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potential superordinate human
factors of relevance
Cornelia Herbert*

Department of Applied Emotion and Motivation Psychology, Institute of Psychology and Education,
Ulm University, Ulm, Germany

Brain–computer interfaces (BCIs) are well-known instances of how

technology can convert a user’s brain activity taken from non-invasive

electroencephalography (EEG) into computer commands for the purpose

of computer-assisted communication and interaction. However, not all

users are attaining the accuracy required to use a BCI consistently, despite

advancements in technology. Accordingly, previous research suggests that

human factors could be responsible for the variance in BCI performance

among users. Therefore, the user’s internal mental states and traits including

motivation, affect or cognition, personality traits, or the user’s satisfaction,

beliefs or trust in the technology have been investigated. Going a step further,

this manuscript aims to discuss which human factors could be potential

superordinate factors that influence BCI performance, implicitly, explicitly as

well as inter- and intraindividually. Based on the results of previous studies that

used comparable protocols to examine the motivational, affective, cognitive

state or personality traits of healthy and vulnerable EEG-BCI users within

and across well-investigated BCIs (P300-BCIs or SMR-BCIs, respectively),

it is proposed that the self-relevance of tasks and stimuli and the user’s

self-concept provide a huge potential for BCI applications. As potential key

human factors self-relevance and the user’s self-concept (self-referential

knowledge and beliefs about one’s self) guide information processing and

modulate the user’s motivation, attention, or feelings of ownership, agency,

and autonomy. Changes in the self-relevance of tasks and stimuli as well as

self-referential processing related to one’s self (self-concept) trigger changes

in neurophysiological activity in specific brain networks relevant to BCI.
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Accordingly, concrete examples will be provided to discuss how past and future

research could incorporate self-relevance and the user’s self-concept in the BCI

setting – including paradigms, user instructions, and training sessions.

KEYWORDS

brain–computer interfaces, human factors, self-relevance, self-concept, user traits and
states, SMR-BCI, P300-BCI, BCI performance

1 Introduction

Brain–computer interfaces (BCIs) convert brain activity into
adaptive and assistive computer commands. This makes it
possible for BCI users to interact and communicate with their
environment non-invasively solely by changes in neural activity
detected for example by electroencephalographic recordings
(EEG). Conventional use cases of BCI applications are EEG-
based control of external devices such as a robotic hand, limb or
foot. The ultimate goal of using BCIs in this context is to give
patients, who are unable to communicate directly through other
means, such as patients with motor impairments or neurological
impairments, a clinically supportive aid for communication or
interaction (for an overview see e.g., Kleih et al., 2011a; Luauté
et al., 2015). Progress in BCI technology has made it possible to
utilize BCIs for a wide range of clinical user groups. These user
groups may include elderly patients or individuals with mental
health conditions suffering from stress, depression, cognitive
decline, or cognitive symptoms such attention deficit hyperactivity,
to name a few examples (e.g., Balcombe and de Leo, 2022).
Moreover, a considerable body of BCI research has spotted the
healthy user. Use cases of BCIs among healthy users can include
the attempt to control the driver’s fatigue during automated
driving (e.g., Zhang et al., 2020) or the monitoring and support
of the user’s mental state in challenging occupational settings
(e.g., a pilot’s attention during a challenging flight maneuver;
Dehais et al., 2022). The use of BCIs in occupational settings
and even more so simply for fun, entertainment, or leisure
activities is growing (Nijholt et al., 2022). Use cases include
brain-controlled gaming and sports (e.g., Randolph, 2012; Diya
et al., 2019) for example in virtual reality augmented digital
settings. According to recent research, expanding the applications
of BCIs to recreational activities or as a tool for the workplace
could enhance the scientific knowledge about training-induced
or learning-induced neuroplasticity in a variety of users (for
a comprehensive overview or recent research on occupational
neuroplasticity, refer to e.g., Wang et al., 2017; Wu et al., 2020).
Therefore, understanding the BCI user has become an important
topic in BCI research.

2 The human user in BCI research

A body of studies has shown that despite technical advances
in the field, variance in BCI performance is owing to the
user. According to previous estimations, about 20% up to 40%

of BCI users may not achieve a BCI performance with the
necessary accuracy to benefit from an BCI application (for an
overview see e.g., Edlinger et al., 2015; for recent estimations
and discussions concerning motor imagery based BCI, e.g., see
Zhang et al., 2020).

“BCI inefficiency” or “BCI illiteracy” (Allison and Neuper,
2010) has been found among healthy users, as a mentally and
behaviorally fully responsive user group of BCIs or among
patients, who are mentally handicapped or behaviorally non-
responsive (e.g., Guger et al., 2003; Allison and Neuper, 2010;
Graimann et al., 2010). This has encouraged discussions about
the relevance of research on human factors not only in the
domain of human–computer interaction (HCI) in general, but
in the domain of BCI research, its deployment and application
as well (for an overview see for example, Botte-Lecocq et al.,
2014; Kleih and Kübler, 2015). Furthermore, the discussion on
the role of the BCI user has promoted theoretical suggestions
of how to integrate human factors into BCI technology by
means of a user-centered approach (for an overview see e.g.,
Kübler et al., 2015, 2020; Alonso-Valerdi and Mercado-Garcıa,
2019; or for motor imagery based BCIs, e.g., Lyu et al., 2023).
Additionally, guidelines of BCI training protocols have been
suggested to incorporate human factors into the BCI settings
(Mason and Birch, 2003; Botte-Lecocq et al., 2014; Jeunet et al.,
2018).

2.1 Human factors related to BCI
engineering and ergonomics

In conjunction with these theoretical efforts, several studies
have specifically looked into human factors that, when considering
the BCI’s design features, may have an impact on the device’s
usability and practicability. To this end, the user’s satisfaction
with the BCI system (e.g., Zickler et al., 2009; for a discussion
see Kübler, 2020), or the user’s effectiveness of BCI use or the
user’s acceptability have been investigated among healthy users
or patients. In addition, the user’s previous experience with
technology (Al-Taleb et al., 2019; Voinea et al., 2019; Leeuwis
et al., 2021; for a discussion, see Kübler et al., 2014) or the
mental workload and fatigue imposed by the BCI task and training
routines have been examined to this end (e.g., Käthner et al.,
2014). Furthermore, some studies investigated if sociodemographic
variables like the experimenter’s or user’s age and gender affect
the user’s BCI experience. A number of studies found that both
factors (gender and age) can modulate the experience of BCI
users (Randolph, 2012; Zich et al., 2017; Wood and Kober,
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FIGURE 1

Overview of the selection procedure of the previous studies summarized in the section “4 Psychological human factors and their impact on BCI
performance: evidence from previous studies using P300-BCI or SMR-BCI among healthy and disabled user groups” that investigated user traits and
states. Asterisk indicates the key words for the literature search.

2018; Pillette et al., 2021). In conclusion, the results of these
studies suggest that specific human factors are either strongly
restricting or enhancing human factors for BCI engineering and
ergonomics. For recent reviews on the role of human factors
for BCI design engineering, see e.g., Saha et al. (2021); for
P300-spellers e.g., Powers et al. (2015); for SMR-BCIs, see e.g.,
Lyu et al. (2023).

2.2 Psychological human factors: user
traits, states, and BCI performance

Furthermore, a significant body of research has investigated
how human factors, specifically psychological factors related to
the user’s mental traits or state influence BCI performance.
Psychological human factors that relate to the BCI user’s mental
states or traits are factors such as the user’s personality (trait)
or current motivation, mood, emotion, or affect, or the user’s
cognitive skills and aptitudes such as the user’s ability to pay
attention, the user’s learning capacities, intelligence, self-regulation
or cognitive control strategies. Remarkably, these user traits and
states might affect BCI performance explicitly or implicitly (e.g.,
hidden from direct observation) by modulating the different
BCI’s outcome measures of interest on a behavioral, subjective
or neural level (e.g., accuracy measures or brain signals used for
BCI classification). Moreover, not all psychological user traits and
states of interest are directly accessible for the users themselves
via introspection or self-report. Thus, the assessment of such
factors benefits from sophisticated examination by measures of
experimental manipulation or psychological testing.

3 Challenges of previous BCI human
factor research and aims of the
present study

Essentially, the key to increasing BCI literacy and decreasing
BCI inefficiency across and beyond the individual BCI user, is
knowing which of the psychological user’s traits and states are
influencing BCI performance, when, how, and in whom across the
BCI types and tasks, or technical solutions.

