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Introduction: Articulography and functional neuroimaging are two major tools 
for studying the neurobiology of speech production. Until now, however, it has 
generally not been feasible to use both in the same experimental setup because 
of technical incompatibilities between the two methodologies.

Methods: Here we describe results from a novel articulography system dubbed 
Magneto-articulography for the Assessment of Speech Kinematics (MASK), 
which is technically compatible with magnetoencephalography (MEG) brain 
scanning systems. In the present paper we describe our methodological and 
analytic approach for extracting brain motor activities related to key kinematic 
and coordination event parameters derived from time-registered MASK tracking 
measurements. Data were collected from 10 healthy adults with tracking coils on 
the tongue, lips, and jaw. Analyses targeted the gestural landmarks of reiterated 
utterances/ipa/ and /api/, produced at normal and faster rates.

Results: The results show that (1) Speech sensorimotor cortex can be reliably 
located in peri-rolandic regions of the left hemisphere; (2) mu (8–12 Hz) and beta 
band (13–30 Hz) neuromotor oscillations are present in the speech signals and 
contain information structures that are independent of those present in higher-
frequency bands; and (3) hypotheses concerning the information content of 
speech motor rhythms can be systematically evaluated with multivariate pattern 
analytic techniques.

Discussion: These results show that MASK provides the capability, for deriving 
subject-specific articulatory parameters, based on well-established and 
robust motor control parameters, in the same experimental setup as the MEG 
brain recordings and in temporal and spatial co-register with the brain data. 
The analytic approach described here provides new capabilities for testing 
hypotheses concerning the types of kinematic information that are encoded 
and processed within specific components of the speech neuromotor system.
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Introduction

In recent years, systematic studies of speech motor control in the 
human brain have significantly expanded our understanding of the 
neural foundations of expressive speech. Converging evidence now 
points to a comprehensive re-evaluation of conventional and long-
held theoretical models of speech production (see recent reviews by 
Silva et al., 2022; Hickok et al., 2023). This re-evaluation is ongoing 
and rapidly evolving, but there is an emerging shift away from the 
traditional Wernicke–Geschwind model’s emphasis on Broca’s region 
in the left hemisphere, and towards a greater recognition of the 
computational roles and network connections of various premotor, 
motor, sensory, and insular regions of the cerebral neocortex (Hickok 
et al., 2023).

Much of the information that informs these new models comes 
from non-invasive neuroimaging techniques, predominantly 
functional magnetic resonance imaging (fMRI) (Bohland and 
Guenther, 2006; Peeva et al., 2010; Pang et al., 2011; Behroozmand 
et al., 2015; Rong et al., 2018; Heim and Specht, 2019; Tourville et al., 
2019) and associated techniques including diffusion tensor imaging 
(DTI) (Catani and Forkel, 2019; Chang et  al., 2020; Janssen 
et al., 2022).

Non-invasive electrophysiology methodologies using 
electroencephalography (EEG) and magnetoencephalography (MEG) 
have added important detail regarding the timing of neuronal 
processing events (Munding et al., 2016; Leckey and Federmeier, 2019; 
Salmelin et al., 2019). Finally, recent years have provided an increasing 
amount of very highly detailed electrophysiological evidence from 
invasive electrophysiological (electrocorticography; ECoG) recordings 
of speech motor regions in neurosurgical patients (Bouchard et al., 
2013; Chartier et al., 2018; Ramsey et al., 2018; Silva et al., 2022).

Current evidence shows that spoken language processing draws 
on a complex set of neural computations performed in a widely 
distributed set of brain regions (Levelt et al., 1998; Munding et al., 
2016; Carota et al., 2022). These computations range from abstract 
aspects of semantics and syntactics to the low-level sensorimotor 
processes that directly control and modulate the overt movements of 
speech articulators of the peripheral vocal tract (Indefrey and Levelt, 
2000; Tong et  al., 2022). Experimental and clinical protocols for 
mapping of expressive speech centres employ a wide variety of speech 
tasks according to their specific experimental or clinical aims 
(Salmelin et  al., 2019). Speech tasks can be variously deployed to 
emphasise different aspects of spoken language processing: Story 
listening, object naming, rhyming, and covert word production invoke 
relatively more abstract linguistic processes and have been shown to 
reliably activate distributed areas of prefrontal, temporal and parietal 
cortex, including Broca’s area in the left hemisphere (Bowyer et al., 
2005; Kadis et  al., 2011; Doesburg et  al., 2016; Youssofzadeh and 
Babajani-Feremi, 2019; Correia et  al., 2020); while in contrast, 
non-word/pseudoword tasks are intended to limit the requirements 
for semantic, syntactic and attentional processing and elicit neural 
activity that is more restricted to brain regions associated with 
sensorimotor processes (Kearney and Guenther, 2019; Frankford 
et al., 2021).

The subject of the current paper is set within the context of speech 
motor control: the phonological, phonetic, and sensorimotor 
processes that control and/or modulate the neuromuscular output to 
the articulators. In this context, an important methodological 

limitation of current neuroimaging research is that, with rare 
exceptions (Ouyang et al., 2016; Chartier et al., 2018; Mugler et al., 
2018), researchers obtain little or no information about the actual 
movements of said articulators. This is a fundamental limitation in 
light of evidence that speech (and other movements) is encoded in the 
form of kinematic movement trajectories in neurons in primary 
motor cortical neurons (Chartier et al., 2018; Conant et al., 2018; 
Kolasinski et  al., 2020). Such essential information is technically 
difficult to obtain for crucially important articulators (such as the 
tongue) which are located out of the line of sight within the oral cavity. 
Unfortunately, specialised electromagnetic and ultrasound 
articulography techniques that are capable of non-line-of-sight speech 
tracking are technically incompatible with the scanner environments 
used for functional imaging with fMRI and MEG (Anastasopoulou 
et al., 2022).

