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Introduction: Autism Spectrum Disorder (ASD) has a significant impact on the

health of patients, and early diagnosis and treatment are essential to improve their

quality of life. Machine learning methods, including multi-classifier fusion, have

been widely used for disease diagnosis and prediction with remarkable results.

However, current multi-classifier fusion methods lack the ability to measure the

belief level of different samples and effectively fuse them jointly.

Methods: To address these issues, a multi-classifier fusion classification

framework based on belief-value for ASD diagnosis is proposed in this paper.

The belief-value measures the belief level of different samples based on distance

information (the output distance of the classifier) and local density information

(the weight of the nearest neighbor samples on the test samples), which is more

representative than using a single type of information. Then, the complementary

relationships between belief-values are captured via a multilayer perceptron

(MLP) network for effective fusion of belief-values.

Results: The experimental results demonstrate that the proposed classification

framework achieves better performance than a single classifier and confirm that

the fusion method used can effectively fuse complementary relationships to

achieve accurate diagnosis.

Discussion: Furthermore, the effectiveness of our method has only been validated

in the diagnosis of ASD. For future work, we plan to extend this method to the

diagnosis of other neuropsychiatric disorders.

KEYWORDS

resting-state functional magnetic resonance imaging (rs-fMRI), autism spectrum disorder
(ASD), belief-value, multi-classifier fusion, feature selection

1 Introduction

Autism spectrum disorder (ASD) is a complex genetically heterogeneous neurological
disorder with a high prevalence, often coexisting with other disorders (Hiremath et al.,
2021). A recent report from the Centers for Disease Control and Prevention showed
that one in every 54 American children aged 8 years has ASD with varying degrees of
severity, which creates an enormous socioeconomic burden on society (Eslami et al., 2019;
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Lord et al., 2020; Maenner et al., 2021). Therefore, early
identification and treatment of ASD are of great clinical value
(Wang et al., 2019).

Given the importance and complexity of ASD diagnosing, it is
essential to find effective and reliable methods that help clinicians
diagnose patients. Currently, many researchers use machine
learning to assist in the diagnosis of ASD based on neuroimaging
and they have achieved promising results (Bone et al., 2015; Nogay
and Adeli, 2020; Raj and Masood, 2020; Thabtah and Peebles,
2020). For example, Ahmed et al. (2020) used the raw pixel feature
obtained from fMRI data with support vector machines (SVM)
to diagnose ASD. Karampasi et al. (2020) used Haralick texture
features extracted from resting-state functional magnetic resonance
imaging (rs-fMRI) for ASD diagnosis. Vigneshwaran et al. (2015)
used regional homogeneity of voxels from MRIs as a feature to
diagnose ASD in men. The abovementioned methods only consider
a single feature extracted from neuroimaging with a single classifier
to assist in diagnosis. However, considering the complexity and
heterogeneity of ASD, the limited information expressed by a single
feature makes it difficult to provide comprehensive information,
and the diagnosis by a single classifier with a single feature will not
meet the clinical needs (Kuncheva et al., 2001).

Inspired by the concept of multi-view learning (Li et al., 2022),
which uses information from multiple views to enhance an object’s
representation, multiple features extracted from neuroimaging
with multiple-classifier fusion can be used in a similar way
to enhance the representation of subjects (Huang et al., 2019).
To overcome the limitations of a single classifier, the multi-
classifier fusion has been intensively studied in recent years. In
general, multiple features exhibit complementary characteristics
in classification. Therefore, if multiple classifiers with different
input features are used and their complementary information
is effectively fused through fusion methods to obtain the final
classification results, the overall performance is expected to be
superior to the best performance of a single classifier (Ruta and
Gabrys, 2000).

Multi-classifier fusion can be roughly divided into two classes
in terms of the type of output generated by each classifier: based
on the class labels and based on the prediction probability. The first
class is generally based on the majority voting principle (Mousavian
et al., 2020), which integrates the class labels by the most frequently
appeared result in all voting results. Takruri et al. proposed to
use a majority voting approach to merge individual predictions
with multiple features based on different definitions (Takruri
et al., 2016). However, simple majority voting treats each classifier
equally without considering the impact of misclassified classifiers,
which may lead to a decrease in overall prediction accuracy.
Ichinose et al. (2015) used weighted voting to assign weights to
different classifiers based on the importance of different features
and obtained better classification results. Although the specificity
of multiple classifiers was considered, the method suffers from the
difficulty of determining classifier weights. Overall, majority voting
methods fuse multiple classifiers based only on the class label of
each classifier, while ignoring some additional useful information,
such as the prediction probability output by the classifiers.

