the
notion that mu and beta ERD are sensitive to different aspects
of action “mirroring” (Shibuya et al., 2021; Syrov et al., 2022).
Specifically, in our study, we observed a significant mu ERD during
the anticipatory phase prior to action onset, while beta ERD was
not observed (Figure 2).

Figure 4 allows a comparison of the temporal dynamics of the
ERD during both actual action execution and action observation.
The amplitude of the mu rhythm decreases about 1 s before
action onset, indicating preparation processes in the sensorimotor
circuitry (Pfurtscheller, 2000). Compared to preparation for action
execution, preparation for action observation is less frequently
described in the literature and is mostly studied in the context of
goal-directed action trajectory prediction (Lago and Fernandez-
del-Olmo, 2011). Studies have shown that general activation of M1
appearing before action observation reflects muscle-non-specific
action prediction and is associated with predicting the goal of the
object-directed movement rather than the resonance of specific
muscle activation (Lago and Fernandez-del-Olmo, 2011; Naish

et al., 2014). And the subsequent action observation activates M1
in a muscle-specific manner (Naish et al., 2014).

Studies investigating anticipation for action observation using
EEG are relatively scarce in the literature. Kilner et al. (2004) found
that a slow readiness potential developed both before execution
and observation of an action, suggesting that knowing about an
upcoming movement is enough to activate one’s own motor system,
allowing people to anticipate the actions of others. However, the
nature of the readiness potential is debated and might not be related
to specific movement preparation processes but rather represents
an averaging of random spontaneous fluctuations in neural activity
while waiting for any event (Schurger et al., 2012). The late
components of contingent negative variation (CNV) represent
both motor preparation and stimulus anticipation, according to
the authors (Brunia and Damen, 1988). CNV is elicited after
the anticipatory stimulus but before the imperative stimulus,
which engages the participant to execute an action. The CNV is
typically elicited after an anticipatory stimulus before an imperative
one that engages the participant to execute an action (Glazer
et al., 2018). In the present study, an anticipatory cross flash
was used to engage participants in waiting for an action, similar
to the anticipatory stimulus in the CNV paradigm. Thereby,
the ERP obtained in response to the anticipatory cross in this
study may be comparable to the CNV. Figure 2B shows the
obtained ERP, with the early component peaking at the FCz
channel resembling the early CNV component (iCNV) associated
with an orienting response, while the late phase reflects stimulus
anticipation and/or response preparation (Bender et al., 2004;
Röhricht et al., 2018).
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However this late phase is not distinguishable in our results due
to the short time interval between the anticipatory and imperative
stimuli (Röhricht et al., 2018). Nevertheless, significant mu ERD
was observed, indicating the activation of somatosensory areas
during anticipation of action observation.

These findings are consistent with those of an fMRI study
(Abreu et al., 2012), in which S1 activation was observed during
action anticipation. It has been suggested that the preparation of
upcoming actions involves a motor simulation that maps specific
sensory features of the action (Bernstein, 1947; Debnath et al.,
2019). This process is likely carried out via the somatosensory
cortex, as supported by literature data (Caetano et al., 2007).
Additionally, the same brain areas might be involved in the
anticipation of others’ actions, as evidenced by our results and
previous studies.

It can be noted (Figure 2) that a slight pre-action ERD also
occurred in the AO condition, where the finger flexion started
suddenly. We can explain this by considering that the interval we
used between two subsequent movements in the AO condition
was short and predictable, which may have caused the anticipation
effect in the passive observation condition. Notably, this effect was
insignificant and the anticipation ERD was significantly larger in
the AOA condition compared to AO.

Surprisingly, beta ERD didn’t change during the anticipation
of AO. As beta ERD is suggested as an M1 activation marker,
we expected a decrease in beta amplitude that would be matched
with TMS studies (Lago and Fernandez-del-Olmo, 2011; Naish
et al., 2014). The distinguishing role of mu and beta rhythms in
action prediction is hypothesized here. The study (Monroy et al.,
2019) investigated the relationship between statistical regularities
and motor predictions during action observation using (Ghilardi
et al., 2023) showed that the mu rhythm is generally related to
action prediction, independent of the statistical structure of the
action. However, the beta rhythm appears to be sensitive to action
probability, with beta ERD being higher during anticipation and
observation of more probable actions. In our study, the finger to be
flexed was selected at random with equal probability for each finger,
which may explain the lack of beta ERD during the anticipation
period (Ghilardi et al., 2023).

4.2. Mu and beta desynchronization
during the BCI-feedback anticipation
and observation

Our study demonstrated that observing actions within BCI
feedback results in the development of mu/beta ERD, with a
temporal profile similar to that observed during simple action
observation. This finding suggests that the sensorimotor areas
involved in “action mirroring” are also activated during BCI
feedback analysis. Furthermore, significant mu range ERD was
observed during anticipation of BCI feedback, indicating that
feedback anticipation and prediction in our paradigm involve
processes of action prediction similar to those involved in simple
action observation anticipation (see Figures 2, 4). Notably, a large
effect size was observed in the pre-feedback mu amplitude decrease:
for the identified temporal cluster, the calculated Cohen’s d value
was 0.9.