Up to now and as summarized above, several studies
already examined human factors in the context of BCIs. For
human psychological factors that influence neurofeedback learning
outcomes, see for example, Kadosh and Staunton (2019). For recent
overviews on SMR-BCIs and internal factors, see for example,
Horowitz et al. (2021), or the previous reviews by Ahn and Jun
(2015), Roc et al. (2021), or Wierzgawa et al. (2018). Despite these
previous attempts, so far, it is difficult to draw definitive conclusions
about the overall influence of user traits and states specifically on
BCI performance across BCIs and user groups. Such overviews are
currently still rare in the literature, probably because of variations
among the different studies in study protocols and methodology.
From a methodological point of view, however, a number of the
existing previous studies are available whose main goal was to
investigate psychological human factors, specifically the impact of
user characteristics or states on BCI performance (see Figure 1) and
that used similar study protocols. For example, these studies either
experimentally manipulated the user’s traits and states, or measured
the user’s traits and states via psychological test batteries or via
standardized self-report. As a result, the evaluation techniques were
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TABLE 1 This table provides an overview of the studies discussed in the subsections of section “4 Psychological human factors and their impact on BCI performance: evidence from previous studies using
P300-BCIs or SMR-BCIs among healthy and disabled user groups.”

Human factors (HC) assessment method – HC User population BCI Results References

Motivation (state) via experimental manipulation using monetary reward during the spelling sessions
(extrinsic motivation, state) and self-rated current motivation assessed with the visual analog scale (VAS)
and the standardized Questionnaire for Current Motivation (QCM-BCI). Mood (state) was assessed with a
subscale of a quality of life questionnaire and with the VAS.

33 healthy students (4 male, 29
female), all naïve to BCI training.

P300-BCI Relationship between P300 amplitude and self-rated
motivation (VAS). Faster BCI-based communication
among highly motivated participants than among less
motivated participants. No differences in CRR as a
function of monetary reward. Significant decrease of
the P300 amplitude for the groups with no or low
reward and no decrease in P300 amplitude in the group
with high reward (between calibration and
copy-spelling). Self-reported motivation was not
related to reward.

Kleih et al., 2010

Motivation (state) via self-report: standardized Questionnaire for Current Motivation (QCM-BCI) that
assesses current achievement motivation related to BCI use and the learning process including four
motivational components “mastery confidence,” “incompetence fear,” “challenge,” and “interest.”
Rating of current motivation (state) using the VAS.

90 participants, 13 diagnosed with
amyotrophic lateral sclerosis (ALS),
mean age: 29.29 years.

P300-BCI Significant positive correlations between BCI
performance (accuracy) and motivation as measures by
the VAS and the QCM-BCI (incompetence fear).
Effects not reported separately for healthy vs. patient
users.

Kleih et al., 2011b

Motivation (state/trait) via self-report: custom-made questionnaire for separation of highly intrinsically
vs. extrinsically motivated participants from less intrinsically vs. extrinsically motivated participants
(state/trait) AND standardized Questionnaire for Current Motivation (QCM-BCI) including the four
motivational components “mastery confidence,” “incompetence fear,” “challenge,” and “interest.” In
addition, ratings of current motivation (state, VAS).
Affect and personality (trait) via standardized questionnaires including four subscales “perspective
taking,” “fantasy” (FS), “empathic concern” (EC), and “personal distress” (PD) and Interpersonal
Reactivity Index (IRI).
Empathy (trait) via questionnaire using the subscale “agreeableness.”
Cognition via test battery including attention allocation and memory.
Mood including positive and negative affect (trait) and depressive symptoms (last 2 weeks, via depression
scale) as further indicator of mood changes.
Manipulation check: interest in BCI, cognitive effort/exhaust post measurement.

21 healthy students, 14 female, mean
age: 23.35 years, naive to BCI.

P300-BCI Higher P300 amplitude in participants with low
empathy. No effects of motivation nor of any of the
other measures.

Kleih and Kübler,
2013

Motivation via experimental manipulation using monetary reward during the motor training sessions
(extrinsic motivation, state) and self-rated motivation via VAS AND standardized Questionnaire for
Current Motivation (QCM-BCI) including the four motivational components “mastery confidence,”
“incompetence fear,” “challenge,” and “interest.”
Emotion (state) induction via experimental manipulation inducing negative and neutral emotional states
(video clips and pieces of music). Mood ratings of valence and arousal (Self-Assessment Scale).
Mood (trait) via quality of life scales and self-reported depressive symptoms.

42 healthy volunteers, naïve to BCI
training, mean age: 24.22 years.

SMR-BCI Increased task-related brain activity in extrinsically
motivated (rewarded) as compared to non-motivated
(unrewarded) participants but no clear effect of
emotional state manipulation on BCI performance.

Kleih-Dahms et al.,
2021

Mood via quality of life scales and self-reported depressive symptoms AND standardized Questionnaire
for Current Motivation (QCM-BCI) including the four motivational components “mastery confidence,”
“incompetence fear,” “challenge,” and “interest.”

16 healthy adult participants naive to
BCI (students, 6 men, 10 women),
divided into two groups with average
mean age: 26.75 or 24.23 years.

SMR-BCI Main effect of mood, mastery confidence and fear of
incompetence on BCI performance (visual feedback
group). In the auditory feedback group, main effect of
incompetence fear only: higher scores of incompetence
fear were related with better performance.

Nijboer et al., 2008
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TABLE 1 (Continued)

Human factors (HC) assessment method – HC User population BCI Results References

Psychological wellbeing and changes in mood via self-report, measured via quality of life (state/trait)
standardized questionnaire.
Mood including depressive symptoms measured via depression scale.
Motivation (state) via self-report by standardized Questionnaire for Current Motivation related to BCI
use (QCM-BCI) including the four motivational components “mastery confidence,” “incompetence fear,”
“challenge,” and “interest.”

6 ALS patients, age: 39–67 years. SMR-BCI and
P300-BCI

Relationship between mood, motivation, and number
of BCI sessions.
Relationship between BCI performance and
motivational factors (BCI) – challenge, mastery
confidence and incompetence fear in half of the
participants but no relationship between mood and
BCI performance in any of the participants.

Nijboer et al., 2010

Motivation (state) via self-report using the Questionnaire for Current Motivation related to BCI use
(QCM-BCI) including the four motivational components “mastery confidence,” “incompetence fear,”
“challenge,” and “interest.”
Additionally, ratings of current motivation (state) via VAS.
Subjective Workload (state) via self-report using a standardized questionnaire.
Mood including depressive symptoms assessed via depression scale.
Satisfaction own performance (state) assessed via VAS.
Cognition: Attention test.

16 university students (8 female),
mean age: 23.88 years.

P300-BCI Relationship between current motivation (subscale
“interest” and VAS rating) and BCI performance or
P300 amplitude (VAS only).
No other effects (mood, satisfaction, cognition) found
or reported.

Baykara et al., 2016

Physical, mental, and emotional states via self-report using rating scales (Likert 1–5) for calmness,
interest, concentration level, physical state, mental state, fatigue, and easiness of motor imagery and
accuracy prediction (pre and post task).

52 healthy subjects (26 male, 26
female), mean age: 24.8 years.

SMR-BCI No significant relationships between physical and
mental states and BCI performance.
Relationship between self-reported accuracy prediction
and actual BCI performance.

Ahn et al., 2018

Psychological trait and state markers via electronic test battery and self-report measures including
Mental state: self-reported depressive symptoms (state) and screening of psychopathological symptoms.
Current Mood (state) via self-report.
Personality traits: “empathy,” “emotional stability,” “extraversion, “conscientiousness,” “openness to
experience,” and “agreeableness.”
Cognition via electronic tests (e.g., sensorimotor coordination, attention and concentration, non-verbal
intelligence (trait) and logical reasoning, verbal learning).
Self-control via self-report scales (locus of control).
Motivation (state) via standardized Questionnaire for Current Motivation related to BCI use (QCM-BCI)
including the four motivational components “mastery confidence,” “incompetence fear,” “challenge,” and
“interest.”
Attitudes towards work (trait) via personality test including “performance motivation.”

83 healthy BCI novices (39 men),
mean age: 29.5 years.

SMR-BCI Relationship between BCI inefficiency and
sensorimotor coordination, and between SMR-BCI
performance and performance
motivation/concentration. No other significant effects
on BCI performance.

Hammer et al., 2012

Full assessment of psychological trait and state markers, same as in Hammer et al. (2012) plus
additionally including:
Anxiety (state and trait) via self-report/questionnaire.
General intelligence (trait) via psychological tests.
Cognition via cognitive tests comprising mental rotation, visuo-spatial short-term and working memory
abilities, motor abilities, visual retention, and learning styles.

33 healthy participants (18 female, 14
male), mean age: 24.2 years.

SMR-BCI Relationship between BCI performance and
visuo-motor control ability and “attentional
impulsivity” (personality trait).

Hammer et al., 2014
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TABLE 1 (Continued)

Human factors (HC) assessment method – HC User population BCI Results References

Full assessment of psychological trait and state markers, same as in Hammer et al. (2012, 2014). 40 healthy BCI novices (21 male, 19
female), mean age: 25.8 years, 92%
students.