The second class is based on prediction probability. Typically,
the prediction probability output by the classifiers is used to
measure the accuracy of the classifier in predicting the classification
assignment (Li and Sethi, 2006). Mathematically, the prediction

probability is generally calculated by using the confusion matrix
of the classifier output. For instance, Zhao et al. (2023) defined a
belief-value (i.e., prediction probability, which is used to measure
the belief level that a sample belongs to a certain class) based on
the confusion matrix of each classifier, and then linearly fused
the belief-values of all different classifiers to achieve improved
classification performance. However, there is still a problem in
that different input samples have the same belief-value, which
is calculated based on the confusion matrix. The accuracy of a
sample belonging to a class is supposed to be different for different
samples due to their different characteristics, thus different samples
should get different belief-values. In addition, a linear fusion of
the belief-value in multi-classifier fusion ignores the non-linear
relationship between classifiers, which indirectly affects the fusion
of complementary information and the reliability of the overall
classification.

Furthermore, in order to reasonably evaluate the belief-values
for different samples, the definition of belief-value for different
samples was investigated. Currently, most classifiers reflect the
difference in belief-value of different samples based on the
prediction probability of the classifier. For example, Zhao et al.
(2020) used the distance information (i.e., the output distance
of SVM) in SVM as a belief-value to measure the prediction
probability for a single feature belonging to the sample, and
achieved accurate diagnosis of ASD by further fusing the belief-
value of different features. However, due to the imbalance of sample
distribution and inappropriate classifier selection, the classifier
could not correctly classify all samples, and there was a case
where the misclassified samples output the wrong belief-value, with
inaccurate belief-value of samples further affecting the accuracy
of multi-classifier fusion. Another belief-value is defined based
on local density information, Aslandogan and Mahajani (2004)
used the nearest neighbor samples to calculate the local density
information of each sample, and the belief-values of the samples by
averaging the nearest neighbor sample weights. However, its weight
definition leads to the appearance of anomalous weights, which
affects the accuracy of belief-value. Based on the current study, a
reasonable definition of the belief-value of the sample through prior
probability deserves further exploration. While the two classes of
multi-classifier fusion methods mentioned above have made some
progress (Rohlfing et al., 2004; Ranawana and Palade, 2006; Prasad
et al., 2008), they still have two limitations. (1) The construction of
belief-value based on predicted probability for different samples is
not reasonable and (2) fusion methods that fuse belief-value fail to
better capture complementary information.

To address the abovementioned problems, we propose a new
multi-classifier fusion classification framework based on belief-
value for identifying ASD. The belief-value is the expectation
value of the “effect” from all the nearest neighbor samples on
the test sample in the metric space, which is transformed from
the sample space with a certain feature by the distribution-
based spatial transformation (DST) method. Figure 1 shows the
transformation process of the DST method. The DST method
combines distance information and local density information to
transform the sample space into the metric space, which effectively
combines the information from both perspectives to enhance
the representation of the belief-value. Further, the belief-value of
the test sample is calculated by averaging the “effect” of all the
nearest neighbor samples. Finally, the belief-values from the sample
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FIGURE 1

Space transformation by the DST method.

space with different features are fused by a multilayer perceptron
(MLP) network to capture the non-linear relationship between the
different belief-values and output the final classification result.

Our work has made the following main contributions: (1)
We proposed a new belief-value based on distance information
and local density information, which can measure the belief
level of different samples (such as different subjects) and has a
more reasonable representation for belief-value. (2) We captured
the non-linear relationship between the belief-value of multiple
classifiers through an MLP network, which achieves better fusion
of complementary information between multi-classifiers compared
to linear fusion methods. Experimental results demonstrate that
our classification framework achieves better performance than
single classifiers, and reasonable belief-value definition and effective
fusion methods are the keys to the classification framework.

2 Materials and methods

2.1 Data acquisition

The data used in this article comes from the Autism Brain
Imaging Data Exchange (ABIDE) database, which is composed of
17 imaging sites worldwide (Alcaraz and Rieta, 2010; Di Martino
et al., 2014). To address data heterogeneity, we selected the rs-fMRI
data from the NUY site, which is the largest sample size to test the
feasibility of our proposed method. We include rs-fMRI scanning
data from 45 patients with ASD and 47 normal control (NC)

TABLE 1 Demographic information of the subjects.

