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Recently, we proposed a novel approach where movements are decomposed

into sub-segments, termed movement elements. This approach, to date,

provides a robust construct of how the brain may generate simple as well as

complex movements. Here, we address the issue of motor variability during

voluntary movements by applying an unsupervised clustering algorithm to

group movement elements according to their morphological characteristics. We

observed that most movement elements closely match the theoretical bell-

shaped velocity profile expected from goal-directed movements. However, for

those movement elements that deviate from this theoretical shape, a small

number of defined patterns in their shape can be identified. Furthermore, we

observed that the axis of the body from which the movement elements are

extracted (i.e., medio-lateral, antero-posterior, and vertical) affect the proportion

of the movement elements matching the theoretical model. These results provide

novel insight into how the nervous system controls voluntary movements and

may use variability in movement element properties to explore the environment.

KEYWORDS
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1 Introduction

We recently proposed the concept of movement elements (MEs) (Miranda et al., 2018).
This concept is based on the principle that any voluntary movement can be decomposed
into one-dimensional point-to-point movements within a Cartesian coordinate system
originating at the center of mass. These MEs are related to the minimum-jerk principle and
account for the cost of time as proposed by Hoff (1994) and are an extension of the work of
Meyer et al. (1982, 1988). While significant additional work is necessary to better understand
the importance of MEs in the control of movement, we recently showed that features of MEs
are associated with a variety of movements and motor impairments (Miranda et al., 2018; de
Lemos Fonseca et al., 2020; Oubre et al., 2020, 2021; Lee et al., 2022; Liu et al., 2022).

Taken together, our prior work highlights that the features extracted from the ME
decomposition approach yield important information about the motor system in health
and disease. While this sub-movement approach to the evaluation of movement kinematics
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has been abandoned by most researchers, our prior work clearly
indicates the relevance of this approach in characterizing voluntary
and involuntary movements, and that the sub-movement approach
to the assessment of movement kinematics needs to be revisited
as it may have been too hastily dismissed. Here, we investigate
the distribution of the variability around the cost function that we
have observed in our prior work. We hypothesized that during
complex movements, a large proportion of MEs would closely fit
Hoff’s cost function while a small portion would exhibit larger
deviations. We asked healthy individuals to perform random 3D
arm movements (see Supplementary Figure 1 for example) while
tracking the movement patterns of their wrist. We observed that
a majority of MEs fit Hoff’s cost function as expected, but the
MEs that did not could be clustered into a small number of
movement patterns across all subjects. This suggests that while
most movements are optimized to minimize jerk and time, the
variability in movement kinematics is not random but also follows
certain patterns.

2 Methods

2.1 Subjects

We recruited 15 healthy individuals (24.7 ± 4.2; 11 male).
Inclusion criteria were: (i) no known motor or neurological
impairments affecting voluntary upper-limb movements, (ii) aged
18 years and older. The protocol was approved by the University
of Massachusetts Amherst Institutional Review Board (#2018-4722)
and all subjects provided informed consent.

2.2 Procedure

Subjects were asked to perform continuous 3D random
upper-limb movements for approximately 2.5 min, twice. These
movements had to span as much of the space as they could
without moving their torso (trunk movement was monitored
visually by the experimenter and, as such, minimal movements
could have occurred, but these would not have impacted the
current results because of their relative amplitude compared to
the upper-limb movements). As such, no two trials were the same
(see Supplementary Figure 1 for an illustration of two trials
from two different subjects). The instructions to the subjects were
simply: “without moving your trunk, move your arm randomly
until we tell you to stop, similar to movements you would do
if you were conducting an orchestra.” The intended effect of the
guidance was to have very large movements that would span
the majority of the subjects’ workspace. In unpublished pilot
testing, not providing such an example led to movements that
were performed in a significantly restrained space. However, the
analytical approach to extract MEs considers the size and velocity
of the movement so, while providing this instruction may have
altered the movement space covered by the participants, it did
not impact the outcomes. Movement patterns of the wrist of their
dominant upper-limb were recorded at 100 Hz using a motion
capture system (Qualisys AB).