P300-BCI Relationship between the personality factor “emotional
stability” and visual or auditory P300-BCI
performance. Relationship between non-verbal
learning (ability to learn) and visual P300-BCI
performance.

Hammer et al., 2018

Psychological trait and state markers including:
Anxiety (state and trait).
General intelligence (trait) via psychological test.
Personality traits including 16 primary factors of personality (warmth, reasoning, emotional stability,
dominance, liveliness, rule-consciousness, social boldness, sensitivity, vigilance, abstractness, privateness,
apprehension, openness to change, self-reliance, perfectionism, and tension) as well as five global factors of
personality: extraversion, anxiety/neuroticism, tough mindedness, independence, and self-control.
Cognition via test battery comprising mental rotation, visuo-spatial short-term and working memory
abilities, motor proficiency, visual retention, and learning styles.

18 BCI-naive participants (9 female),
mean age: 21.5 years.

SMR-BCI Relationship between mental rotation and BCI
performance. No other significant effects.

Jeunet et al., 2015

Psychological factors (traits and states) including:
Motivation (state) via Questionnaire for Current Motivation related to BCI use (QCM-BCI) including the
four motivational components “mastery confidence,” “incompetence fear,” “challenge,” and “interest” AND
rating of current motivation (VAS).
Fatigue via standardized scale.
Cognition and neurological and behavioral Functions via test battery (working memory, cognitive
flexibility).
General intelligence via psychological test.

34 healthy participants. P300-BCI Working memory and general intelligence as
significant predictors of BCI performance.

Sprague et al., 2016

Full assessment of psychological traits and states including:
Motivation (state) via Questionnaire for Current Motivation related to BCI use (QCM-BCI) including the
four motivational components “mastery confidence,” “incompetence fear,” “challenge,” and “interest.”
Personality traits via standardized questionnaire (five factors: extraversion, autonomy, orderliness,
emotional stability, and mildness).
Cognition via psychological tests and questionnaires including visuo-spatial memory and spatial mental
rotation and vividness of visual imagery (trait/state) as well as affinity to technology.

55 healthy and novice BCI-users (36
female, 21 male), mean age:
20.71 years.

SMR-BCI Relationship between BCI performance and vividness
of visual imagery and the personality factors:
“orderliness” and “autonomy”.

Leeuwis et al., 2021

Neurophysiological predictors as external predictors of BCI performance and psychological traits
(general intelligence/aptitude via questionnaire) for group selection.

20 healthy participants (7 female, 13
male) taken from Blankertz et al.’s
(2010) sample, mean age: 24.5 years.

SMR-BCI Differences in the activation of the supplementary
motor areas (SMA) related to motor imagery and
motor observation in high aptitude users.

Halder et al., 2011

Neurophysiological predictor of BCI performance (2 min EEG resting state, relax with eyes open)
including control of self-reported fatigue.

80 participants, BCI-novices (41
female), mean age: 29.9 years.

SMR-BCI Relationship between BCI performance and
neurophysiological resting state predictor.

Blankertz et al., 2010

Cognitive intervention: visuomotor coordination training or progressive muscle relaxation.
Neurophysiological predictor of BCI performance (same as in Blankertz et al., 2010).

154 naïve participants (99 female),
mean age: 24.7 years.

SMR-BCI No effects of either of the two cognitive interventions
on BCI performance.

Botrel et al., 2017
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TABLE 1 (Continued)

Human factors (HC) assessment method – HC User population BCI Results References

Psychological states including
Motivation (state) via standardized rating (VAS).
Relaxation (state) via standardized rating (VAS).
Mood (state) via standardized rating (VAS).
Mindfulness (trait) via standardized scale and questionnaire.
Self-regulation (trait) as the individual tendency to continue an action even if motivation and attention
diminish, measured via standardized questionnaire.
Self-efficiency (trait): cope with unexpected events via standardized scale.
Control beliefs – technology: interaction with common technological devices at home or at work via
standardized questionnaire.
Neurophysiological resting state predictor of BCI performance (similar to Blankertz et al., 2010).

39 healthy people. SMR-BCI Relationship between BCI accuracy and the
neurophysiological SMR predictor and state
mindfulness. No relationships with psychological
predictors.

Botrel and Kübler,
2019

Mindfulness and meditation (trait) via standardized questionnaires.
Neurophysiological differences (resting state).

16 healthy individuals with a history
of meditation practice but no BCI
experience, mean age: 38.5 years, 19
healthy individuals, mean age:
25.6 years, no meditation experience
and no BCI experience.

SMR-BCI Better task performance, fewer BCI inefficiency and
higher resting SMR predictors in meditators compared
to the control group.

Jiang et al., 2021

Personality traits via personality questionnaire assessing neuroticism (emotional stability) and
extraversion/introversion.
Mindfulness training (state) and motor exercise before or after the BCI sessions.

7 healthy subjects, mean age:
21–35 years.

SMR-BCI Learning to control the BCI was modulated by
neuroticism. Accuracy of the classification during
motor imagery differed between subjects scoring high
or low on the neuroticism scale before and after
training.
Motor training improved classification accuracy and
mindfulness and motor training were modulated by
neuroticism.

Bobrova et al., 2018

User traits including personality traits using different standardized questionnaires to assess.
Learning styles (visual/verbal, active/reflective, sensitive/intuitive, or sequential/global).
16 personality factors including warmth, reasoning, emotional stability, dominance, liveliness, rule
consciousness, social boldness, sensitivity, vigilance, abstractness, privateness, apprehension, openness to
change, self-reliance, perfectionism and tension.
Global personality factors including extraversion, anxiety, tough-mindedness, independence, and
self-control.
Cognition: mental rotation test.

42 participants selected from three
different studies/experiments that
used the same MI-/SMR-BCI
paradigm.

SMR-BCI User traits including mental rotation and the
personality factors of self-reliance and tension
predicted BCI performances but not reliably across the
experiments.

Benaroch et al., 2019

Human factors (trait or state) investigated in the studies are highlighted in bold letters. The overview considers the following major aspects: category of the human factor (user trait, user state), the assessment method (e.g., experimental, self-report, or test battery), the
type of BCI used (P300-BCI or SMR-BCI), the user population (sample size, healthy sample or patient group), the main finding(s), and the study reference. The mean age of the study sample is reported as far as it is available. The study sample reported refers to the
original sample size reported in the studies. Of note, the studies are not listed in chronological order of their publication (year of publication) but according to the order in which they are discussed in the text (see section “4 Psychological human factors and their impact
on BCI performance: evidence from previous studies using P300-BCI or SMR-BCI among healthy and disabled user groups” and subsections).
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carefully controlled and comparable among studies. In addition,
among these studies, a number of studies explored the user’s traits
and states on BCI performance among healthy users or disabled
patient groups with similar protocols. The BCI systems comprised
well-established non-invasive EEG-BCIs that were either based
on motor imagery as a task to elicit sensorimotor rhythms (in
short: SMR-BCIs or MI-BCIs) or on P300 modulation elicited by
the voluntary attention of the user (e.g., P300-BCI spellers), for
further details, see section “4 Psychological human factors and their
impact on BCI performance: evidence from previous studies using
P300-BCI or SMR-BCI among healthy and disabled user groups.”

As a result, these studies could allow a valid comparison of
the effects of user traits and states on BCI performance across
two different but very frequently used BCIs, SMR-BCI and P300-
BCI, respectively. Moreover, their findings might allow a first
cross-sectional evaluation of how user traits and states influence
BCI performance across user groups and across the two different
but well-established BCI systems of SMR-BCI and P300-BCI.
Most importantly for future aims, recommendations concerning
superordinate or key human factors that could influence BCI
performance beyond tasks and BCI applications can be made based
on a joint analysis of these studies’ findings.

In line with this, the following sections of this manuscript
aim to provide a brief overview, review and discussion of the
findings of these studies that investigated psychological human
factors. Selection of the studies of interest was based on a literature
search according to the criteria mentioned above and as illustrated
in detail in Figure 1. Based on the summary of the research
findings from these studies (see also Table 1 and Figure 2),
the following sections will propose that, in accordance with the
above recommendations, self-relevance, along with the user’s self-
concept, may be potential superordinate human factors that affect
BCI performance both within and across the well-investigated
BCIs (P300-BCIs or SMR-BCIs, respectively). Consequently,
concrete examples and a hypothetical model discussed in the
following sections (for a graphical summary see Figures 3, 4) will
demonstrate that self-relevance and the user’s self-concept should
be thoroughly examined in subsequent BCI studies. These studies
might also include BCIs other than P300- or SMR-BCIs.