Characteristic ASD NC p-Value

Sex (M/F) 36/9 36/11 0.6923a

Age (mean± SD) 11.1±2.3 11.0±2.3 0.773b

FIQ (mean± SD) 106.8 ± 17.4 113.3± 14.1 0.0510b

ADI-R (mean± SD) 32.2± 14.3c – –

ADOS (mean± SD) 13.7± 5.0 – –

FD (mm) (mean± SD) 0.14± 0.05 0.15± 0.07 0.36b

M, male; F, female; FIQ, Full Intelligence Quotient; ADI-R, Autism Diagnostic Interview-
Revised; ADOS, autism diagnostic observation schedule; SD, standard deviation.
aThe p-value was obtained by a χ2-test.
bThe p-value was obtained by a two-sample two-tailed t-test.
cTwo patients did not have the ADI-R score.

subjects, with ages ranging from 7 to 15 years and no excessive head
movements in any three directions, displacement less than 1.5 mm,
or angular rotation less than 1.5◦. The detailed demographic
information of these subjects is summarized in Table 1, as pointed
out by previous research (Wee et al., 2016; Zhao et al., 2020).
No significant differences (p > 0.05) in age, sex, IQ, diagnostic
interview, or diagnostic observation were found between the two
groups.

Specifically, the rs-fMRI data were acquired using a 3.0 T
Siemens Allegra scanner. During the resting-state scan, participants
were instructed to keep their eyes open and fixate on a white cross
presented on a black screen. The scan lasted for 6 min, resulting
in the acquisition of 180 volumes of EPI images [repetition time
(TR)/echo time (TE) = 2,000/15 ms, flip angle = 90◦, 33 slices, slice
thickness = 4 mm, imaging matrix = 64× 64].

2.2 Data preprocessing

Preprocessing of the data was performed using the Analysis
of Functional NeuroImages (AFNI) software (Cox, 1996). The
preprocessing steps included discarding the first 10 volumes of the
R-fMRI data, spatial smoothing using a Gaussian kernel with a
full width at half maximum (FWHM) of 6 mm, signal detrending,
band-pass filtering (0.005–0.1 Hz), regression of nuisance signals
(ventricle, white matter, and global signals), and normalization
to the Montreal Neurological Institute (MNI) space with a voxel
resolution of 3 mm× 3 mm× 3 mm. To mitigate the effects of head
motion, six head motion signals were regressed prior to computing
functional connectivity (Murdaugh et al., 2012; Satterthwaite et al.,
2013; Yan et al., 2013; Washington et al., 2014; Leung et al., 2015;
Ray et al., 2015; Urbain et al., 2016; Reinhart and Nguyen, 2019).
The Automated Anatomical Labeling (AAL) maps were used to
divide the brain into 116 regions of interest (ROIs). We calculated
the mean value of the rs-fMRI time series for each ROI, which
resulted in a data matrix X ∈ R170 × 116, where 170 represents the
total number of time images and 116 represents the total number
of brain ROIs, which was used in experiments.

2.3 Classification framework

Figure 2 illustrates the overview of the proposed multi-classifier
fusion classification framework for identifying ASD.

2.4 Multi-feature extraction and ROI
selection

The researchers achieved favorable classification results based
on the spatio-temporal features as well as the non-linear dynamics
features extracted from the rs-fMRI series data (Mao et al., 2019; Li
et al., 2021a,b). The spatio-temporal features mainly include time-
domain and frequency-domain features. Time-domain features
refer to the description and analysis of the characteristics of
rs-fMRI series data in the time dimension, such as the mean,
variance, kurtosis, skewness, etc. Time-domain features can reflect
the change of data in time and, therefore, can describe the
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FIGURE 2

Pipeline of the proposed classification framework. This framework consists of three stages: (A) multi-feature extraction and region of interest (ROI)
selection, (B) calculation of belief-value, and (C) fusion and classification.

dynamic characteristics of data, such as the trend, periodicity,
and rate of change of data. Frequency-domain features refer to
the features in the frequency-domain dimension obtained after
the frequency-domain transformation of the rs-fMRI series data,
such as the model of variational mode decomposition (VMD)
(Dragomiretskiy and Zosso, 2013). Frequency-domain features can
reflect the distribution of data in frequency and, therefore, can
describe the static characteristics of the data. In addition, the non-
linear dynamics feature is also an important description method for
rs-fMRI series data, where entropy is a non-linear dynamics feature
that can be used to describe the complexity, information quantity,
and randomness of the series.