2.3 Data analysis

3D marker trajectories were low-pass filtered at 6 Hz and
differentiated to obtain velocity time-series. MEs were then
extracted using the previously described technique (Miranda et al.,
2018; see Supplementarymaterial for details). In short, the velocity
time-series, in each Cartesian axis (antero-posterior, medio-lateral,
and rostro-caudal) (see Supplementary Figure 2), was decomposed
using zero crossings such that the continuous movement was
segmented into MEs of zero initial and terminal velocities. The
selection of the coordinate system was originally based on the
best fit of the MEs to the theoretical model proposed by Hoff
(1994). Since ME decomposition can be sensitive to noise (Miranda
et al., 2018), we defined thresholds based on the properties of
the motion capture system below which MEs would be discarded.
Thresholds for ME displacement (1 mm), and time (80 ms) were
implemented based on recordings of a stationary marker. This led
to the removal of 9.95% of the initially extracted MEs (11.40% from
the x-axis, 14.40% from the y-axis, and 3.55% from the z-axis).
This represented 0.52% of the duration of all combined time-
series (0.46% of the duration of the x-axis time-series, 0.88% of the
duration of the y-axis time-series, and 0.21% of the duration of the
z-axis time-series). Each of the remaining ME was then spatially
and temporally normalized to enable direct comparison.

Our hypothesis that the majority of MEs would exhibit
the bell-shaped velocity profile implies that our dataset should
contain a single, dense region of MEs with a similar shape.
We identified this region by applying the Density-Based Spatial
Clustering of Applications with Noise (DBSCAN) algorithm.
Euclidean distance was used as the distance metric between
normalized ME vectors because it is a constant multiple of the
root mean square error (RMSE). The specific methods used to
define the fitness measure developed for this and the parameters
used are detailed in the Supplementary material. In short, we
defined a fitness measure that constructs a homogeneous cluster
containing as many MEs as possible while keeping the variance
low (Supplementary Figure 3). Once the dense cluster and the
outlier set were identified, we explored whether there were any
sub-clusters of movement elements using the k-Means algorithm
(see Supplementary material; Figure 1). Since the homogeneous
cluster is, by definition, one dense cluster, the k-Means algorithm,
in combination with the Davis-Bouldin Index, was implemented
on the outliers set and those parameters were then applied to the
homogeneous cluster.

2.4 Statistical analyses

Descriptive statistics are in the format mean ± standard
deviation. When comparing the percentage of MEs in the
different axes as well as the K-value between subjects in the
homogeneous cluster and outlier set, normality was assessed using
the Kolmogorov-Smirnov test and a one-way analysis of variance
(ANOVA) was performed (OriginPro 2018b). Tukey’s post-hoc was
used to assess significance. One-sample t-tests were performed
to assess whether the α values obtained were different from
the expected theoretical 2/3. Independent sample t-tests were
performed to compare mean velocity, duration, and displacement
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FIGURE 1

Illustration of the average ME patterns from the homogeneous
cluster (A) and the outlier cluster (B). The dashed line represents the
theoretical shape obtained from Equation 2 (see Supplementary
material). The black line represents the average shape of the data
included in the graph. The shaded area represents the standard
deviation (SD).

of MEs between the homogeneous cluster and outlier set. The
threshold for significance was set to 0.05 a priori.

3 Results

A total of 24,992 MEs meeting thresholds aimed at minimizing
noise were extracted from the motion capture data. DBSCAN was
used to identify a single, dense cluster of MEs with homogeneous
shape (the “homogeneous cluster”), which accounted for about 74%
of all MEs (Figure 1 and Supplementary Figure 4). All other MEs
that fell outside of this dense cluster (about 26%) were pooled in the
“outliers set” (Figure 1 and Supplementary Figure 4).

The average shape of MEs in the homogeneous cluster
closely fits the theoretical cost function whether the subjects
were pooled (Figure 1A), or their data examined individually
(Supplementary Figure 5). In contrast, MEs in the outliers set
showed high variability and deviation from the theoretical cost
function (Figure 1B). Note also that the shape of MEs did not
significantly differ between the beginning and end of the trials
(Supplementary Figure 6).

Since the homogeneous cluster was a single highly dense region,
it was not possible to identify further sub-clusters using cluster
validity indices (Supplementary material). Conversely, the large
variability in ME shape observed in the outliers set enabled us
to identify an optimal number of sub-clusters using the k-Means
algorithm and the Davis-Bouldin Index (k = 4) (Supplementary
Figure 3). Using the same value of k to segment the homogeneous
cluster and the outliers for comparative analysis, we observed that
the shape of MEs within the sub-clusters of the homogeneous
cluster showed minimal deviations from the expected model
(Figure 2A). However, the sub-clusters of the outliers showed
significant deviations from the expected model (Figure 2B).