In the following, we  describe our method for linking speech 
kinematics to brain activity using a novel MEG setup. This setup 
enables us to simultaneously and accurately measure speech 
movements and brain function. The system, termed 
Magnetoencephalography for Assessment of Speech Kinematics 
(MASK, Alves et al., 2016), can track the independent motion of up 
to 12 lightweight coils that are similar in size and shape to the tracking 
coils used in conventional electromagnetic articulography (EMA). In 
contrast to the passive induction coils used in EMA, MASK coils are 
actively energized by sinusoidal currents, and their associated 
magnetic fields are measured by the MEG sensors.

In a previous paper we  have described in detail movement 
parameters (amplitude, duration, velocity) and interarticulator phase 
relationships derived from direct MASK measurements of articulator 
movements (Anastasopoulou et al., 2022). We have demonstrated that 
MASK reliably characterizes key kinematic and movement 
coordination parameters of speech motor control, achieving a 
resolution comparable to standard electromagnetic articulography 
devices. In the present work, we proceed to describe our methodology 
for establishing a mapping between MASK-derived kinematic 
parameters and MEG-derived brain activities.

Methods

Participants

Ten healthy adults participated in this study (4F; mean age 32.5, 
range 19.7–61.8; all right-handed as assessed by the Edinburgh 
Handedness Inventory). All participants were fluent speakers of 
English; Nine were native English speakers, one participant’s first 
language was Mandarin. All procedures were approved by the 
Macquarie University Human Research Ethics Committee.

MEG scans

Speech tracking data and neuromagnetic brain activity were 
recorded concurrently with a KIT-Macquarie MEG160 (Model 
PQ1160R-N2, KIT, Kanazawa, Japan) whole-head MEG system 
consisting of 160 first-order axial gradiometers with a 50 mm baseline 
(Kado et al., 1999; Uehara et al., 2003). MEG data were acquired with 
analogue filter settings as 0.03 Hz high-pass, 1,000 Hz low-pass, 
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1,000 Hz sampling rate and 16-bit quantization precision in a 
magnetically shielded room (Fujihara Co. Ltd., Tokyo, Japan). 
Measurements were acquired with participants in a supine position 
(as the KIT MEG dewar configuration is fixed in the supine position). 
This positioning is in contrast to conventional standalone 
articulography setups which are used with participants in an upright 
seated position. We note that recent research findings have indicated 
that there is no significant distinction in tongue pressure between 
participants in a supine position and those in an upright position 
(Dietsch et al., 2013).

Structural scans

T1-weighted anatomical magnetic resonance images (MRIs) were 
acquired for all participants in a separate scanning session using a 3T 
Siemens Magnetom Verio scanner with a 12-channel head coil. Those 
anatomical images were obtained using 3D GR/IR scanning sequence 
with the following acquisition parameters: repetition time, 2,000 ms; 
echo time, 3.94 ms; flip angle, 9 degrees; slice thickness, 0.93 mm; field 
of view, 240 mm; image dimensions, 512 × 512 × 208.

Procedure

Five head position indicator coils (HPI) were attached on the head 
in an elastic cap, and their positions were measured at the beginning 
and at the end of the experiment, with a maximum displacement 
criterion of <5 mm in any direction. The coils’ positions with respect 
to the three anatomical landmarks (nasion, right and left preauricular 
landmarks) were measured using a handheld digitiser (Polhemus 
FastTrack; Colchester, VT).

MASK coils were placed at mid-sagittal positions on the vermilion 
border of the upper lip (UL) and lower lip (LL), the tongue body (TB; 
2 cm from the tongue tip) and the lower incisor (JAW) sensor which 
was attached to a thin thermoplastic mould (van Lieshout et al., 2007). 
Tongue sensors were attached with surgical glue (Epiglu, MajaK 
Medical Brisbane; Australia), while lip sensors were attached with 
surgical tape. Tracking coils were driven at frequencies higher than 
200 Hz, which allowing separate coil fields from brain activities that 
primarily occur at frequencies lower than 100 Hz. Line-of-sight is not 
required for MASK measurement, permitting tracking of all oral 
articulators, including the tongue. MASK evaluates coil positions 
every 33 ms for movement tracking at rates up to 50 cm/s (Alves et al., 
2016). Spatial accuracy depends on the distance of the tracking coils 
from the MEG sensor array. For coils that are close to the array (like 
those on the tongue), the accuracy is less than 1 mm relative position 
error, similar to the standard MEG head position indicator coils. 
However, for coils that are more distant from the helmet sensor array 
(like those on the lower lip), spatial accuracy decreases non-linearly 
to approximately 1–2 mm.

An experimental control computer with scripts programmed in 
Presentation® software (Version 23.0, Neurobehavioral Systems, Inc., 
www.neurobs.com) was used to control display of experimental 
instructions which were projected onto a display screen placed 100 cm 
above the head of participants.

One hundred sixty channel MEG data were simultaneously 
relayed to the MEG data acquisition computer and to a separate 

MASK processing computer which calculated coil positions from the 
MEG signals with an offline localisation algorithm, using a 
computational approach similar to those used in conventional MEG 
for localising fiducial coils with respect to MEG sensors (Wilson, 
2014), with modifications to optimise performance of the smaller 
MASK tracking coils (More, 1978; Alves et al., 2016).

Acoustic speech signals were recorded with a directional 
microphone placed on the wall of the magnetically-shielded room and 
were digitised in an auxiliary channel of the MEG electronics with the 
same sample rate (1,000 Hz) as the MEG recordings, and was relayed 
to both the MEG acquisition computers and the MASK processing 
computer. The MASK-processed speech tracking signals were 
subsequently combined with the MEG datasets stored on the 
acquisition computer. Due to differences in the internal clocks of the 
MEG and MASK computers, it was necessary to time-align the two 
datasets by applying the MATLAB alignsignal script to the acoustic 
channels of the MEG and MASK datasets.

An additional high sample rate speech recording was obtained 
with an optical microphone (Optoacoustics, Or-Yehuda, Israel) fixed 
on the MEG dewar at a distance of 20 cm away from the mouth of the 
speaker; and digitised on the experimental control computer using a 
Creative sound blaster X-Fi Titanium HD sound card (Creative, 
Singapore) with 48 kHz sample rate and 24-bit quantization precision. 
The 48 kHz acoustic recording was aligned and integrated with the 
MEG and MASK datasets as described above.