4 Psychological human factors and
their impact on BCI performance:
evidence from previous studies
using P300-BCI or SMR-BCI among
healthy and disabled user groups

4.1 Current motivation and mood states

The use of BCIs such as the P300-BCI or SMR-BCI require
deliberate engagement of the user with a task for the purpose of
active interaction and communication with the system. SMR-BCIs
are using motor imagery (MI) paradigms to elicit sensorimotor
rhythms (SMR) (SMR-BCIs or MI-BCIs). Similarly frequent are
BCI systems for spelling that elicit discrete event-related potentials
(ERPs) in the EEG based on the voluntary attention of the
user and his/her choice of numbers, letters or symbols rapidly

presented in rows and columns. The most traditionally used BCI
speller is the well know P300-BCI (for an overview of BCIs, e.g.,
Edlinger et al., 2015). Consequently, a number of the existing
previous studies investigated whether influencing or controlling
for the user’s motivation and affective state could intentionally
enhance BCI performance in either the P300-BCI or the SMR-
BCI. Kleih-Dahms et al. (2021) for example manipulated the
user’s mood by experimental mood induction via video clips or
music. Examination of the performance of healthy users included
SMR-BCI-based motor imagery-induced movement and action
control. Moreover, akin to the study by Kleih et al. (2010)
that used a P300-BCI, Kleih-Dahms et al. (2021) modulated the
user’s motivation experimentally. They set a monetary incentive
(extrinsic motivation) and divided the users according to their
intrinsic motivation [ratings on visual analog scale (VAS) about
their current motivation] into high vs. low motivated users. In
a third study by the authors (see Kleih et al., 2011b), data from
healthy users and patients diagnosed with amyotrophic lateral
sclerosis (ALS) were pooled to further exploit the role of the user’s
current motivation for P300-BCI performance. Again, the user’s
current motivation was assessed via ratings on the intuitive and
easy to use VAS. In addition, the authors used the Questionnaire
for Current Motivation (QCM)-BCI to measure motivational
dimensions related to BCI use. The QCM-BCI is a standardized
questionnaire used in many BCI studies as well (for an overview
see Table 1). It is adapted from the QCM (Rheinberg et al.,
2001), a questionnaire to assess current motivation in learning
situations. The QCM questionnaire is a state measure and allows
determining the degree of the achievement motivation of a person
(trait) in a situational context (state). Moreover, in a fourth study
by Kleih and Kübler (2013), the authors investigated healthy
individuals as novices in P300-BCI and divided the users according
to their intrinsic motivation (ratings on VAS about their current
motivation) or their habitual motivation to help. In addition, a
number of further psychological human factors were investigated
in the study such as the user’s habitual affective ability to empathize
with others (perspective taking), which was measured by self-
report using standardized questionnaires (for an overview see
Table 1). Furthermore, the user’s memory and ability to pay
attention was tested via a cognitive test battery (see Table 1).
In some of the previously stated studies that used P300-BCIs,
a significant effect of current motivation as measured by self-
report scales (VAS) was found (see Table 1). Additionally, the
user’s self-reported degree of incompetence fear as assessed with
the QCM-BCI was found to correlate with the user’s performance
accuracy measures (e.g., spelling accuracy). In the SMR-BCI, a
significant effect of reward (experimental manipulation of the user’s
current state of extrinsic motivation) was found to influence SMR-
BCI performance. The study by Kleih et al. (2010) could not find
a significant direct impact of reward on the user’s motivation
or BCI performance (spelling) but found differences in P300
modulation during calibration and copy-spelling in the rewarded
and unrewarded groups.

The study by Nijboer et al. (2008) investigated the influence
of mood and motivation on BCI performance in young adults in
the SMR-BCI (see Table 1). In this study, the authors explored
the impact of mood and motivation across sensory modalities
using auditory or visual feedback during training. The authors
used the QCM-BCI to determine motivational facets related to
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FIGURE 2

(Left column) Overview of the user traits and states examined in previous studies using SMR-BCI or P300-BCI in samples of healthy users and
patients (for a detailed summary see Table 1 and section “4 Psychological human factors and their impact on BCI performance: evidence from
previous studies using P300-BCI or SMR-BCI among healthy and disabled user groups”). (Right column) Self-relevance as a key human factor, its
potential influence on BCI performance and its implementation in the BCI design. For a detailed discussion, see section “Self-relevance and the
user’s self-concept as potential superordinate human factors in the BCI setting” and subsections in the text and Figures 3, 4.

FIGURE 3

Self-relevance and BCI performance as illustrated by different examples discussed in the text in section “Self-relevance and the user’s self-concept
as potential superordinate human factors in the BCI setting” and subsections. The number in brackets refer to the studies discussed in section
“Self-relevance and the user’s self-concept as potential superordinate human factors in the BCI setting.” [1] Resting state (e.g., Blankertz et al., 2010),
[2] first person perspective or own body parts (e.g., Neuper et al., 2005; Škola and Liarokapis, 2018; Ziadeh et al., 2021) and [3] autobiographical
events (e.g., Dong et al., 2015; Placidi et al., 2018).

BCI use and assessed changes in the current mood or wellbeing
by standardized scales for quality of life (QoL) (for details, see
Table 1). The participants performed a motor imagery task to elicit
sensorimotor rhythms in the EEG for BCI based control of the
participants’ choices: the participants had to select by instruction
to play sounds of different music instruments and the choices were
rewarded either auditorily (sound related to a selected instrument)

or visually by verbal prompts (correct vs. incorrect). During
visual feedback, BCI performance varied with the self-reported
differences in mood of the healthy users and with their self-reported
motivation to use a BCI, in particular with the degree of mastery
confidence and incompetence fear reported by the participants in
the QCM-BCI. Higher scores of mood and mastery confidence were
related to better performance, whereas incompetence fear showed a
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FIGURE 4

Hypothetical model that illustrates the possible relationship between the self-concept of the user, the self-relevance of tasks and stimuli, BCI
performance, and the previously examined user traits and states. For a detailed discussion, see section “Self-relevance and the user’s self-concept as
potential superordinate human factors in the BCI setting.”

negative correlation with performance. During auditory feedback,
incompetence fear however showed a positive relationship with
BCI performance and was the only factor with a significant effect
on BCI performance. To elucidate these observations further, in
a second study (see Table 1), Nijboer et al. (2010) compared
the influence of individual differences in mood and wellbeing
and differences in the current motivation of the users on BCI
performance among healthy users and patients diagnosed with
ALS. The comparison included the performance in two different
BCI set-ups comprising SMR- and P300-BCIs. Again, mood and
wellbeing were assessed via self-report measures, included scales for
QoL as in the previous study, and additionally scales for assessment
of depressive symptoms as potential further interindividual
modifier of BCI performance (Nijboer et al., 2010). In this study,
the authors found a relationship between mood, motivation, and
the number of BCI sessions. Moreover, the authors could validate
a relationship between BCI performance and motivational factors
in half of their participant sample. This included the user’s self-
reported challenge, mastery confidence and incompetence fear as
measured with the Questionnaire for Current Motivation (QCM-
BCI). When comparing the performance of healthy and disabled
users, Nijboer et al. (2010) found that motivation for BCI use such
as mastery confidence or incompetence fear correlated with BCI
performance positively or negatively among healthy or individual
ALS users in both, the P300-BCI or the SMR-BCI (Nijboer
et al., 2010). However, they could not find a relationship between
mood and BCI performance in any of the participants: the scores
obtained from the measures of current mood related to QoL and
wellbeing or the self-reported current symptoms of depression

as further measures of a user’s mood state or trait showed no
significant effects.

The findings of the above reported studies suggest that a
proportion of the variation in BCI performance is accounted by the
user’s motivation among both, healthy users or patients. However
with different results across the studies and the measures used, i.e.,
intrinsic vs. extrinsic motivation, measured experimentally vs. by
self-report, and whether related to the performance in the P300-
BCI or SMR-BCI, respectively. So far, extrinsic motivation (reward
and incentives), the user’s self-reported motivation, as assessed
with an intuitive self-report scale (VAS) or as measured in relation
to BCI use were often but not consistently correlated with BCI
performance across the studies. Moreover, as stated above and as
summarized in Table 1, some studies were not able to find any
significant effects.

However, as shown in Table 1, some further studies support the
suggestion that the motivation of the user plays a role and can affect
BCI performance, both in the P300-BCI or the SMR-BCI at least
among healthy users. Baykara et al. (2016) used a P300 multi-class
speller paradigm. As in the studies discussed above, the authors
assessed current motivation in healthy participants with the QCM-
BCI and a VAS, akin to the studies by Kleih et al. or Nijboer et al.
that were using both or one of these measures. In Baykara et al.
(2016), both measures of current motivation showed correlations
with BCI performance efficiency assessed via information transfer
rate (ITR) and with the amplitude of the P300. Moreover, the
participants with high motivation as assessed with the intuitive
self-report measure of the VAS had higher P300 amplitudes and
higher ITR than the group of participants reporting low current
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motivation on the VAS (Baykara et al., 2016). The results of this
study complement observations from another study conducted by
Ahn et al. (2018). This study used the user’s predictions of their
BCI performance as a self-report measure of a user’s motivation in
the SMR-BCI. In Ahn et al. (2018), healthy participants performed
a motor imagery task for SMR-BCI. Between the training sessions,
the participants self-reported their current mood, calmness, fatigue,
and their mental and physical state were assessed (see Table 1
for details). In addition, the participants should make accuracy
predictions about their BCI performance and difficulty of motor
imagery. The authors found that the predicted motor imagery
performance of the individual user showed a relationship with
offline analysis of the participants’ BCI accuracy measures and with
the factually achieved classification accuracy.