In this research article, the time-domain, frequency-domain,
and entropy features of the rs-fMRI series data are extracted from
the rs-fMRI series data. Time-domain features include (1) mean,
(2) variance, (3) kurtosis, and (4) skewness of the series data.

The frequency-domain features include (1) the modes
decomposed by the VMD, and (2) the amplitude of low-frequency
fluctuations (ALFF) (Zou et al., 2008). In the VMD, the series data
is decomposed into multiple intrinsic mode functions (IMFs),
each of which represents a frequency component in the series,
and each IMF can be used to describe the vibrational modes and
characteristics of the original signal in a specific frequency range.
The ALFF reflects the average strength in the low-frequency part of
each rs-fMRI series data.

The sample entropy (Alcaraz and Rieta, 2010) is used as a
feature in the entropy feature, which is a statistic used to analyze
a series to assess its complexity and irregularity. For a subject’s rs-
fMRI series data matrix X ∈ Ra × b, where a represents the total
volume of time images and b represents the total number of brain
ROIs, we extract features from the X by the abovementioned feature
types, and all features for a subject are expressed as λ = {λi}

N
i = 1 ∈

R1 × b, where N is the number of feature types that are used.
The ROI selection performs a two-sample t-test between NC

subjects and ASD subjects, with ROIs with p-values of less than a
certain threshold being preserved. The equation λ′ = {λ′i}

N
i = 1 ∈

R1 × h denotes all features after ROI selection, where h is the
number of ROIs by ROI selection.

2.5 The output probability of SVM

Equation A (x) = {xi}
n+m
i = 1 denotes all training samples in the

sample space, where n and m are the number of training samples
on both sides of the SVM hyperplane. The A (x) is divided into
two subsets by SVM hyperplane, namely, positive train points
and negative train points, denoted as A+ (x) = {xi+}

n
i+ = 1 and

A− (x) = {xi−}
m
i− = 1, respectively. With the introduction of the

hyperplane, each sample has a new property, namely, the output
probability of SVM, that is, probabilistic representation for the
geometric distance of the sample from the hyperplane (i.e., SVM-
margin). SVM-margin for point xi in the sample space is the signed
distance between xi and the decision boundary, ranging from to
+∞. A positive SVM margin for xi indicates that xi is predicted
to belong to that positive class, and vice versa. For a sample point(
xi, yi

)
, where yi is the label for xi, the SVM margin is the geometric

interval ri of the hyperplane about the
(
xi, yi

)
, as follows:

ri =
yi
(
(w∗xi)+ b

)
||w||2

(1)

where ||w||2 is the L2-norm for w. Figure 3 shows the SVM margin
in the sample space, the triangle and circle (4 and ◦) stand for the
two types of points to be separated. The area occupied by the two
figures stands for the corresponding SVM margin of the sample
point.

In general, the distance of a point from the hyperplane is
the SVM margin that can indicate the degree of certainty for the
classification prediction. Furthermore, the SVM margin can be
transformed into the form of probabilities, as follows:

si =
1

1+ exp(−|ri|)
× sign(ri) (2)

where ri is the SVM margin for xi, and Sign is the sign function that
returns the sign of its input value (i.e., {−1, 1}). The si is the output
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FIGURE 3

Sample with SVM margin.

probability of SVM, which is a value with a sign and indicates the
classification result of SVM for xi.

2.6 Belief-value

Before continuing, a note on mathematical notations is given
as follows. The belief-value (denoted as B−V) for test sample x
is based on the local density in the sample space with the SVM
hyperplane. The x belongs to a subset of A (x), A+ (x) or A− (x).
Let NN =

{
nj
}p

j = 1 denote all samples in the subset except x,
and consider NN as the nearest neighbor samples of x, where
p is denoted as the number of nearest neighbor samples. The
distance between nj and x is denoted as dj, which is in the form
of Euclidean distance or Mahalanobis distance. Let D =

{
dj
}p

j = 1
denote the distance between x and all nearest neighbor samples in
NN. According to Eq. 2, the sj for nj is derived from the distance
between nj and the hyperplane. Let S =

{
sj
}p

j = 1 denote the output
probability of SVM for all nearest neighbor samples in NN.

Figure 4 briefly illustrates the calculation of the B−V for the
x. The distance representation obtained from the two information
from two perspectives (i.e., dj and sj) transforms the sample space
into the metric space by the DST method, and the belief-value for x
is calculated based on the expectation of the “effect” from nearest
neighbor samples at NN on the x in the metric space. The following
details the calculation process of B−V.