It was surprising that no differences in mu/beta ERD were
observed between correct and error BCI outputs, even though
wrong actions were less unexpected and have a lower probability
than those of correct actions. This finding is in contrast to previous
research that showed that mu/beta ERD are sensitive to action
expectancy. At the same time, prior studies have suggested that
mu ERD is more dependent on the somatosensory familiarity
of the action than its semantic correctness (Calvo-Merino et al.,
2006; Syrov et al., 2022). On the other hand, beta ERS, which is
characterized by an amplitude increase in low-beta (12–20 Hz)
over central cortical regions during action execution, imagery, and
observation, is thought to be more strongly linked with highly
hierarchical action estimation (Muthukumaraswamy and Johnson,
2004). An increase in beta ERS was found in error BCI output cases,
i.e., when the presented feedback movement differed from what the
subject had chosen (see below).

4.3. Error monitoring and BCI-feedback
processing

4.3.1. Error-related potentials
Error-related potentials are specific EEG signatures associated

with detecting errors or conflicts during information processing
DD (Joch et al., 2017; Glazer et al., 2018). Error-related negativity
(Ne) and positivity (Pe) are two well-known types of ErrPs that
reflect different aspects of error processing. Ne or ERN is related
to error identification and conflict processing, and its source is
believed to be the anterior cingulate cortex (ACC) (Dehaene et al.,
1994; Glazer et al., 2018). Pe is a positive deflection following
Ne and is related to error awareness (Hester et al., 2005; Glazer
et al., 2018). Pe amplitude reflects cognitive processes associated
with potential error consequences and post-error adjustments of
behavior (Danielmeier and Ullsperger, 2011). Pe generators are
associated with the prefrontal cortex, ACC, and insular cortex
(Pezzetta et al., 2023).

It has been shown that the same type of neurophysiological
reactions reflected in ErrPs can also be revealed when monitoring
the errors of others. These potentials are called observed Ne (oNe)
and observed Pe (oPe) (Koban and Pourtois, 2014; Pyasik et al.,
2022). They are similar to Ne and Pe in terms of their distribution
and location, but have smaller amplitudes and a longer latency.
Specifically, oNe is registered between 50 and 350 ms, and oPe
latency is closer to 600 ms after the observed motor error (Pezzetta
et al., 2023).

In our study, we investigated ErrPs in response to movements
presented as feedback in the P300-BCI paradigm. Our findings
revealed a cluster of significant differences falling within the
time range corresponding to the ERP with characteristics similar
to the oPe: a latency range of 500–700 ms and amplitude
peaking at the FCz channel (Pezzetta et al., 2023). However,
we found no significant differences in the oNe potential. One
possible explanation for this discrepancy may be that errors
occurring within the context of a Brain-Computer Interaction
(BCI) paradigm are processed differently. However, the authors
of BB (Ferrez and Millán, 2005, 2008) discovered significant Ne
in BCI errors as well as the late negative error-related component
unique to brain-computer interaction. We observed a similar slow
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late deflection after oPe, which was slightly more negative in
error feedback, but this difference was also insignificant. Another
explanation could be the type of feedback presented in our study,
which was movies of finger flexion, and the possibility of a time
jitter when participants noted the flexion start. This could have
resulted in ERPs’ peak smearing, which might hide differences (Guy
et al., 2021). Moreover, we used a non-parametric permutation
test instead of the commonly used approach with a priori channel
and latency range selection, which has a higher potential to reveal
false-negative results (Luck and Gaspelin, 2017).

4.3.2. Beta synchronization
In the time-frequency domain, the observation of motor errors

has been linked to enhanced activity in the lower subrange within
sensorimotor beta activity. Here we found a significant increase
in the beta ERS amplitude during the observation of error-BCI
outputs. This increase occurred in the low beta subrange, with
contralateral predominance in the sensorimotor areas (Figure 3).

Beta ERS is thought to reflect the inhibition of the M1 area
under the activity of somatosensory and/or premotor cortices,
which may be involved in action termination or the prevention
of involuntary action imitation (Archibald et al., 2001). Numerous
studies have demonstrated error-related beta ERS, with authors
reporting increased beta power during the execution of incorrect
and erroneous actions (van Driel et al., 2012; Tan et al., 2014;
Torrecillos et al., 2015; Little et al., 2019) or the performance of
semantically meaningless actions (Van Elk et al., 2010b).

Moreover, beta ERS has also been observed to increase in
individuals who observe erroneous actions performed by others,
highlighting the role of beta ERS-generating networks as part of the
action observation network (AON) (Koelewijn et al., 2008; Pezzetta
et al., 2023). Notably, Honaga et al. (2010) have demonstrated a
decrease in beta ERS in individuals with autism spectrum disorder
during action observation, which further supports the involvement
of beta ERS in the AON.