To conclude, the studies on mood and motivation outlined
above and in Table 1 point to the possibility that motivational
aspects associated with the use of BCIs impact BCI performance.
The motivational dimensions of mastery competence and
incompetence fear, the users’ own intuitive evaluation of their
task performance (measured by self-prediction or with simple
intuitive scales such as the VAS) turn out to be correlates of BCI
performance across BCI systems and user groups. Moreover, some
of the studies found that in some users, mood may change across
sessions either enhancing or decreasing motivation across sessions.
However, as discussed in detail in the following sections, as far as
mood and affect are concerned, trait variables such as the user’s
degree of empathy (e.g., Kleih and Kübler, 2013) or emotional
stability as a personality trait (e.g., Hammer et al., 2012) might play
a more important role among healthy users than state measures of
mood and affect.

4.2 Mental states (perception, attention,
and cognition)

In an attempt to find best predictors of the user’s traits and
states for BCI performance in the P300-BCI or SMR-BCI, a series of
previous studies further elaborated and extended the investigation
of user variables from motivation and affect or mood to mental
states including perceptual and cognitive states of the user. The
assessment methods of these studies cover a broad range of
perceptual, cognitive, affective or motivational traits and states of
the users. Hammer et al. (2012, 2014, 2018) for example used a
mixed-method approach that comprised structured psychological
test batteries as well as self-report measures to capture a broad
range of traits and states (for a detailed overview, see Table 1).
The test battery relevant for SMR-BCI performance (Hammer et al.,
2012, 2014) included for example perceptual and cognitive indices,
sensorimotor coordination, attention, concentration (ability to
concentrate on the task and sustain attention to it), or measures
of the user’s verbal and non-verbal learning ability. These
factors according to the authors critically influenced cognitive
performance in a number of tasks in previous research including
motor imagery. In addition, to replicate results from earlier
studies outlined in section “4.1 Current motivation and mood
states,” the authors assessed affective, motivational, and personality
variables. These comprised the user’s current mood and motivation,
locus of control, Big Five personality traits and clinically relevant

current mood symptoms related to anxiety and depressive disorders
assessed via standardized self-report measures (for details and
comparison with the studies discussed in section “4.1 Current
motivation and mood states,” see Table 1). Effects were examined
among naive healthy BCI users in the Berlin Brain–Computer
Interface (BBCI; Blankertz et al., 2006). The BBCI is based on
neurofeedback training and uses direct reinforcement of task-
related and task-contingent brain signals of the user. Feedback
learning is well known to be an integral part of neurofeedback
studies, though not the only constituent to perform well in
BCI settings.

From all psychological variables measured, the ability to
concentrate on the task and sustain attention to it as well as
the user’s sensorimotor skills were significant predictors of the
user’s SMR-BCI performance in Hammer et al. (2012). In Hammer
et al. (2014), the authors aimed to replicate their results (see
Table 1). This revealed two user characteristics, i.e., the user’s
visuo-motor coordination ability and the ability to concentrate
on the task as significant predictors of SMR-BCI performance.
Sprague et al. (2016) also used psychological measures (e.g.,
current motivation, mood, or fatigue) and psychological tests
of cognition that additionally included working memory tasks
and on a trait level, the user’s general intelligence. The authors
investigated if these factors could be predictors not only of SMR-
BCI performance but as well of BCI performance in the P300-BCI
among healthy users. The authors found that in P300-BCI, the BCI
user’s performance correlated significantly with their performance
obtained from the memory tasks. Moreover, general intelligence
significantly predicted BCI performance. In addition, the user’s
working memory could predict BCI performance but failed as a
predictor after adding the additional user traits and states (e.g.,
the user’s level of fatigue, mood, or motivation). This shows that
psychological characteristics of the user, could additionally play a
significant role as mediators of BCI performance. Hammer et al.
(2018) further exploited the impact of psychological user traits and
states on P300-BCI performance. Like in their earlier studies and in
the study by Sprague et al. (2016), Hammer et al. (2018) were using
an extended psychological test battery that additionally included
tests of selective attention that are relevant for attention selection
when target stimuli are presented rapidly such as in the P300-BCI
spellers (for an overview see Table 1).

The study by Hammer et al. (2018) could not replicate the
findings reported in the earlier studies of the authors nor the
results reported by Sprague et al. (2016) outlined above. None of
the investigated user state factors showed a significant correlation
with P300-BCI performance indices in the sample of healthy BCI
novices, neither in an auditory nor in a visual version of the
P300 speller.

Interestingly, Jeunet et al. (2015) using SMR-BCI investigated
the same broad range of psychological self-report variables like for
example in the studies conducted by Hammer et al. Additionally,
the authors used a broad range of neurophysiological indicators
such as changes in EEG frequency bands as predictors of SMR-
BCI performance. In line with Hammer et al. (2012, 2014), but
in contrast to the results observed in Hammer et al. (2018),
Jeunet et al. (2015) found a relationship between a number of
cognitive factors and BCI performance in the motor imagery
SMR-BCI. Among the sample of healthy users, the ability for
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spatial mental rotation as well as the user’s habitual level of self-
reported tension (impatience and frustration) and the user’s self-
reported self-reliance (i.e., the user’s ability to learn autonomously)
correlated significantly with the user’s BCI performance across six
different training sessions. Besides this, further predictors such as
the user’s visuo-spatial memory span or visual or verbal learning
abilities contributed to the user’s motor imagery based SMR-BCI
performance. However, Jeunet et al. (2015) additionally report that
these user characteristics did not predict the user’s BCI performance
across all the different training sessions. The training sessions
comprised different motor imagery tasks such as left-hand motor
imagery, mental rotation or mental subtraction.

Recent studies aimed to scrutinize the potential impact of the
user’s cognitive state and cognitive skills on BCI performance, such
as the study by Leeuwis et al. (2021). The authors used similar
self-report methods as the previous studies outlined in this section
but not identical psychological tests and focused on SMR-BCI like
most of the afore mentioned previous studies (see Table 1). Like
Hammer et al. (2018) for P300-BCI, the study by Leeuwis et al.
(2021) could only partly replicate the observations from previous
SMR-BCI studies outlined above although investigating a much
larger sample size of healthy participants than the sample size of
some of the previous studies (see Table 1).

Taken together, the results of the studies summarized in
this section underscore the relevance of monitoring the mental
cognitive states of the user to ensure accurate BCI performance.
However, they also show that cognitive state assessment requires to
include a broad number of cognitive states to identify which of the
many cognitive variables and cognitive abilities of the user might
specifically modulate BCI performance in a given setting within and
across the different BCI systems and training sessions.

4.3 Role of assessment methods

Therefore, a considerable number of studies have investigated
which measures (e.g., neurophysiological, experimental, or self-
report) might best predict BCI performance due to the various
ways in which cognitive, affective, or motivational states of the
user can be measured and how they might influence performance
measures in the BCI setting. Of these studies (for an overview see
Table 1), a number of studies used external validation techniques to
further define the relationship between various measures of a user’s
characteristics and states and BCI performance (see Ahn and Jun,
2015 for a brief overview).

For example, Halder et al. (2011) compared the brain activity
patterns acquired outside of the BCI context to the performance
outcome measures of healthy BCI users obtained from motor
imagery driven SMR-BCI (see Table 1). In the study, the same
subjects who performed the BCI setting were invited to a second
study in which they were asked to perform different motor tasks
(e.g., motor observation vs. motor imagery) while their brain
activity was monitored by functional magnetic resonance imaging
methodology (fMRI) (Halder et al., 2011). The authors grouped
the BCI users into those with poor and good BCI performance
measures. The authors found that what differentiated best between
“poor” and “good” users was the users’ brain patterns in the fMRI
experiment and thus there “implicit” ability “to recruit the relevant

areas for symbolic motor tasks required for motor imagery and
motor observation” (cited from Halder et al., 2011).