Experimental protocol

Participants performed four speech production tasks and one 
manual button press task (see Figure 1). Speech productions were 
non-word disyllabic sequences with a V1CV2 structure, /ipa/ and /
api/, and each was produced in a reiterated fashion at normal and 
faster rates. The tongue and lip gestures for /ipa/ and /api/ are reversed 
in phase, providing a robust behavioural contrast in terms of 
interarticulator coordination (van Lieshout et  al., 2007; 
Anastasopoulou et al., 2022). Variations in speech rate were used as a 
control variable to examine the intrinsic stability of the coordination 
(Kelso et al., 1986; van Lieshout et al., 1996). Asking participants to 
change their speaking rate (frequency of executed movements) is a 
typical characteristic of studies which investigate coordination 
dynamics (Kelso, 1995; van Lieshout et al., 1996). The same reiterated 
stimuli have been used in previous studies investigating speech motor 
control strategies in normal and in disordered populations (van 
Lieshout et  al., 1996, 2002, 2007; van Lieshout, 2017). Nonword 
stimuli with no linguistic information avoid familiarity issues (van 
Lieshout, 2017) and have been widely used in the literature to 
investigate normal and pathological function in speech motor control 
(Murray et al., 2015; Case and Grigos, 2020).

The experimental procedure for the speech task is illustrated in 
Figure  1A. Participants were presented with a fixation cross (1 s 
duration) on a display screen duration which they were instructed to 
take a deep breath. The fixation cross was replaced with a stimulus 
nonword for 12 s. Participants were required to continuously utter 
productions during the exhalation of the single breath intake until the 
stimulus nonword disappeared from the screen. For the normal rate, 
participants were instructed to produce utterances at a comfortable 
rate as they would do while conversing with a friend. For the faster 
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rate, they were instructed to produce utterances as fast as possible 
while maintaining accuracy (van Lieshout et al., 2002). Following van 
Lieshout et al. (2007), we refer to the reiterated productions generated 
within the span of a single exhalation as a “trial set.” A respite of 4 s, 
referred to as the “inter trial set interval” followed each trial set. At the 
end of the intertrial set interval, a fixation cross appeared for 1 second 
to cue the intake of breath for the next trial set. Participants generated 
about 10 individual productions in each normal rate trial set and 
about 12 individual productions in each faster rate trial set. 
Participants performed 10 trial sets of each utterance and each rate, 
for a total of 40 trial sets. A pre-experiment training session exposed 
participants to recorded productions of a female native Australian 
speaker. Participants repeated the modelled productions with 
feedback on incorrect speech productions, rate and head or eye 
movements. They were allowed to blink their eyes between the trial 
sets but were instructed to avoid these during trial sets.

Participants also performed manual button presses on a fibre optic 
response pad (Current Designs, Philadelphia) with the index finger of 
their dominant hand at a self-paced rate of about 1 per 2 s for 180 s (see 
Figure 1B) (Cheyne, 2008; Cheyne et al., 2014; Johnson and He, 2019; 
De Nil et al., 2021).

Analyses

Data analyses proceeded in four main phases:
(1) Analyses of MASK speech movement signals to characterise 

speech kinematic profiles.
(2) MEG source reconstruction to identify location of speech 

motor cortex.
(3) Extraction of MEG-time frequency spectrograms from source-

localised speech motor cortex, followed by and multivariate pattern 
analysis of speech-relevant brain rhythms.

(4) Mapping of speech kinematic profiles onto source- and 
frequency-constrained MEG data, via representational similarity 
analysis (RSA).

For the purposes of clarity, we  present details of each set of 
analytic methods along with their results, organised according to these 
four analytic phases.

Analysis of MASK-derived speech 
movement signals

Methods
The raw MASK position data were head motion corrected using 

MASK coils placed at fiducial landmarks (nose, left and right ear) and 
transformed from the MEG coordinate system into the occlusal plane 
frame of reference such that motion signals could be measured relative 
to a midsagittal plane defined by the x (posterior-anterior) and z 
(inferior-superior) axes relative to the bite plane origin. These 
transformed signals were then analysed using EGUANA software 
(Henriques and van Lieshout, 2013; van Lieshout, 2021) to derive 
signal amplitude and phase for selected articulators and speech 
gestures. Speech errors (e.g., substitutions, lengthy pauses) were 
identified from examination of the tracking and acoustic signals, and 
subsequent analyses were focused on accurate productions (Case and 
Grigos, 2020).

/ipa/ and /api/ productions involve specific movements of the lips 
and tongue. To create the voiceless stop /p/ sound, a bilabial closure 
(BC) gesture is used. The two tongue body constriction gestures (TB) 
are used to produce the sounds /i/ and /a/. The BC gesture was 
calculated using the two-dimensional (x − y) Euclidian distance of the 
upper and lower lip positions, while the tongue body gesture was 
derived from the two-dimensional (x − y) Euclidian distance of the 
tongue body and the nasal reference coil, as described in van Lieshout 
et  al. (2007). The kinematic and coordination parameters were 
computed using the methods described in van Lieshout et al. (2002, 
2007) and Anastasopoulou et al. (2022).

The opening and closing movements of each cycle were identified 
using the minimum and maximum vertical position of the gestural 
and articulatory signals (van Lieshout, 2017). The amplitude levels of 
the opening and closing movements at 10 and 90% were determined 
for each individual cycle. The individual gestural and articulatory 
signals which were measured by the MASK (see Anastasopoulou et al., 
2022) were analysed with custom MATLAB scripts to determine the 
times which were corresponding to the 10 and 90% amplitude levels 
of each opening and closing movement. Once the individual 
landmarks were determined, they were brought into time register with 
MEG data by aligning the acoustic signal recorded by the MASK 

FIGURE 1

Experimental procedures. (A) Speech task. Instructions were displayed for 30s, followed by an intertrial interval lasted for 15  s and 5  s fixation cross “+” 
and breath intake in preparation for the speech production trial set. During a trial set participants produced the indicated nonword in a reiterated 
fashion for 12  s. Ten consecutive trial sets were performed for each nonword stimulus. (B) Button press task. Instructions were displayed for about 30  s 
followed by a fixation cross, during which participants performed self-paced button pressed with the index finger of their dominant (right) hand at a 
rate of about 1 per 2  s for a total of about 90 trials.
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acquisition setup and the acoustic signal recorded in the MEG 
acquisition computer, as shown in Figure 2.