First, the dj and sj in the sample space were obtained; it is
particular that the distance metric for dj in the sample space used
the Mahalanobis distance (i.e., Eq. 4), which takes into account the
covariance structure of the data and the correlation between the
variables. Then dj in D was normalized to d′j based on Eq. 4, where
µ and σ are the mean and variance ofD. Figure 4a is the normalized
process.

dj
(
x, xj

)
=

√(
x− xj

)T
6−1

(
x− xj

)
(3)

d′j =
dj − µ

σ
(4)

In the sample space, the SVM has made a classification of x.
However, there exists such a situation: assuming that x is to be
classified, the SVM makes a classification of x and assigns it a
label ysvm = c, where c ∈ {−1, 1}, there is case where ysvm is not
assigned the correct label. Inspired by the concept of utilizing local
density information to classify samples, the correct classification
result of x can be derived from the local density information.

Therefore, the DST method is utilized to transform the sample
space into the metric space where x is reclassified by using the
nearest neighbor information in the metric space.

Typically, the way to classify samples by local density
information is to use a weight function. The d′j is considered to be
transformed into weight wj by using Eq. 5. The weight is multiplied
by the label of nj to get an effect value of nj on x. Averaging all the
effect values of NN leads to the classification of x.

wj
(
d′j
)
=

1
d′j

d′j 6= 0 (5)

In order to solve the problem that the weight may be unreasonable
due to the very large exception values, we consider the Gaussian
probability density function for the d′j between the x and the xj as
the weight function, with the assumption that d′j follows Gaussian
distribution. Figure 4b and Eqs 6, 7 show the calculation process of
distance d′j to weights wj:

G
(
d′j
)
=

1
σ
√

2π
exp

(
−

d′j
(
x, xj

)2

2σ2

)
(6)

wj = G
(
d′j
)

(7)

where G
(
d′j
)

is the one-dimensional Gaussian probability density
function with a mean of 0 and variance of 1.

Due to the sj as the function of measuring the belief level of
xj, considering this effect on the x, we multiply the sj with the
wj to obtain the “effect” of xj on x. The “effect” is defined as the
distance between xj and x in the metric space and is denoted as fj,
which is shown in Figure 4c and Eq. 8. It is a symbolic value for fj
since sj contains the label information from the SVM output. The
fj represents the classification contribution of nj to x in the metric
space.

fj = wj∗sj (8)

The contribution of sj to fj can be considered as the information
from the perspective of distance is employed. Then the calculation
process of B-V can be considered as the local density information
is employed, which calculates the expectation of all fj of nj by Eq.9:

B−V = E

 n∑
j = 1

fj

 (9)

where B−V is a sign score, and its sign can indicate the classification
to which the sample belongs. Therefore, the calculation of the B−V
is the process of classifying the sample based on the corresponding
feature; the process of computing B−V can be considered as a
classifier and the classification result is given by the following
equation:

ŷ = Sign(B−V) (10)

where ŷ ∈ {−̂1, 1} is the final classification result. The B−V
is the property that measures the belief level for x from the
perspective of distance and the local density. According to the
above, λ′ denotes all features of a subject after ROI selection; the
multi-classifier is set independently for all features, and the multi-
classifier outputs multiple B−V, denoted as {B−Vi}

N
i = 1, where N

is the types of features.
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FIGURE 4

Overview of belief-value calculations for the test sample. (a) Normalization process of distance. (b) Conversion of distance into weight. (c) Definition
of “effect”.

2.7 Fusion method

Fusion methods combine the output results of multi-classifiers
to improve classification performance and accuracy (Kittler et al.,
1998; Mangai et al., 2010; Giannakakis et al., 2017). The basic idea
of the classifier fusion method is that by combining the decision
results of multi-classifiers, the shortcomings of a single classifier
can be compensated and the performance and robustness of the
classifier can be improved. In this research article, {B−Vi}

N
i = 1 as

decision results of classifiers were fused by the fusion method.
Three fusion methods were used to improve the classification

performance by fusing the {B−Vi}
N
i = 1 of multi-classifiers: majority

voting, linear SVM, and multilayer perceptron (MLP) networks.
Majority voting is a common multi-classifier fusion method that
votes on the predictions of multiple classifiers and selects the class
with the most votes as the final classification result. The formula for
majority voting is as follows:

ŷ = Sign(6N
j = 1Sign

(
B−Vj

)
) (11)

where ŷ is the final classification result, N is the number of
classifiers, and B−Vj is the belief-value by the j-th classifier. In
majority voting, for each class, we count the number of times it is
predicted by all the classifiers. The class with the highest count is
selected as the final classification result.