The percentage of MEs included within the homogeneous
cluster differed across subjects (ranging from 57.7 to 87.3%).
Furthermore, when we examined the percentage of MEs that were
included from each axis on a subject-by-subject basis, there was
always a higher proportion of MEs from the z-axis within the
homogeneous cluster (Table 1). On average, 63% of MEs from
the x-axis, 65% of MEs from the y-axis, and 90% of MEs from
the z-axis were in the homogeneous cluster. A one-way ANOVA
demonstrated a significant difference between the average number
of MEs included in the homogeneous cluster from each axis (F:
26.296; df: 2; p < 0.05). A Tukey’s post-hoc analysis revealed that
the average number of MEs included in the homogeneous cluster
from the z-axis was statistically greater than in the x-axis (q: 9.32;
p < 0.05) and y-axis (q: 8.37; p < 0.05) while no difference was
observed between the x- and y-axis (q: 0.95; p > 0.05). Additional
data related to the distribution of MEs based on sub-clusters and
axes can be found in the Supplementary material.

Next, we examined whether the velocity of the MEs within
the homogeneous cluster and the outliers set scaled with their
displacement using the 2/3 power law previously described
(Miranda et al., 2018). We examined whether the mean velocity,
duration, and displacement of MEs were different between the
homogeneous cluster and outliers set. Independent t-tests showed
that mean velocity (t = 64.07; df = 24990; p < 0.05), duration
(t = −23.53; df = 24990; p < 0.05), and displacement of MEs
(t = 27.85; df = 24990; p < 0.05) were different between the two
sets. MEs in the homogeneous cluster had on average, greater mean
velocity, shorter duration, and longer displacement than MEs in the
outliers set. The scaling exponent (i.e., relationship between mean
velocity and displacement) observed for all MEs was 0.709 while
the K-value from Equation (2) was 6.32 × 10−4

± 61.27 × 10−4

(Figure 3A and Supplementary Table 1). The scaling exponent
observed for MEs in the homogeneous cluster was 0.703 while
their K-value was 1.29 × 10−4

± 4.53 × 10−4 (Figure 3B
and Supplementary Table 1). The scaling exponent observed
for MEs in the outliers set was 0.621 while their K-value was
4.89 × 10−3

± 33.24 × 10−3 (Figure 3C and Supplementary
Table 1). These results emphasize that the 2/3 power law
relationship between mean velocity and displacement can be
observed in the homogeneous cluster and the outliers set even
though the average value from the homogeneous cluster deviated
slightly from the theoretical 2/3 (t: −3.216; df: 14; p < 0.05)
and the average value from the outliers set was also statistically
different from 2/3 (t: −16.423; df: 14; p < 0.05). The range of
values in the current study are in line with those reported by
Miranda et al. (2018). The larger deviation from the theoretical
2/3 relationship observed in the outliers set was expected because
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FIGURE 2

Illustration of the four sub-clusters from the homogenous cluster (A) and outlier cluster (B). Indicated above each graph is the number of MEs and
percentage of total MEs that fall within that specific pattern. The dashed line represents the theoretical shape obtained from Equation 2 (see
Supplementary material). The black line represents the average shape of the data included in the graph. The shaded area represents the SD.

the shape of the MEs in this set differs from the expected model.
Furthermore, the K-value is approximately 40 times greater in the
outliers set than in the homogeneous cluster (t: −2.5934; df: 14.009;
p < 0.05). We observed significant differences in K-values across
subjects in the homogeneous cluster (F: 4.257; df: 14; p < 0.05)
and outliers set (F: 203.72; df: 14; p < 0.05). Results show that the
K-value differs between most subjects in the homogeneous cluster
(Supplementary Table 2), however, the K-value of the MEs in
the outliers set only showed a significant difference in one subject
(Supplementary Table 3).

4 Discussion

Here, we examined the variability observed around the cost
function of the recently proposed ME decomposition approach
(Miranda et al., 2018). The ME decomposition approach is an
extension of the work done by Meyer et al. (1982, 1988) where sub-
movements are extracted based on a Cartesian coordinate system
whose origin is located at the center of mass. We have demonstrated
that this approach can be successfully implemented to describe a
variety of upper-limb movements in healthy individuals (Miranda
et al., 2018) as well as to identify short-term features related to
motor learning during a balance task (de Lemos Fonseca et al.,
2020). We also recently showed that features of MEs are associated
with a variety of movements and motor impairments (Miranda
et al., 2018; de Lemos Fonseca et al., 2020; Oubre et al., 2020, 2021;
Lee et al., 2022; Liu et al., 2022). Therefore, this study aimed to
better understand ME characteristics in healthy individuals and
explore their potential link with currently accepted motor control
concepts.