In line with this, a series of studies explored the degree to
which neurophysiological measures as correlates of a user’s mental
state can serve as predictors of BCI performance. Some studies
explored the mental state and its neurophysiological correlates
during a resting state (e.g., Blankertz et al., 2010). Other studies
explored if task-induced changes in neurophysiological activity as
biological markers of the user’s cognitive or motor performance
can serve as predictors of BCI performance (e.g., Halder et al.,
2013; for SMR-BCI: Ahn et al., 2013; Robinson et al., 2018; Tzdaka
et al., 2020). Further studies assessed the impact of particular
training interventions such as for example mindfulness training or
relaxation training on BCI performance (Botrel et al., 2017; Botrel
and Kübler, 2019) and for example examined if mindfulness or
relaxation training before the start of a BCI session improves motor
imagery performance in the SMR-BCI (see Table 1)).

Similar to the studies using psychological measures such as
questionnaires or test scores, the results of these studies suggest that
many neurophysiological measures are task dependent, BCI type,
or performance specific (for an overview see Table 1). In addition,
interventions such as short-term relaxation training or mindfulness
training, visuomotor coordination training or progressive muscle
relaxation seem to have no effects on SMR-BCI performance of
healthy BCI users (Botrel et al., 2017; Botrel and Kübler, 2019).
A study by Jiang et al. (2021) however found that participants
with long-term training in meditation had more stable resting
EEG mu rhythms, better resting state SMR predictors than non-
mediators, achieved larger control signal contrasts in the motor
imagery tasks and fewer subjects in the mediating group were
BCI illiterates. For short-term and long-term effects of meditation
training interventions on BCI performance testing of healthy users
see Tan et al. (2014) or Tan et al. (2015). These latter results
corroborate the finding that neurophysiological correlates obtained
from the analysis of a user’s mental state during rest (e.g., Blankertz
et al., 2010) are reliable predictors of BCI performance. Out of
all the neurophysiological predictors investigated thus far, the
assessment of activity changes during a resting state appears to
predict the user’s unique BCI performance the best in addition
to psychological predictors (e.g., Lee et al., 2020). The fact that
a resting state increases self-referential processing could be one
explanation for these findings (see section “6 Self-relevance as
potential superordinate human factor in the BCI setting”).

4.4 User traits and BCI performance: the
role of personality traits

While several studies examined the impact of user states
(e.g., current motivation or mood states or mental states) on
BCI performance (see sections above), a considerable number
of studies additionally aimed to determine the role of user
traits as intraindividually stable differences between subjects as
predictors of BCI performance. Most of these studies focused on
personality traits. Theoretically, individuals can be distinguished
according to a set of fundamental personality traits that predict
interindividual variations in human experience and behavior across
situations. Thus, personality traits imply stability and may therefore
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predict a user’s BCI performance across situations. Usually,
personality traits are assessed by standardized questionnaires.
Most of these questionnaires are based on personality taxonomies
and models of personality such as the Big Five-Factor Model
(e.g., De Raad and Mlacic, 2015) that distinguishes between
Openness, Conscientiousness, Extraversion, Agreeableness, and
Neuroticism, respectively. Each of these traits is assumed to be
additionally associated with facets of these traits (e.g., extraversion
being linked to warmness, assertiveness, positive emotionality,
etc. or neuroticism to anxiety, depression, anger, vulnerability,
self-consciousness, or impulsivity). As summarized in Table 1,
personality traits or facets thereof correlate with BCI performance
either positively or negatively in several studies. For example,
the studies by Hammer et al. found that “emotional stability”
predicted P300-BCI performance among healthy users across the
visual and auditory spelling modalities. “Emotional stability” is one
of six personality factors from the Big Five Plus One Personality-
Inventory used by Hammer et al. (2014) and is associated with
the Big Five trait of neuroticism. In the study by Kleih and Kübler
(2013), P300-BCI performance correlated negatively with empathy
in healthy BCI users (all novices of BCI). Based on these findings,
one may speculate that users who are scoring high in empathy
and perspective taking might have lower BCI performance, possibly
despite or due to their higher motivation to help or their greater
incompetence fear compared to user’s scoring lower on empathy
and perspective taking.

A study by Bobrova et al. (2018) also discovered this.
The authors measured personality traits via standardized
questionnaires, and investigated if interindividual differences
in neuroticisms - as a personality trait that is related to empathy
and emotional stability - modulates SMR-BCI performance.
Neuroticism correlated negatively with motor imagery skills
and SMR-BCI performance much like Hammer et al. found for
emotional stability or Kleih and Kübler (2013) for empathy (see
Table 1). The study by Jeunet et al. (2015) that investigated a range
of psychological human factors during SMR-BCI (psychological,
neuropsychological, or cognitive) and that additionally included
the assessment of the user’s personality traits point into a similar
direction. In their study, the authors used a version of the
Sixteen Personality Factor Questionnaire (16PF, see Table 1).
They discovered that during the SMR training sessions, 3 of the
16 personality factors and a fourth factor associated with the
users’ reflective and active learning style (tension, abstractness,
self-reliance, and self-reliability) accounted for over 80% of the
variance in SMR-BCI performance.

Furthermore, the study by Leeuwis et al. (2021) found a
significant influence of personality traits on SMR-BCI performance
among healthy users. As described in section “4.2 Mental states
(perception, attention, and cognition).” Leeuwis et al. (2021)
investigated a number of different motivational and cognitive states
as well. The authors used the Five Factor Personality Inventory
(FFPI) to measure basic personality traits. The five personality
factors comprise the personality traits mildness, emotional stability,
orderliness, extraversion, and autonomy. BCI performance was
accurately predicted by the personality traits “autonomy” and
“orderliness” as well as by the vividness of mental imagery across
BCI runs. Moreover, the sociodemographic variable “gender”
(women performing better than men) affected BCI performance.
However, emotional stability did not predict BCI performance

across runs as found and reported in other studies (see Table 1).
The study conducted by Benaroch et al. (2019) also supports this
conclusion. Although personality traits are considered stable and
situation-independent, Benaroch et al. (2019) found no effects. The
authors used a machine learning approach and data from three
different SMR-BCI experiments all using the same study protocol.
Personality traits did not predict SMR-BCI performance between
different motor imagery tasks in the SMR-BCI across BCI sessions
(see Table 1).

Hence, taken together there are differing effects of personality
traits on BCI performance. This stands in opposition to studies
that found that user’s traits can modulate the user’s BCI experience
(see section “2.1 Human factors related to BCI engineering and
ergonomics”). In this case, both past and current research suggest
a strong correlation between the user’s self-reported operation
performance and their self-reported performance satisfaction with
their BCI performance (see for a discussion Kübler et al., 2015).
In addition, the user’s self-reported and perceived effectiveness
(Kübler et al., 2014) and their acceptability of the BCIs as well as
their affinity with technology (e.g., Hagedorn et al., 2021; Leeuwis
et al., 2021) seem to modulate BCI performance among different
vulnerable end-user groups. This may include patients with stroke
or with mental health conditions (e.g., Al-Taleb et al., 2019; Voinea
et al., 2019). Several of these studies reported effects of these user
characteristics on BCI performance measures such as P300 spelling
frequency or motor imagery and in an off-line analysis with the
brain signals under investigation (e.g., P300 amplitude elicited in
a BCI-P300 speller).

5 Challenges for future BCI
research: finding superordinate key
human factors

In summary, the studies described above show that several
user traits and states significantly modulate BCI performance
in the most well established BCI systems (P300-BCI and SMR-
BCIs). The effort of assessing all of these user traits and states
with standardized test assessment batteries and different measures
however is huge, as pointed out by for example Hammer et al.
(2018). Moreover, extended assessment and testing may increase
the mental workload or fatigue of the users, and both, workload
and fatigue can significantly affect BCI performance negatively as
for example reported by Käthner et al. (2014).

Thus, a significant future challenge for user-centered or
personalized BCI approaches is the timely or time-efficient
assessment of the user’s traits and states. Finding human key factors
that influence information processing related to BCI performance
across various user groups or BCI systems is one way to address this
challenge. Finding superordinate human factors allows discussing
how these factors are associated with the user traits and states
previously investigated (see Figure 2) and as illustrated in Figure 2
how to implement them as core dimensions in BCI applications
for healthy and vulnerable BCI users. Additionally, as illustrated
in Figure 4, this may enable the development and proposal of
models and study protocols for their standardized assessments
across studies (e.g., for designing human factor models; e.g., Jeunet
et al., 2017).
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Taking into account the results of the studies mentioned
above, the following sections will show that the user’s self-concept
and the tasks’ and stimuli’s self-relevance may be fundamental
superordinate factors of theoretical and empirical relevance for BCI
research (for illustrations, see Figures 2–4).