Linear SVM performs well in handling high-dimensional and
small-sample data, and can effectively solve linearly separable
problems. MLP networks have strong non-linear modeling
capabilities and can perform complex feature extraction and non-
linear modeling through multiple non-linear layers, making them
well-suited for handling non-linear problems. The two models are
defined as ModelSVM and ModelMLP, and {B−Vi}

N
i = 1of a subject

are represented as F (i.e., Eq. 12), while the classification process of
the ModelSVM and ModelMLP for F can be represented as Eqs 13,
14:

F = [ B−V1, B−V2, ..., B−VN ] (12)

ŷ = ModelSVM (F) (13)

ŷ = ModelMLP (F) (14)

Figure 5 shows the training and classification processes of the
fusion method. ModelSVM and ModelMLP can first be trained on
the training set and then evaluated on the testing set. The features
used to train the classifier are the F of the subjects in the training
set. In the testing phase, the F of a subject is input into the trained
ModelSVM or ModelMLP to obtain its classification result.

3 Results

3.1 Experimental settings

Different features were extracted through a preprocessing
process. In ROI selection, the optimal threshold for selecting
features highly correlated with clinical status was determined from
a set of five candidate p-values: 0.01, 0.02, 0.03, 0.04, and 0.05.
The classification framework works on MATLAB, where the linear
SVM was implemented using the LIBSVM package (Chang and Lin,
2011). The MLP network has two hidden layers, each containing
five neurons, using the “tansig” function as the activation function
for each hidden layer and mean-square error (MSE) as the loss
function. In the experiment, ASD and NC were defined as negative
and positive samples, respectively.

We used cross-validation to evaluate the performance of the
proposed method. Particularly, feature selection and parameter
optimization were performed on the training set only by internal
cross-validation to ensure that the whole process ran automatically
and also to avoid positively biased performance evaluation. The
internal cross-validation for the most discriminative ROI and
the optimal parameters determination (i.e., the parameters of the
SVM) ensured the generalization of the proposed classification
framework. All experiments were evaluated 10 times by 10-fold
cross-validation, with the process being repeated 10 times to
avoid the deviation of random data division in cross-validation.
Specifically, all data were divided into 10 subsets of the same size,
with 1 part of each subset serving as the testing set and the other
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FIGURE 5

Training and classification of fusion methods.

9 parts serving as the training set. In order to avoid any possible
bias in the fold selection, the whole 10-fold cross-validation process
was repeated 10 times, each time with a different random division
of the samples. It should be noted that the hyperparameters in the
“ROI selection, SVM training” process were based on the training
subjects and were tuned by nested 10-fold cross-validation to avoid
the effect of overfitting.

3.2 Classification performance

To evaluate the proposed classification framework, the accuracy
(ACC), sensitivity (SEN), specificity (SPE), positive predictive
value (PPV), negative predictive value (NPV), and F1 score, were
calculated from the classification confusion matrix. Moreover,
the p-values of the proposed method and the comparison
methods were given.

3.3 Performance of classification
framework

To evaluate the performance differences between the proposed
classification framework with a single classifier, we performed
experiments using 10 times of 10-fold cross-validation. First, a
number of independent SVM of N was set for each feature in
{λi}

N
i = 1. The p-value and the optimal parameters of the SVM

were obtained by internal cross-validation. After that, B−V was
calculated for each classifier (i.e., SVM) based on the selected
parameters, and the classification result of each classifier was
derived based on Eq. 9. Meanwhile, the performance evaluation of
all single classifiers was obtained. Furthermore, we fused the B−Vs
derived from the classifier by using each of the three fusion methods
yielding three fusion results, which were represented as B−V with
linear SVM, B−V with majority voting, and B−V with MLP. The

classification performances of the proposed multi-classifier fusion
classification framework and all single classifiers are shown in
Table 2. The best results are highlighted in bold.