Results

MASK tracking signals
Supplementary Figure S1 displays acoustic recordings and 

tracking signals of the tongue body (TB) and bilabial closure (BC) 
from Participant 1 for a single trial of each of the four speech 
production tasks. The participant produced 14 utterances of /ipa/ and 
/api/ at a normal speaking rate and 18–19 utterances at a faster rate.

The contrast between the mirrored positions of the tongue and 
lips in /ipa/ and /api/ is clearly observed in the MASK measurements 
of tongue and lip gestures. Peaks and valleys in Figure 3 indicate the 
high and low positions achieved by the BC and TB gestures during the 
production of /api/ and /ipa/. Valleys occur during the bilabial 
constriction gesture and the tongue body gesture for /i/, while peaks 
occur for the tongue body gesture of /a/. (We note that these positions 
are Euclidean distances relative to the nasion. Within this reference 
frame “low a” is a peak, and “high /i/” is a valley). In /api/, the /p/ 
closure occurs during the upward motion of the TB, going from the 
low /a/ to the high /i/ position. On the other hand, in /ipa/, the /p/ 
closure occurs during the downward motion of the TB, going from the 
high /i/ to low /a/ position. The gestural movements of /ipa/ and /api/ 
are mirror images, with the relative timing of the motions of TB and 
BC gestures reversed.

Overall, the TB and BC tracking signals measured with MASK are 
entirely comparable in morphology and quality with those obtained 
from a conventional electromagnetic articulography setup (please see 

Anastasopoulou et al., 2022, for a direct comparison of MASK and 
EMA signals measured during the same utterances described here).

Derived kinematic profiles
The next stage in our analysis pipeline involves generating profiles 

that capture the relationships between key kinematic parameters of BC 
and TB gestures. Specifically, we examine the amplitudes, durations, 
velocities, and stiffnesses of gestural movements, as these parameters 
are known to covary in highly consistent ways and reflect “invariant” 
properties of speech kinematic movements. These invariant properties 
are crucial in understanding the motor control of human speech 
(Saltzman and Munhall, 1989; van Lieshout et al., 2007).

Supplementary Figure S2 illustrates the covariation of these 
kinematic parameters for /ipa/ and /api/ for two participants. Our 
analysis shows that movement peak velocity increases as a linear 
function of movement amplitude, indicating that larger movement 
distances are associated with higher peak speeds. Furthermore, 
we  observe comparable amplitude/velocity relationships for 
opening and closing movements, suggesting that these parameters 
are controlled similarly regardless of movement direction. This 
roughly linear relationship between amplitude and peak velocity is 
a well-established characteristic of speech kinematics, and has been 
described for a variety of articulators, gestures, and utterances 
(Ostry et  al., 1983, 1985). Regarding the stiffness vs. duration 
relationship, our results indicate that stiffness systematically 
decreases as a curvilinear function of durations less than 200 ms, 
after which the relationship plateaus into a relatively flat line (see 
also Munhall et  al., 1985). These findings are in line with the 
findings reported in Anastasopoulou et al. (2022) and consistent 
across the ten speakers.

FIGURE 2

Temporal alignment of MEG and MASK signals. Left panel. MASK articulatory signals are brought into register with the MEG brain data using the 
MATLAB alignsignals function on the MEG auxiliary channel acoustic channel and the high-fidelity acoustic recording (top and second rows). Right 
panel. Enlargement of rectangle-bounded area in A. 1 = onset of opening movement; 2 = offset of opening movement; 3 = onset of closing 
movement; 4 = offset of closing movement.
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MEG source reconstruction of speech 
motor cortex

Methods
Source reconstruction of brain activity was carried out using the 

synthetic aperture magnetometry (SAM) beamformer algorithms 
implemented in the BrainWave MATLAB toolbox (Jobst et al., 2018; 
cheynelab.utoronto.ca/brainwave). The raw KIT/Yokogawa data files 
were initially converted to CTF format and transformed to the CTF 
head coordinate system using the fiducial coil positions relative to the 
sensor array. Each participant’s structural MRI was then spatially 
coregistered with the MEG data and normalised into standard adult 
MNI template space using SPM12 (Wellcome Institute of 
Cognitive Neurology).

The onset of each speech trial set was marked using a semi-
automated peak finding function implemented in the BrainWave 
MATLAB toolbox which identified peak onsets in the rectified signal 
of the auxiliary MEG acoustic channel. In this analysis, we use an 
acoustic rather than speech movement index of speech trial onsets, 
because the aim of localising speech motor cortex is independent of the 
aims of our subsequent kinematic analysis, and because the acoustic 
onset provides ample accuracy for the SAM beamforming analysis.

Raw data were pre-filtered using a 100 Hz low pass bidirectional 
zero phase-shift Butterworth filter and epoched into 15 s segments, 
from 10 s prior to speech trial onset to 5 s after speech trial onset. 
Each 15 s segment encompassed three distinct task periods: the last 
5 s of the preceding trial set (−10 to −5 s); the inter-trial set rest 
period (−5 to 0 s); and the first 5 s of the current trial set (0 to +5 s), 

thereby providing maximal contrast between active (speech) and 
rest periods.