6 Self-relevance and the user’s
self-concept as potential
superordinate human factors in the
BCI setting

As a theoretical construct, self-relevance encompasses a
number of the affective, cognitive, and motivational human factors
examined in earlier BCI studies. Moreover, theoretically and
neuroscientifically, self-relevance is a fundamental dimension of
information processing (Schmitz and Johnson, 2007). All incoming
sensory information is spontaneously appraised according to
its relevance for the perceiver. This self-relevant processing
is performed during a cascade of sequential appraisal checks
including self-referential processing (Scherer et al., 2001; Schmitz
and Johnson, 2007). Thus, by inducing self-referential processing,
self-relevance determines which stimulus input and information
is capturing the user’s attention and which input will be further
processed, elaborated, consolidated, and more easily recalled from
memory in subsequent sessions and stimulus exposures (e.g.,
Conway, 2005 or Scherer, 2013). Furthermore, the degree to which
an individual’s intentions, behaviors, and self-relevant goals are
pursued with effort, ambition, or pleasure is determined by the
level of self-relevance induced by tasks or stimuli (Conway, 2005).
Therefore, self-relevance can have positive effects on cognition, on
emotion and mood and on performance (see Cunningham and
Turk, 2017 for an overview).

Thus, enhancing the self-relevance of the stimuli, trials,
instructions, and tasks in BCI may improve the users’ performance
accuracy across different BCI systems. This can include passive as
well as active or reactive BCI systems such as the P300-BCI or the
SMR-BCI, respectively.

6.1 Enhancing self-relevance via
stimulus-driven or top-down triggered
processing

Several strategies might increase the self-relevance of a BCI
setting (see Figure 2 for an example). One way of increasing
self-relevance is through stimulus-driven processing that is
bottom-up and initiates implicit, self-relevant and self-referential
appraisal processes (Schmitz and Johnson, 2007). For example,
the presentation of self-referential stimuli, like the subject’s own
name, can initiate self-referential processing and modulate the
P300 amplitude (e.g., Tacikowski et al., 2011; for reviews see e.g.,
Knyazev, 2013) relevant in many BCI studies for classification. Self-
referential stimuli such as the subject’s own name spontaneously
guide the user’s attention, motivation or action without requiring
the user’s explicit attention or intention. On the other hand, explicit
task-instructed processing that is top-down driven can enhance

self-relevance (e.g., Schmitz and Johnson, 2007). Top-down driven
explicit self-relevant processing can be induced via task instructions
that promote self-referential processing, e.g., by asking participants
to process the task and stimuli from a first person perspective. First-
person processing evokes a sense of agency and ownership (for an
overview see e.g., Northoff et al., 2006; Schmitz and Johnson, 2007)
thereby increasing self-relevance. By using self-referential stimuli
or self-referential task instructions, self-relevance increases because
BCI users can relate stimuli, objects, feelings, thoughts, and actions
to themselves and experience themselves as agents and owners of
the task and actions. In contrast to stimulus-driven processing,
task-instructed self-referential processing requires introspection
(e.g., see Northoff et al., 2006; Northoff, 2016). Therefore, inducing
self-relevance by stimulus-driven self-referential processing could
be a strategy to improve BCI performance even among severely
impaired end-users of a BCI (see e.g., Magliacano et al., 2019 and
section “6.2 Implementing self-relevance in the BCI setting: first
evidence from P300-BCI and SMR-BCI and future examples”).
On the contrary, inducing self-relevance by task instructed self-
referential processing requires a BCI user who can reflect upon
the self as an owner of experience (e.g., see Northoff et al., 2006;
Northoff, 2016).

6.2 Implementing self-relevance in the
BCI setting: first evidence from P300-BCI
and SMR-BCI and future examples

Some previous BCI studies have already made use of the
benefits of self-relevance (for an overview see Figure 3). For
example, Neuper et al. (2009) used a SMR-BCI in which some
sessions comprised self-relevant (feedback with a grasping hand)
vs. abstract feedback (moving bar). BCI performance did not
differ between sessions in these studies. Therefore, to increase the
self-relevance of the BCI setting for the user, recent BCI studies
have replaced the flanker stimuli (indicating left or right hand
movements) in the mental imagery training conditions in SMR-
BCIs by self-referential stimuli such as the user’s own virtual
arm (e.g., Škola and Liarokapis, 2018; Ziadeh et al., 2021). The
results of these studies found that healthy young adults performed
the SMR-BCI equally well in both conditions (own arm vs.
flankers). Furthermore, replacing the flankers by the virtual arm
in the study by Ziadeh et al. (2021) elicited sense of agency
and sense of ownership among the users. This, according to the
authors, prevented loss of motivation across 30 trials of repeated
motor activation by mental imagery. Likewise, the study by Škola
and Liarokapis (2018) found no decline in accuracy measures
during the different sessions. Moreover, the participants’ sense of
ownership induced during the self-relevant conditions correlated
with the modulation of the sensorimotor rhythm used for BCI
classification. Stimulus-driven self-relevant processing has been
included in P300-BCIs as well. A recent study by Lu et al. (2020)
presented self-referential cues and primes such as the user’s own vs.
others faces or names during spelling to increase the self-relevance
of the spelling sessions and spelling accuracy. Yet another study
by Dong et al. (2015) asked healthy BCI users to read self-relevant
sentences to increase self-relevance. The classification accuracy of
the BCI algorithms (using time-frequency measures of the EEG)
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improved significantly. A BCI classification accuracy of 75.5%
was obtained. This allowed successful discrimination between two
different implicit intentions of the user related to agreement or
disagreement (Dong et al., 2015).

Taken together and as summarized in Figure 3, as far
as stimulus-driven self-relevant processing is concerned, most
previous BCI research have focused on increasing self-relevance
by triggering self-referential processing implicitly by means of
self-referential and highly salient and familiar stimuli such as the
subjects own name, own face, voice, or own body parts. This
included studies with severely impaired patient groups such as
patients with disorders of consciousness as potential user groups
of BCIs (e.g., Laureys et al., 2007; Perrin et al., 2015; Hammer et al.,
2018, Kempny et al., 2018; for an overview, see Magliacano et al.,
2019).

Stimulus-induced self-relevant tasks, that have so far not been
used in a BCI setting but seem promising, are tasks that use
visual or auditory self-referential vs. other-referential first person
vs. third person stimuli, such as personal or possessive pronouns
(e.g., Blume and Herbert, 2014; Herbert et al., 2016; Zhou et al.,
2019). Due to their simplicity, these paradigms could be a means
of facilitating implicit self-referential processing during the BCI
training sessions to improve or avoid loss of agency and ownership
during spelling or motor imagery. Moreover, promoting self-
referential processing of the BCI user, for example, with self-
referential instructions or self-referential primes (e.g., personal
pronouns or the user’s own name) could be of particular relevance
when sense of agency is severely compromised. This can be the case,
when controlling a robotic or virtual arm, hand or limb via BCIs
(e.g., Caspar et al., 2021; for a discussion of agency in SMR-BCI, see
Jeunet et al., 2016).

A number of previous BCI studies explicitly instructed the
users to initiate top-down driven self-relevant processing. For
example, self-referential instructions that ask participants to
imagine actions during motor imagery from a self-referential first
person perspective have proven superior for BCI performance in
the SMR-BCI over non-self-referential instruction or imagination
from a self-detached third person perspective (e.g., Neuper et al.,
2005). In line with these results, Placidi et al. (2018) proposed a BCI
user interface in which the task is to evoke emotions by instructing
the users to imagine self-induced autobiographical events with
affective impact. Once the different emotions are detected, the self-
referential processing task could be used to train the classifiers to
improve communication in severely disabled users with language
and cognitive deficits (Placidi et al., 2018).

Strong support that self-relevance – implicit, stimulus-driven
or explicit and top-down controlled – plays a superordinate
role in BCI designs comes from studies that included a resting
state recording. As discussed in section “4.3 Role of assessment
methods,” indicators derived from the so-called resting state
paradigm have proven one of the strongest predictors for
high performance accuracy in SMR-BCIs. Previous BCI studies
revealed that there exists a relationship between the resting-state
brain activity and SMR-BCI performance (Blankertz et al., 2010;
Zhang et al., 2015; Kwon et al., 2020). In line with this, individual
differences in the measures of SMR in the resting state (rs-SMR)
have been found to predict control over SMR power during the
SMR training sessions (e.g., Reichert et al., 2015). In the so-called
resting state paradigm, the participants are instructed to relax with

eyes open or eyes closed to let their mind wander. Research using
these task settings (resting state with eyes open/closed) have shown
that the resting state evokes significant alterations in the activity
of the brain’s attention-, default-, and salience networks. This
includes cortical midline structures (CMS); i.e., brain structures
and networks that change activity during self-referential processing
(Northoff et al., 2006; Sheline et al., 2009; Costumero et al.,
2020). Moreover, the resting state modulates activity in the
sensorimotor network (SMN) (Biswal et al., 1995) that comprises
the supplementary motor area and the primary motor cortex
engaged in the execution of voluntary movements. In addition,
resting state conditions facilitate salient stimulus processing, which
improves cognitive performance, attention, and memory processes
(Kober et al., 2015). Moreover, EEG-neurofeedback training based
on oscillations stemming from CMS structures that modulate self-
referential processing already proved to be a promising tool to
enhance self-regulation abilities in patients with ALS in the late
stage of the disease (e.g., Fomina et al., 2016).