Our data show that, when healthy individuals perform
voluntary random 3D movements of the upper-limb,
approximately 74% of MEs match the theoretical shape expected
by Equation (1) (see Supplementary material) with no or very

slight deviations. The remaining MEs whose shape significantly
deviated from the theoretical shape expected by Equation (1)
(see Supplementary material) could be further classified into
four defined patterns. This replicates and extends our prior work
examining MEs of the upper-limb in healthy individuals (Miranda
et al., 2018). Prior work has shown that one person at different
times, or several different people, never perform a movement
in exactly the same way twice (Mathiassen et al., 2002, 2003;
Madeleine et al., 2003; Jackson et al., 2009). This is related to the
abundancy of the motor system (Latash, 2012) where variance
that has no effect on the overall performance across a variety of
natural actions helps an abundant system to deal with secondary
tasks and unexpected perturbations (Diedrichsen et al., 2010). Our
work here extends this concept to MEs during complex upper-limb
movements as the observed variability did not lead to any impaired
motor performance. Furthermore, it shows that this variability
is not random but follows specific patterns in its features and its
distribution. Specifically, 63 and 65% of MEs extracted from the
medio-lateral and antero-posterior axes, respectively, fell within
the homogeneous cluster, while 91% of MEs from the rostro-caudal
axis fell within it, highlighting potential differences in motor
control strategies when dealing with known forces (i.e., gravity).
This is in line with motor adaptation studies where individuals
perform tasks within velocity-dependent force fields. These
studies have highlighted that a proper balance between stability
and flexibility of motor control is necessary so that ingrained
skills (e.g., gait, reaching, etc.) remain sensitive to steady and
persistent changes in the environment (e.g., gravity) without being
disproportionately influenced by incidental events; and where new
skills can be learned and developed. In fact, studies have shown
that as infants learn to control their limbs, there is a significant
impact from gravity during their first few months of life (Kamm
et al., 1990; Jensen et al., 2010). This could explain the distribution
of MEs within the homogeneous and outliers clusters such that
the life-long learned motor patterns performed against gravity are
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TABLE 1 Percentage of MEs from each subject that were included in the
homogenous cluster per movement axis.

Subj. X Y Z All axes

1 80.33% 71.70% 99.50% 84.48%

2 53.72% 48.60% 82.28% 60.88%

3 55.07% 45.12% 83.86% 61.78%

4 56.45% 73.45% 88.14% 74.66%

5 55.80% 57.69% 79.05% 64.07%

6 53.25% 68.60% 96.69% 75.95%

7 59.62% 76.05% 82.41% 73.73%

8 60.40% 69.68% 96.05% 77.59%

9 76.84% 54.90% 87.27% 71.73%

10 72.91% 81.17% 100.00% 86.88%

11 79.35% 80.67% 98.22% 87.30%

12 70.35% 58.49% 98.36% 76.52%

13 76.13% 83.47% 89.98% 83.55%

14 59.58% 76.44% 93.06% 78.07%

15 46.04% 51.73% 74.20% 57.72%

All 64.16% 65.70% 90.82% 74.42%

All-mean 63.77% 66.52% 89.94% 74.33%

All-Std 11.19% 12.69% 8.25% 9.53%

For example, Subject 1’s data indicates that 80.33% of the MEs extracted from their x-axis,
71.70% of the MEs extracted from their y-axis, and 99.50% of the MEs extracted from their
z-axis were included in the homogeneous cluster, respectively. Furthermore, it indicates that
84.48% of Subject 1’s MEs were included in the homogeneous cluster. In addition to the
subject-level data, The above table provides information about the overall distribution of
MEs. For instance, of all the MEs that were extracted in the x-axis, 64.16% of them were
included in the homogeneous cluster (All). Furthermore, when averaging the subject-level
percentages, we can see that on average 63.77 ± 11.19% of the x-axis MEs of subjects were
included in the homogeneous cluster. The bold values highlight the pooled data results.

more stable than those not influenced by it. It is important to note
that while the MEs within the outliers cluster exhibited variations
from the expected theoretical model, our current study cannot
determine whether this variability is “good” (having no negative
effect on motor performance) or “bad” (leading to detrimental
effects on motor performance). As such, future studies should
examine this issue. However, as we did not visually observe any
“impaired” motor performance, we would hypothesize that the
variability in MEs within the outliers cluster is a manifestation of
abundance, therefore this could be “good” variability.