The current trial set and inter-trial rest period intervals were used 
for the SAM pseudo-T analysis window and baseline window, 
respectively. We used a sliding active window of 1 s duration starting 
from 0–1,000 ms (step size 200 ms, 10 steps), and a fixed baseline 
window of 2 s duration extending from −5 to −3 s relative to speech 
movement onset and a bandpass of 18–22 Hz (centre of the beta 
frequency range). While beamforming analyses typically employ equal 
baseline and active window durations, in the present analyses 
we wished to use a longer baseline epoch to reduce the chance of a 
biased estimate of baseline power, which we reasoned is more likely to 
vary over time than during the active speech period (since reiterated 
speech is akin to a steady state). While larger order mismatches (e.g., 
comparing 1.0 s to 0.1 s) are likely to be  problematic, simulation 
studies (Brookes et al., 2008) have shown that covariance errors are 
minimized, and therefore beamformer weights are stable, with at least 
5 s of total data (a requirement that is well exceeded in the present 
case) and our preliminary analyses confirmed that a 2 s baseline did 
not affect the beamforming results relative to a 1 s baseline. The 
combined active and control windows were used to compute the data 
covariance matrix for beamformer weight calculations, while the full 
15 s time window was used to compute data covariance for the virtual 
sensor source activity calculations.

SAM pseudo-T images were volumetrically reconstructed using a 
4 mm resolution grid covering the entire brain. Group statistical 
analysis employed a nonparametric permutation analysis where each 
permutation (total = 1,024) involved randomly flipping the polarity of 

FIGURE 3

Localisation of speech motor cortex. Left: anatomical landmarks. 1—hand regions of precentral gyrus (hand knob); 2—hand region of postcentral 
gyrus; 3—middle precentral gyrus; 4—middle frontal gyrus; 5—rolandic fissure; 6—precentral gyrus; 7—postcentral gyrus. Top right panel: SAM 
beamformer maps. Button press task elicited activation of hand region of pre (motor) and postcentral (somatosensory) gyri. Speech task shows 
maximal activation in middle precentral gyrus, immediately ventral to the hand motor region of the precentral gyrus. Speech activation cluster also 
encompasses the middle frontal gyrus immediately adjacent to the middle precentral speech region. Bottom right panel: time-frequency plots 
showing temporal evolution of oscillatory responses at virtual sensors placed at locations of cluster maxima shown above. For button press task, 
upward arrow indicates time of button press onset. For speech task, downward arrow shows speech trial set offset, upward arrow shows speech trial 
set onset.
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all voxels in the group volumetric image, computing the mean image, 
and placing the maximum value in the image in the permutation 
distribution (Nichols and Holmes, 2002; Chau et al., 2004; Lin et al., 
2006; Jobst et al., 2018). The value corresponding to the area under the 
permutation distribution for the Type I error level (alpha = 0.05) was 
used as an omnibus threshold for the entire image. The time-course 
of (group) source activity was then computed as the output of the 
beamformer with optimized orientation (“virtual sensor”) and plotted 
as time-frequency spectrograms (encompassing the entire 15 s data 
epoch) to assess the temporal correspondence of beta activity with 
active and rest periods. To maximise the number of trials (and 
consequently, the signal to noise ratio) in this analysis we use trial sets 
from all four speech tasks (for a total of 40 trial sets). To examine 
individual datasets, statistically significant locations were unwarped 
from the group template to the same anatomical locations in the 
individuals and virtual sensors were computed in the same manner as 
described above for the group analysis.

For the motor cortex hand region localiser analysis, trials were 
prefiltered with a bandpass of 0–100 Hz and epoched with respect to 
the button press onset into 1.5 s segments (−500 to +1,000 ms), 
encompassing the established time course of beta-band 
desynchronisation (several hundred ms prior to and after the button 
press) and “rebound” synchronisation (several hundred ms starting 
about 500 ms after the button press) (see Cheyne, 2013; Cheyne et al., 
2014; Johnson et al., 2020). Following the maximal contrast approach 
used for the speech analysis, the SAM pseudo-T analysis used a 
sliding active window of 200 ms duration starting from 600–800 ms, 
(step size 10 ms, 10 steps), a fixed baseline window from 0 to 200 ms, 
and bandpass of 18–22 Hz. The full 1.5 s epoch was used to compute 
the data covariance matrix for beamformer weight calculations. 
Volumetric reconstruction used the same grid employed for the 
speech analysis.

In all individuals SAM source reconstruction resulted in robust 
peaks centred on the hand knob of the left precentral gyrus (Yousry 
et  al., 1997), and a smaller mirror source centred on the right 
hemisphere homologue. The left hemisphere virtual sensor source 
activity was then computed and plotted as a time-frequency 
spectrogram (encompassing the entire 1.5 s data epoch) to assess the 
correspondence with the established time course of beta band activity 
associated with the manual button press task (Cheyne, 2013; Cheyne 
et al., 2014; Johnson et al., 2020).

Results
Group statistical analyses showed that a single significant SAM 

beamformer cluster (Figure 3) in the left hemisphere, encompassing the 
middle portion of the prefrontal gyrus (mPFG) and the immediately 
adjacent region of the middle frontal gyrus (MFG), both established areas 
of speech motor control (Silva et al., 2022). The anatomical localisation 
of the mPFG is well-supported by comparison with the SAM beamformer 
map for the button press task, which shows a cluster maximum in the 
hand knob of the immediately dorsal region of precentral gyrus. 
Physiological activities at the locations of the SAM beamformer cluster 
maxima are visualised in the “virtual sensor” time frequency plots below 
their respective brain maps. For the button press task the time-frequency 
plot shows the well-established pattern of beta-band (13–30 Hz) 
desynchronisation, starting several hundred ms before the button press, 
persisting for several hundred ms after, and followed by a “rebound” beta 
synchronisation at about 600–700 ms after the button press.

A comparable pattern of beta band activity is evident in the speech 
virtual sensor plot, keeping in mind the different time scales (1.5 s for 
button press, 15 s for speech) and movement requirements (a single 
punctate button press versus 10 s of steady state, reiterated speech) of 
the two tasks. Beta band desynchronisation begins several hundred ms 
before speech onset and persists for the duration of the speech 
movements. Note that in this plot the baseline of the colour scaling (the 
5 s inter trial set rest period) was chosen to emphasise event-related 
desynchronisation. Baselining to the speaking portions of the epoch 
will emphasise the event-related synchronisation during the rest period.