These results could explain why a resting state predicts the
outcome measures in SMR-BCIs in previous studies. The results
suggest that a resting state is a state of increased self-referential
processing that modifies neurophysiological activity in specific
brain networks of particular relevance for BCI applications such
as SMR-BCI. Many recent studies meanwhile incorporate a resting
state measure in the BCI training in their study guidelines. These
studies include designs with motor imagery and SMR-BCI (for
recent suggestions see Zhang et al., 2020) or with P300 spelling (e.g.,
Won et al., 2022).

6.3 Assessing the self of the user:
self-concept, its relationship to user
traits examined in previous BCI studies
and its relevance for future BCI studies

Self-relevance is a theoretical concept closely related to the self
of a person and the person’s self-concept. However, self-relevance
characterizes a processing state of information (see section
“6.1 Enhancing self-relevance via stimulus-driven or top-down
triggered processing” for details) that changes in accordance
with the stimuli, task, instruction, or the circumstances at hand
(e.g., the user’s mood, motivation, or behaviorally self-relevant
goals pertinent to the self). In contrast to self-relevance, the
self-concept is related to the concept of who we are including
a person’s self and identity. Theoretically, the self-concept is
multidimensional, comprises multiple facets and encompasses all
processes, ideas, attitudes, and beliefs a person may form about the
own identity, abilities, experiences, and behaviors. This includes
beliefs about personality traits, physical characteristics and affective
and cognitive self-judgments (Baumeister, 1999; McLeod, 2008).
Therefore, a person’s self-concept can be theoretically considered
as a superordinate human factor that predicts a person’s behavior
across situations similar to personality traits. There exist several
questionnaires that measure a person’s self-concept and that assess
self-relevance and self-referentiality on the individual level as a
habit or trait. The Personal Self-Concept Questionnaire (PSQ;
Goñi et al., 2011) for example assesses a person’s self-referentiality
on the dimensions of self-fulfillment, autonomy, honesty, and
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emotionality (emotional self-concept). Other questionnaires
include self-esteem questionnaires such as the Rosenberg self-
esteem scale (Rosenberg, 1965). This scale assesses the degree
of the person’s self-confidence vs. self-depreciation. In addition,
implicit self-report measures for the assessment of a person’s
self-concept exist. The Twenty-Statement Test (TST; Watkins
et al., 1997) for example allows cross-cultural assessment of
self-attitudes. In the TST participants are asked to answer the
question “Who am I.” A modified short version of the TST has
recently been successfully used in a survey study in combination
with machine learning methods to investigate changes in the
self-concept and the mental state and academic performance
among healthy adults (students) during the COVID-19 pandemic
(Herbert et al., 2021).

Recent research, following previous studies asking BCI users
about their experiences using a BCI, showed that many BCI users
value achieving independence, autonomy, and social participation
by using BCIs. Of additional relevance for the BCI users are
the experience of happiness or joy and creativity as well as
the consideration of BCIs as a means of self-expression (for a
summary and overview see e.g., Kögel et al., 2020). Moreover,
several previous BCI studies discussed in the previous sections
of this manuscript have investigated facets of the BCI user’s
personality. This has shown that scoring high or low on measures
of current motivation or on personality traits related to empathy
or emotional stability and neuroticism can affect BCI performance
across BCIs positively or negatively. Differences in a person’s
self-concept and self-esteem have been discussed in the literature
as predictors of competence, cognitive performance, happiness,
interpersonal success, and even of healthier lifestyles (for a
discussion, see e.g., Baumeister et al., 2003). Therefore, it is
likely that the user’s self-concept modulates the autonomy and
happiness achievement goals of a BCI user that have influenced BCI
performance in previous BCI studies (see section “4 Psychological
human factors and their impact on BCI performance: evidence
from previous studies using P300-BCI or SMR-BCI among
healthy and disabled user groups” and Table 1 for a detailed
summary).

For the reasons stated above, it would be interesting to
examine the relationships between the self-concept of BCI
users and personality traits used in previous BCI studies,
including the users’ beliefs about their performance competencies.
Furthermore, self-concept scales and self-esteem scales can be
a reliable way to measure the BCI users’ beliefs about and
confidence in their own abilities. This can be especially useful
in adjusting for overestimation and underestimation biases in
self-enhancement motivation and cognitive performance (Alicke
and Sedikides, 2009). Identifying whether BCI users overestimate
or underestimate their BCI performance could support giving
accurate performance feedback during BCI training sessions (for
a discussion of positive feedback, see e.g., Lotte et al., 2018).
This could help prevent user over- or underestimation biases
as well as loss of motivation such as mastery confidence and
loss of self-regulation, all of which can eventually decrease BCI
efficiency.

Furthermore, previous studies indicate that healthy individuals
typically exhibit optimistic biases as well as positively biased
affective evaluation of themselves (e.g., Sharot, 2011). These self-
positivity biases can be measured experimentally. For example

healthy people often display a tendency to prioritize positive
over negative trait adjectives when asked to ascribe these to
the self (Matlin, 2016). Studies using EEG have also discovered
this bias. For instance, when healthy participants are processing
rapidly presented emotional adjectives in rapid serial visual
presentation designs (Herbert et al., 2008), or read emotional
and neutral first vs. third person pronoun-noun pairs (Herbert
et al., 2011) or social vignettes that are either self- or other-
relevant (Fields and Kuperberg, 2016). In the EEG, self-referential
processing of positive linguistic input modulates a number of
event-related brain potentials including early and late ERPs. Later
ERP modulation includes modulation of the N400 potential during
reading of positive vignettes or of late positive potentials (LPP)
during processing of self-related positive word and pronoun-noun
pairs. The modulation patterns suggest that positive information
is better semantically integrated and more deeply elaborated
compared to negative or neutral input that is unrelated to the
self.

Theoretically, a positive emotional self-concept in terms of
positively biased self-views, high self-esteem, high self-positivity,
and positive mood have a positive psychological benefit for
a person. Self-positivity and positive mood promote cognitive
processes by broadening attention, by fostering motivation, self-
esteem, and performance (for a discussion, see Fredrickson, 2004).
Patients with mental disorders and depressed mood can possess
compromised self-views, low self-positivity or negativity biases, and
self-esteem. Moreover, self-evaluations can extend from human–
human to human–computer interaction (Moon, 2003; Weis and
Herbert, 2022).

Therefore, promoting positive self-views in BCI users during
the training sessions should help to promote accurate BCI
performance, given the negative relationships that have been
found in the past between empathy or emotional stability and
BCI performance. Integrating self-concept measures in future
BCI studies and examining their relationship with the user traits
and states investigated in previous BCI studies seems mandatory
to monitor the self-serving attributions of the BCI user that
could modulate BCI performance positively or negatively. As
outlined above and as illustrated in Figures 3, 4, short assessment
tools using free-format responses or self-other referential words
and vignettes could be a promising and time-efficient tool to
determine the BCI user’s self-concept including the users’ self-views
and self-attributions in addition to standardized self-evaluation
questionnaires.

7 Conclusion and recommendations
for the future

Previous research targeting the user’s traits and states and
investigating their impact on the BCI user’s performance during
P300-BCI or SMR-BCIs have provided evidence that a considerable
number of user traits and states can influence BCI performance
of healthy users and patient users. Based on that evidence, the
proposal to search for key human factors seems promising because
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as explained in detail in the above sections, it could integrate
many different user traits and states. Self-relevance could be
such a potential key human factor for BCIs in future because as
argued in this manuscript, the self-relevance of stimuli and task
might influence information processing of the BCI user during
multiple stages by increasing attention, agency, and ownership.
Moreover, incorporating measures of the user’s self-concept might
help promoting positive self-views and avoiding negative self-views
of the user about their BCI performance. As outlined in this
manuscript, the research on the impact of self-relevance and the
self-concept on BCI performance is still in its early stages. This
manuscript and the hypothetical model shown in Figure 4 may
serve as a catalyst for further research highlighting the potential of
these two constructs as important human factors to be thoroughly
investigated in future BCI studies with regard to BCI performance
in P300-BCIs or SMR-BCIs as well as beyond. From the perspective
of BCI applications and BCI engineering, this might support the
development of self-referential BCIs for a broad range of users. Due
to their self-referentiality, self-referential BCIs could closely fit to
the individual user with respect to the user’s needs, traits, and states
and improve BCI literacy and BCI accuracy of BCI users beyond
the current level. Self-referential BCIs may include the application
of self-paced BCIs (e.g., Mason et al., 2006; Scherer et al., 2007)
or passive BCIs because these BCIs need to autonomously decide
whether the ongoing brain activity is intended by the user (healthy
or disabled) or not (self-paced BCIs) and reflecting the user’s traits
or states (passive BCI).
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