Remarkably, the actual shape of the MEs seemed to have
little impact on the power law relationship between their mean
velocity and displacement previously described (Miranda et al.,
2018). While the 2/3 scaling was most closely observed in the
homogeneous cluster, the outliers still exhibited a power law
relationship between mean velocity and displacement of MEs that
approached the theoretical value of 2/3. This indicates that the
relationship between mean velocity and displacement may be a
more basic principle of goal-directed voluntary movements than
the shape of the MEs. We argue here that this relationship may
be related to movement vigor. Movement vigor can vary among
healthy individuals as some individuals move consistently faster
than others. These between-subject differences in movement vigor
have been observed in eye (Choi et al., 2014; Bargary et al., 2017;

FIGURE 3

Illustration of the power law relationship between the mean velocity
and displacement of all MEs (A), those in the homogenous cluster
(B), and the remaining outliers (C).

Reppert et al., 2018) and reaching movements (Reppert et al.,
2018); and may be related to differences in how the CNS
of each subject defines reward as a function of time (Choi
et al., 2014). In fact, in a number of motor control models
(Shadmehr et al., 2010, 2016; Rigoux and Guigon, 2012; Berret
and Jean, 2016), it is thought that movement vigor is related
to how the brain evaluates the usefulness of movements. In our
proposed concept of MEs, while the 2/3 relationship observed
between mean velocity and displacement seems to be conserved
between and within subjects, the K-value that is observed within
Equation (2) (see Supplementarymaterial) shows between-subject
variability (Supplementary Tables 1–3), especially for MEs in
the homogeneous cluster. We know from Equation (2) (see
Supplementary material) that K is related to mean velocity of
MEs (i.e., for a given value of D, changing the value of K will
necessarily alter the mean velocity). This may indicate the subject-
specific representation of how the CNS evaluates the importance
of the cost of time. Our results show that most subjects exhibit
a different K-value, albeit only for MEs within the homogeneous
cluster (Supplementary Table 3). This between-subject variability
all but disappears for MEs within the outlier set. So, it is possible
that the subject-specific movement vigor can be represented by
the value of K within the homogeneous cluster because these
movements are deemed already optimal by the CNS as they closely
mirror the theoretical trajectory and thus, are likely performed
in a feedforward manner. Conversely, the lack of variability in
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K-value within the outliers set (Supplementary Table 3) may
be a steady-state level of movement vigor exhibited by the CNS
while exploring the movement sub-space and relying on feedback.
The higher K-values and consistency between subjects may be a
byproduct or a necessary condition of the sensorimotor integration
required for feedback control. This is supported by the fact that
MEs in the homogeneous cluster had on average greater mean
velocity, and shorter duration than MEs in the outliers set. Prior
work has demonstrated that feedforward responses are significantly
faster than feedback responses (Leonard et al., 2009; Tsao et al.,
2009). Thus, the fact that the MEs in the homogeneous cluster are
performed faster and are shorter is in line with the hypothesis that
they are part of the feedforward system while the slower and longer
MEs in the outliers cluster allow for feedback and sensory motor
integration.

There are limitations to the current study. Several studies
have suggested that invariances such as the 2/3 power law and
planar invariances might arise from musculoskeletal mechanics
rather than neural control (Sternad and Schaal, 1999; Gribble and
Ostry, 2000). Others proposed alternative hypotheses to explain
the control of movement such as the equilibrium-point hypothesis
(Fel’dman, 1966) and the uncontrolled manifold hypothesis (Scholz
and Schöner, 1999). Unfortunately, as only one anatomical
landmark was tracked in this study, it is not possible to exclude
the possibility that similar sources might explain the regularities
of the MEs. However, while results from Miranda et al. (2018)
suggest that MEs are generated within the CNS and are part of the
motor planning process, future studies are required. Furthermore,
a larger number of males were recruited than females (this was
coincidental). While the sample size does not afford the possibility
of comparing the results based on sex, prior work is inconclusive
regarding differences in upper-limb movement patterns during
various tasks (e.g., Gromeier et al., 2017; Nakatake et al., 2017). As
such, further studies on the impact of sex on MEs are needed.

5 Conclusion

The current study confirms the results of Miranda et al.
(2018) that 3D random movements can be decomposed into sub-
units termed MEs within individual body axes. Furthermore, we
demonstrate here that the variability in ME shape can be defined
by a small number of patterns and that MEs that best display a
bell-shaped curve are distributed unevenly across the different body
axes.
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