Taken together, the results of the localisation procedure provide a 
focussed and well-grounded target for subsequent analyses that can 
incorporate the kinematic and coordination parameters derived from 
MASK. The plausibility of the mPFG/MFG target is well-supported by 
the time-frequency characteristics of the virtual sensor and its 
anatomic location immediately ventral to the established landmark of 
the PFG hand knob, independently localised with data from the 
button press task: a task that has been long established to provide 
highly reliable beta-band activations located in the hand regions of the 
sensorimotor cortices (e.g., Cheyne et al., 2014).

Extraction and pattern analysis of 
source-localised MEG time-frequency 
spectrograms

Our aims in this analysis were twofold: (1) to perform a “time-
frequency classification” to determine if the trial-by-trial time-
frequency data derived from the speech motor cortex virtual sensor 
contains information that is able to discriminate between the neural 
activities associated with speech and non-speaking epochs, and, if so, 
to determine if the discriminative information is confined to a specific 
frequency range1 (Treder, 2020); and (2) to perform a “frequency 
generalisation/cross decoding” analysis to assess whether speech 
related neural responses may be contaminated with by non-neural 
artefacts associated with overt speech movements.

Methods
For each production task, continuously recorded MEG signals 

were pre-filtered with a bandpass of 0–100 Hz and 50 Hz notch filter 
and segmented into 4 s epochs (−2 s to +2 s) using the onset of the BC 
opening movement for each speech task as time zero. For each speech 
condition and participant from 75 to 250 BC opening movements 
were identified within the 10 trial sets (average 175).

We note that in this analysis only activity around the single BC 
movement at time zero is precisely time-locked and activations 
around other movements will necessarily be blurred due to intra- and 
inter-individual variations in speech rates. The present analyses 
therefore simply rely on the presence of task-related modulation of 
activity during the speech condition but not in the rest condition. This 
consideration also does not affect inferences from the frequency 

1 In the case of event-related experimental designs the time-frequency 

classification can also determine if discrimination is confined to specific times 

(Treder, 2020). The reiterated speech paradigm used here is akin to a system 

in steady state, so the analytic question at this stage simplifies to frequency 

discrimination alone.
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generalisation analysis since task-related neural modulations and 
artefacts due to overt movements are affected identically.

Data epochs were subsequently truncated to 3 s (−1.5 s to +1.5 s) 
to remove edge effects from the frequency analysis. Using the speech 
motor cortex coordinates derived from the speech localiser for a 
(single) virtual sensor, time-frequency spectrograms were generated 
for each individual trial and the resulting three-dimensional (time x 
frequency x trial) matrix was exported for classification analysis using 
the MVPA-Light MATLAB toolbox for classification and regression 
of multidimensional data (Treder, 2020).

Equivalent duration non-speaking “resting” condition epochs 
were derived by randomly selecting epoch-reference time-points from 
the inter-trial set periods of the MEG data. For each speaking 
condition and participant, an equal number of resting condition trials 
was epoched.

We performed a searchlight analysis using a binary linear 
discriminant analysis (LDA) classifier and a metric of “accuracy” 
(fraction of correctly predicted class labels, range = 0–1), with 
training parameters of five folds and five repetitions. Group level 
statistics were performed using nonparametric permutation testing 
and cluster corrections for multiple comparisons (Maris and 
Oostenveld, 2007). As implemented in the MVPA-Light toolbox 
(Treder, 2020), group statistics are calculated by testing obtained 
accuracy values against the null value of 0.5. To create a null 
distribution, data is permuted by randomly swapping the obtained 
value and its null value.

Results
Figure 4 shows source-localised time-frequency spectrograms for 

individual participant S1119. The speech-condition spectrograms 
show clear speech rate related modulation of circa 20 Hz beta-band 
activity in all speech conditions. A clear and distinct pattern of circa 
10 Hz mu band activity is also observable for both of the /api/ 
productions. Both the beta and mu-band rhythms are well-known and 
established rhythms of the central motor cortices (Pfurtscheller et al., 
2003; Cheyne, 2013; Cheyne et al., 2014).

Substantial movement-related broadband noise is also evident in 
the supra-beta frequencies for all speaking conditions and, in this case, 
is especially prominent in the /api/ faster rate condition.

In contrast to the speaking conditions, for the non-speech resting 
conditions mu and beta activities are manifest as relatively continuous 
(unmodulated) bands of activity throughout most of the epoch, and 
broadband movement-related noise patterns are absent from the 
resting spectrograms.

The MVPA classification results of Figure  4 shows that the 
classification appears for both the mu and beta band rhythms, with a 
well-defined frequency boundary between the two rhythms that is 
clear and prominent in the cases of the /ipa/ faster rate and /api/ 
normal rate date. We note that the classifier is also sensitive to speech-
movement related noise (present in the overt speech condition), 
particularly in the /api/ faster rate condition. Speech movement-
related noise is evident as high-frequency broad-band patterns 
extending to circa 50–60 Hz. The broadband noise in the classification 

FIGURE 4

Time-frequency characteristics of speech and resting conditions for an individual participant. All plots show 3  s of MEG data derived from the medial 
frontal gyrus voxel. Top row: time-frequency spectrograms during speech. Data are epoched relative to the onset of the bilabial closure opening 
movement. Speech rate modulated beta-band (circa 20  Hz) activity is evident in all plots, and mu-band activity is evident in several, especially the /api/ 
normal rate condition. Middle row: spectrograms derived from the inter-trial set rest periods. Relatively continuous beta-band ERS is evident in all 
plots, as well as mu-band ERS in the /api/ conditions. Bottom row: MVPA classification results for speech versus resting conditions. High classification 
accuracy is quite tightly constrained to circa 20  Hz beta band, and a well-defined mu-frequency band is evident in the /ipa/ faster rate and /api/ normal 
rate conditions.
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patterns is well separated in frequency from the beta/mu classifier 
signals and confined to frequencies above 50 Hz.