The observed increase in beta activity during the observation
of erroneous movements may be associated with inhibition of the
motor cortex, which could be due to the termination or correction
of internally imitated actions. This phenomenon is similar to beta
ERS during real movement errors, which is thought to reflect
inhibition of the current action (Stapel et al., 2010; Walsh et al.,
2010). Although beta ERS is commonly thought to reflect the
processing of action errors in relation to their meaning, in this
study we observed beta ERS in response to simple intransitive
(meaningless) actions that were presented as BCI feedback. At the
same time, these observed actions served to signal users about their
BCI performance, which was further confirmed by the presence
of oErrPs (see Figure 5). Based on these findings, it is possible
to hypothesize that knowledge regarding the correctness of BCI
feedback may be represented directly in the motor system (Van Elk
et al., 2010a).

4.4. Future applications and limitations of
the study results

It has been demonstrated that the function of action monitoring
networks is impaired in stroke patients. It is reflected in a mu/beta

ERD decrease and a decrease in oPe amplitude. Training of these
networks via action observation therapy is suggested as a promising
tool for motor rehabilitation. Activation of the mirror neuron
system in post-stroke patients has already shown its therapeutic
effect. It has been demonstrated that patients who have had a
stroke have a decrease in the function of their action monitoring
networks. This decline is reflected in a decrease in AO-related
mu/beta ERD and oPe amplitude (Frenkel-Toledo et al., 2014;
Pyasik et al., 2022). Therefore, action observation therapy is being
proposed as a promising tool for motor rehabilitation to train
these networks (Ertelt et al., 2007). The therapeutic benefits of
activating the mirror neuron system in post-stroke patients have
already been demonstrated. Studies (Sun et al., 2016; Tani et al.,
2018) have demonstrated improvements in both motor skills and
function of the action observation network (AON) following action
observation therapy. They have also recommended the use of EEG
markers of AON activation to assess the rehabilitation progress.
AO therapy may have greater benefits compared to motor imagery
therapy, because some patients with motor impairments may not
be able to successfully engage in motor imagery tasks, leading to
insufficient activation of the relevant brain regions (Braun et al.,
2006).

While AO therapy may be effective, it is a passive procedure
that may not engage patients, leading to reduced motivation
and insufficient activation of action monitoring mechanisms. To
address this issue, we propose the use of a BCI paradigm with AO
feedback. Cases of the coupling of BCI technologies with action
observation have already been the subject of several studies (Neuper
et al., 2009; Kim T. et al., 2016; Choi et al., 2019). Our approach
is unique in that we use AO-feedback inside the P300-based BCI,
making it easier to use for post-stroke patients (Piccione et al., 2006;
Guger et al., 2009).

In addition, based on our results, we can suggest that providing
the highest possible BCI accuracy may not be necessary, as even
erroneous BCI outputs can still activate sensorimotor contours
within the action monitoring system. We believe that observing
erroneous actions within the BCI loop may even be beneficial,
as it engages mechanisms for monitoring movement errors. Our
approach also avoids the need to estimate observed action goals,
which may be difficult for post-stroke patients, instead focusing
on choosing the target finger to move and comparing the BCI-
launched movement with the desired one.

Finally, we would like to highlight several limitations of our
study. Our findings show that anticipating action observation
causes pre-movement event-related desynchronization (ERD) in
the alpha range, which we interpret as activation of sensorimotor
cortical areas. However, we acknowledge that the presentation of
the cross and consequent action anticipation may also engage visual
attention and lead to occipital alpha-ERD contamination of mu
ERD signals (Bollimunta et al., 2011; Bazanova and Vernon, 2014).
To address this potential issue and ensure that all mu ERD were
analyzed, we used the common spatial pattern (CSP) method to
separate specific spatial sources and only used signals from sources
with centrally distributed patterns (see Figures 2, 3).

Moreover, we hypothesized that we would observe EEG
correlates of BCI feedback anticipation, including feedback-related
negativity and stimulus-preceding negativity, both of which are
typically observed prior to the presentation of feedback stimuli
(Glazer et al., 2018). However, our results did not reveal any such
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activity. One possible explanation for this finding could be related
to our selection of the baseline correction interval in the ERP
analysis and/or the relatively small number of averaged epochs.

5. Conclusion

We found that during the anticipation period of the action
in the passive observation paradigm, there was a significant
desynchronization in mu oscillations, but not in beta, whereas
during the observation period of the action itself, there was
a gradual decrease in amplitude in both mu and beta bands.
Similar results were obtained in the active paradigm of AO, where
participants observed actions presented as feedback in a P300-
based BCI loop. These data suggest activation of somatosensory
cortical regions during observation of BCI feedback. However,
the correctness of the observed feedback actions did not affect
the amplitude of the mu/beta ERD. At the same time, the
synchronization of EEG activity in the low-beta range was
significantly higher during the incorrect feedback observation.
Error-related potentials indicate that processes of error monitoring
and analysis took place during feedback observation. This suggests
that sensorimotor areas involved in the action monitoring system
are engaged in BCI feedback estimation. Our results confirm
that active action monitoring within the P300 BCI loop is a
potentially helpful technique for post-stroke rehabilitation of the
motor system, as it engages the brain’s action monitoring and action
observation networks.
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