The experimental results in Table 2 show that (1) the single
classifier with ALFF showed the highest performance among
all other single classifiers with an accuracy of 74.51%, (2) the
classification performance in the three classification frameworks
with different fusion methods (i.e., B−V with linear SVM,
B−V with majority voting, and B−V with MLP) outperformed
any single classifier and the accuracy of the best-performing
classification framework (i.e., B−V with MLP) outperformed the
best performing single classifier (i.e., ALFF) by 5.55%, and (3)
among the classification frameworks that used different fusion
methods, the fusion method using MLP networks had the best
performance, outperforming linear SVM and majority voting.

Based on Table 2, we can conclude that (1) the fusion method
can effectively fuse multiple B−Vs and reduce the influence of
unreliable B−Vs, which can improve the accuracy and reliability of
the classification framework, and (2) in the fusion method, majority
voting treats all classifiers equally, becoming unable to measure the
weights of different classifiers, and linear SVM can only linearly fuse
the B−Vs. In contrast, the fusion method with the MLP network
as the classification framework measures the weights of different
classifiers through the B−V on the one hand and captures the non-
linear relationship between the B−Vs through the non-linear fitting
ability of the MLP network on the other hand.

4 Discussion

4.1 Analysis of discriminative ROIs

For the ROI selection, we computed the frequency of each ROI
in cross-validation (frequency was defined as the ratio of brain
regions occurring in cross-validation) and selected 10 ROIs with the
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TABLE 2 Performance statistics.

Method ACC (%) SEN (%) SPE (%) PPV (%) NPV (%) p-Values

Kurtosis 61.75± 0.30 62.23± 0.25 61.98± 0.49 68.12± 0.36 62.83± 0.31 0.012

VMD 63.94± 0.18 66.71± 0.22 64.87± 0.31 61.97± 0.11 65.62± 0.35 0.021

Mean 66.02± 0.45 72.45± 0.44 60.45± 0.42 72.55± 0.34 66.46± 0.51 0.013

Variance 69.39± 0.12 70.67± 0.33 57.50± 0.44 63.67± 0.14 67.33± 0.21 0.021

Skewness 70.81± 0.25 63.77± 0.39 71.56± 0.34 64.71± 0.25 71.34± 0.04 0.015

Sample entropy 71.05± 0.49 73.52± 0.14 68.53± 0.21 74.54± 0.02 70.14± 0.39 0.017

ALFF 74.51± 0.13 74.72± 0.23 74.43± 0.31 76.51± 0.45 75.75± 0.21 0.012

B-V with linear SVM 77.65± 0.19 74.12± 0.12 73.35± 0.18 77.91± 0.50 76.16± 0.11 0.014

B-V with majority voting 75.92± 0.34 68.13± 0.21 74.02± 0.11 68.92± 0.11 77.21± 0.15 0.011

B-V with MLP (ours) 81.26± 0.23 78.50± 0.34 79.50± 0.55 78.98± 0.24 79.14± 0.12 –

FIGURE 6

The top 10 ROIs via ROI selection.

TABLE 3 Performance comparison of classification frameworks with different B-V.

Method ACC (%) SEN (%) SPE (%) PPV (%) NPV (%) p-Values

B−V by wj 74.67± 0.28 73.51± 0.45 68.53± 0.41 74.55± 0.23 72.61± 0.23 0.014

B−V by sj 76.56± 0.51 72.21± 0.33 76.51± 0.16 76.33± 0.43 73.69± 0.12 0.012

B−V by wj × sj (ours) 81.26± 0.23 78.50± 0.34 79.50± 0.55 78.98± 0.24 79.14± 0.12 –

highest frequency of occurrence as the most discriminative ROIs.
The top 10 ROIs were MFG.L, OLF.L, ACG.L, DCG.L, DCG.R,
PCG.L, HIP.L, HIP.R, PHG.R, and ITG.L. Figure 6 illustrates these
ROIs. As can be seen from the results, the discriminatory ROIs
selected were in general agreement with the results reported in
previous ASD studies (Chandana et al., 2005; Jin et al., 2015).

4.2 Ablation study for belief-value

To better understand the role of the output probability of
SVM, sj, and wj in the classification framework, we set up two
different forms of B−V computed by fj, fj = sj and fj = wj,
respectively, and compared them with the classification framework
of B−V computed according to Eq. 8. B−V by sj and B−V by wj
indicate that the information from the perspective of distance and
the information from the perspective of local density were used,
respectively. B−V by wj × sj indicates that the information from
both perspectives was used. Table 3 shows the performance of the
classification framework based on three different B-V, where B-V

by wj × sj performed best and B-V by sj outperformed B-V by wj.
The best results are highlighted in bold.