Level 2 group analysis of the speaking/resting classifier results 
are shown in Figure 5. The group results are entirely consistent 
with the individual results described above and provide clear 
statistical support for high classification accuracy for the mu and 
beta motor rhythms. The >50 Hz frequency region also shows high 
classification accuracy for broadband bursts associated with overt 
speech movements. The mu/beta frequencies are well separated by 
a region of low-classifier accuracy for circa 30–50 Hz frequencies, 
suggesting at least a lack of continuity between these frequency 
regions, and possibly that the underlying informational structures 
of the lower-frequency motor rhythms and the broadband artifact 
apparent at higher frequencies are functionally independent. 
We  consider this issue more formally in the frequency 
generalisation analyses below.

Frequency generalisation (cross-frequency 
decoding)

In addition to providing an estimate of decodability for the task 
contrasts described above, time/frequency series decoding can 
be applied to provide a picture of the continuity (or discontinuity) of 
decoding estimates over time or frequency. This provides an important 
inferential advantage for further interpretation of the timing or 
frequency specificity of experimental effects. This “cross-decoding 
approach” involves training the classifier on a given time or frequency 
and then testing classifier performance on different times or 
frequencies. The logic of this approach relies on the classifier’s ability 
to partition multidimensional space as a basis for discriminating 
between experimental conditions: hence, where a classifier trained on 
a given time or frequency can successfully discriminate experimental 
classes based on other time or frequency points, one can infer that the 
structure of the underlying multidimensional space is similar for those 
two points. Conversely, in the case where cross-point decoding is 

unsuccessful, one can infer that the underlying multidimensional 
patterns are sufficiently different that the distinction between class 
labels determined at one point are not meaningful for discrimination 
at the second point (Grootswagers et al., 2017; Treder, 2020).

In the present context cross-frequency decoding enables us to 
more precisely address questions about possible relations between the 
frequency bands identified by the basic speech/rest classificational 
analyses described in Figures 4, 5: (1) Do the beta/mu band signals 
rely on the same classification information as the high frequency 
signals, which are visibly contaminated with movement-related 
broadband signals? In this case redundancy would suggest the beta/
mu signals simply contain some level of speech movement noise that 
is the basis for class discrimination. On the other hand, a lack of cross 
frequency generalisation supports the conclusion that classification 
relies on independent structures of information. (2) In a similar 
fashion, it is of interest to assess the cross-frequency generalisation 
between the mu and beta bands, two motor rhythms that have been 
frequently observed to co-occur in electrophysiological studies and 
can be assumed to have some functional inter-relationship (Cheyne 
et al., 2014).

The frequency generalisation results of Figure 6 show no evidence 
for frequency generalisation between mu/beta, and the high frequency 
region which is visibly dominated by noise. To the contrary, frequency 
generalisation (observable as off-diagonal clustering) occurs within 
the sub-30 Hz mu/beta frequencies, and within the supra-60 Hz 
frequencies (particularly within the range of about 60–80 Hz); but the 
intermediate zone between mu/beta and high frequency noise (circa 
30–60 Hz) exhibits a fairly strictly diagonal trajectory (for example, see 
group means for /api/ normal and faster rates). Classification of 
speech and resting conditions can clearly rely on either broadband 
signals that are (visibly) associated with overt speech movements, or 
on mu/beta modulations which show no such association: both 
frequency regions are prominent in the classification plots of Figures 4, 
5. However, the cross-frequency coding results provide clear support 
for the conclusion that the high frequency and mu/beta bands are 
discontinuous and rely on distinct patterns of multidimensional 

FIGURE 5

Group analysis of classifier performance for speech versus resting conditions. All plots show 3  s of MEG data derived from the medial frontal gyrus 
voxel.
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structure within their data to achieve discrimination between speech 
and resting data conditions.

On the second question, the group results show clear frequency 
generalisation between beta frequencies at circa 15 Hz and also 
suggest a possibly weaker generalisation for beta training frequencies 
and mu test frequencies circa 8–12 Hz; see group statistical results for 
/ipa/ and /api/ faster rates. Although the mu/beta clusters do not 
achieve statistical significance for the slower speech rates, comparable 
clusters are evident in their group mean data. The individual results 
for S1119 are entirely comparable to the group mean data but show a 
much clearer distinction between the mu and beta bands (see 
especially plot for /api/ normal rate): These data show that mu 
training frequencies about 8–12 Hz generalise to beta band 
frequencies; and that beta training frequencies circa 20–30 Hz 
generalise to mu test frequencies. However, the plots also show a clear 
mu/beta discontinuity, with low classification accuracy for frequencies 
between roughly 13–20 Hz. This mu/beta discontinuity is not as 
evident in the group results, presumably due to individual differences 
in the precise frequency ranges of the mu rhythm (Pfurtscheller 
et al., 1997).

On a final note, we emphasise that we do not wish to imply from 
the foregoing that the supra-beta frequencies are simply “noise” 
frequencies. Gamma rhythms in the circa 60–80 Hz band are robust 
and functionally important features of motor-related MEG responses 
(e.g., Johnson et al., 2020; see also Cheyne, 2013; Cheyne and Ferrari, 
2013); and high gamma band (> circa 80 Hz) rhythms are key 
dependent measures of brain function in electrocorticographic studies 
(Crone et al., 2006) including studies of speech-related brain function 
(e.g., Chartier et al., 2018; Conant et al., 2018). However in the context 
of a reiterated speech task any potential gamma frequency neural 
activity is strongly and visibly obscured by broadband movement 
artifact in both the time and frequency domains. From the foregoing 

analyses we  conclude only that the mu/beta bands are suitable 
candidates for further interrogation of their functional properties, and 
that (within this experimental paradigm and MEG neuroimaging 
setup), the gamma band is not.