Based on the experimental results in Table 3, it can be
concluded that (1) B−V, which effectively combines distance
information and local density information, had a better ability to
measure the degree of belief, and the proposed DST method was
effective in converting information from two different perspectives,
and (2) B−V, which considers only distance information, had a
better ability to measure credibility than B−V, which considers
only local density information, and distance information had more
discriminative power than local density information.

4.3 The effect of distance metric for
belief-value

To investigate the effect of B−V with different metrics of
distance on the performance of the classification framework,
we performed experiments based on three metrics of distance:
Euclidean distance, Mahalanobis distance, and Manhattan distance.
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TABLE 4 Performance of different distance metric.

Metric ACC (%) SEN (%) SPE (%) PPV (%) NPV (%) p-Values

Euclidean 78.14± 0.22 75.67± 0.12 75.39± 0.19 77.17± 0.21 72.62± 0.12 0.012

Manhattan 79.69± 0.33 72.50± 0.26 74.45± 0.37 72.67± 0.31 77.94± 0.43 0.016

Mahalanobis (ours) 81.26± 0.23 78.50± 0.34 79.50± 0.55 78.98± 0.24 79.14± 0.12 –

TABLE 5 Performance in different sites datasets.

Target site Method ACC (%) SEN (%) SPE (%) PPV (%) NPV (%) p-Values

Leuven ALFF 71.34± 0.21 70.42± 0.12 71.27± 0.24 70.06± 0.14 69.76± 0.37 0.015

B-V with MLP 78.68± 0.15 75.67± 0.26 72.83± 0.11 74.13± 0.32 73.91± 0.21 –

UM ALFF 73.09± 0.14 74.21± 0.19 72.15± 0.19 71.14± 0.44 72.16± 0.29 0.012

B-V with MLP 79.06± 0.23 74.39± 0.13 74.16± 0.14 72.01± 0.23 74.32± 0.13 –

UCLA ALFF 73.11± 0.19 72.19± 0.32 73.42± 0.25 75.24± 0.34 74.55± 0.17 0.011

B-V with MLP 80.54± 0.13 74.09± 0.21 73.67± 0.18 77.24± 0.14 75.31± 0.18 –

USM ALFF 73.23± 0.11 74.67± 0.23 72.21± 0.31 74.23± 0.45 72.26± 0.21 0.013

B-V with MLP 81.02± 0.12 77.61± 0.14 74.27± 0.22 74.34± 0.13 75.16± 0.25 –

The MLP network was selected as the fusion method. The
experiment results are shown in Table 4, and the best results are
marked in bold.

Table 4 shows that the Mahalanobis distance worked best as the
metric of distance for belief-value. Since the Mahalanobis distance
was not affected by the dimension, the Mahalanobis distance
between two points was independent of the measurement unit
of the original data, and it could also exclude the interference of
correlation between variables, so it achieved better results than the
Euclidean distance and Manhattan distance.

4.4 Results on validation datasets

To validate the robustness of our proposed method, we
conducted experiments on new real multi-site ASD datasets of
four imaging sites (Leuven, UCLA, UM, and USM). References for
information about the dataset are given in the literature (Wang
et al., 2019). The preprocessing procedure is the same as that
mentioned in section “2.2. Data preprocessing.” We validated the
proposed B-V with the MLP method on a multi-site dataset by 10
times of 10-fold cross-validation.

Table 5 shows the single-classifier performance for the multi-
classifier fusion method and the optimal performance evaluated
on each site dataset. The best results are highlighted in bold.
The experimental results showed that (1) ALFF achieved the best
single classifier performance on all site datasets, which indicates
that ALFF is the effective classification feature for ASD diagnosis,
and (2) the proposed multi-classifier fusion method achieved
better classification performance than the optimal single classifier
performance on all site datasets, which further demonstrates the
effectiveness of multi-classifier fusion.

5 Conclusion

This study proposes a new belief-value and captures the
non-linear relationship between belief-values from multiple

classifiers through the MLP network, thus achieving better
multi-classifier fusion. The experimental results have shown
that (1) the representation of belief-value and NLP networks
as fusion methods are reasonable and greatly improve the
diagnostic performance, and (2) the representation of belief-value
is enhanced by the DST method by using distance information and
local density information. In general, our multi-classifier fusion
classification framework is effective and outperforms the single-
classifier method.

Finally, it should be noted that the use of local density
information is not only possible in combination with SVM, but its
use in other classifiers deserves to be explored, which will be the
focus of our future research work.
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