Decoding of speech kinematic parameters 
from source- and frequency-constrained 
MEG data

Methods
In the preceding analyses we  have used standard MVPA 

classification of speech versus resting conditions to demonstrate that 
the neural signals derived from speech motor cortex contain 
information that is capable of discriminating between speaking and 
resting conditions; and then employed cross-frequency classification 
to determine that the mu-beta motor rhythms contain the 
informational basis of speech-rest discrimination. Importantly, cross-
frequency generalisation also shows that the informational structure 
of the mu/beta rhythm is independent of the broadband artefacts that 
are an inevitable confound for electrophysiological recordings during 
overt speech.

In subsequent analyses we  attempt to derive a more detailed 
picture of the information structures contained within the neural data, 
by performing classification between data partitions within the speech 
condition, rather than between speech and rest conditions. 
Representational Similarity Analysis (RSA; Kriegeskorte, 2008; 
Kriegeskorte and Kievit, 2013) is an MVPA technique based on the 
simple logic that classes of neural data with more similar informational 
(representational) structures should be  more difficult to classify, 
relative to classes with more distinct representational structures. 
Previous studies have successfully applied RSA to tracking data of 

FIGURE 6

Frequency generalisation. In this analysis the classifier is trained on a given frequency and decoding performance is tested on a different frequency. 
This is repeated for all possible frequency pairs. The classifier results show that beta frequencies generalise to each other and to some extent to mu 
frequencies (bottom row, /ipa/ faster and /api/ faster). Importantly, beta/mu frequencies do not generalise to the higher frequency noise band, and 
conversely the noise band does not generalise to the beta/mu frequencies. Permutation-based significance tests used 500 permutations, Wilcoxin 
signed rank test (alpha < .05), controlled for multiple comparisons using FDR.
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hand movements (Kolasinski et  al., 2020), articulator movements 
during vowel production (Carey et  al., 2017), and acoustic 
measurements during speech production (Zhang et  al., 2020). 
We  follow this logic to test specific hypotheses about potential 
representational structures in speech motor cortex activity as follows 
(see Figure 7 for a summary of the computational steps):

 (1) Our starting hypotheses concerning candidate representational 
structures within speech motor cortex activity come from the 
well-behaved kinematic profiles derived from direct MASK 
measurements of speech articulator movements (Figure 4): 
both the strikingly linear relationship between amplitude and 
velocity, and the orderly curvilinear relationship between 
duration and stiffness have been proposed to reflect “control 
parameters” that are relatively tightly specified at some level 
within the speech motor system (Munhall et al., 1985; van 
Lieshout et al., 2007);

 (2) Within a given kinematic profile, we divide the behavioural 
data points into partitions (containing equal numbers of trials) 
that reflect different (Euclidean) distances between the 
coordinates within each partition. Here we  have used 10 
partitions which provides a good spread of inter-partition 
distances, each of which reflects a reasonable number of trials 
of MEG data (15–30 trials/partition).

 (3) Data points are averaged within each partition to provide a 
representation of the central tendency of each partition.

 (4) A “behavioural dissimilarity matrix” is generated based on the 
Euclidean distances between averaged data points in all 
possible pairs of partitions.

 (5) The MEG data (consisting of N trials by 3,000-time points × 
100 frequencies) is similarly divided into sets of individual 
trials that correspond to the behavioural data points within 
a partition.

 (6) Classification analysis is performed for all possible pairs of 
MEG trial partitions.

 (7) A “neural dissimilarity matrix” (for each time and frequency 
point) is generated based on the Euclidean distances between 
the classification accuracy scores.

 (8) An “RSA time-frequency plot” is generated containing the 
correlations between the behavioural dissimilarity matrix and 
the neural matrices for each time and frequency point.

Model evaluation is restricted in time to a 1 s epoch centred on the 
onset of the BC opening movement, as this event is the reference for 
the epoching of the MEG data. Model evaluation is further restricted 
to the frequencies of the mu and beta speech motor frequency bands 
of interest defined by the analyses described in the frequency 
localisation sections above; and for comparison purposes, a third high 
frequency region (60–80 Hz) dominated by speech movement noise 
and which we therefore do not expect to contain useable information 
concerning the representational structures of speech 
neuromotor activity.

Group data were statistically evaluated with cluster-based 
permutation analyses using 500 permutations, alpha <0.05, and 
controlled for multiple comparisons using FDR.

Results
The statistically significant results of model evaluation are shown 

in Figure 8. Of the two behavioural models, four speech conditions, 
and three frequency bands evaluated, only the /api/ normal rate 
condition shows showed statistically significant correlations, for beta 
band and for the stiffness-duration model. Three observations are 
relevant from these results: (1) the group mean correlations are overall 
very weak, with peaks restricted to a range of less than −0.2 to 0.2; (2) 
the temporal structure of the significant positive clusters is appropriate, 
beginning at a latency of about 100 ms prior to the onset of the BC 

FIGURE 7

Procedure for calculation of behavioural and neural correlations. (A) Velocity versus amplitude and stiffness versus duration profiles are partitioned into 
10 blocks containing equal numbers of trials. Distances between each partition based on the partition mean coordinates are used to generate the 
behavioural RDMs. For each partition, the same trials of MEG data are input to MVPA classification analysis. The resulting classification (accuracy) 
metric is used to generate a neural RDM, for each time-frequency point. (B) A time-frequency correlation matrix resulting from correlating the (in this 
case, stiffness-duration) behavioural RDM with the neural RDM for each time-frequency point. Group statistics/model evaluation are performed for the 
mean alpha, beta, and gamma frequency bands within the time range of -500 to +500 ms from onset of the BC opening movement.
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opening movement. This timing is in good accordance with what one 
would expect for neural activity associated with behavioural 
movements. (3) The post-movement cluster of correlations is 
oppositely (negatively) correlated to the premovement cluster.

Figure 8 also shows comparable (though non-significant after 
cluster-correction) results for /ipa/ normal rate for the velocity-
amplitude model. While we  do not wish to over-interpret a 
non-significant result, the circa −90 ms timing of the peak positive 
correlation cluster is entirely comparable to that observed for the /api/ 
normal rate stiffness-duration data described above.

Group mean behavioural-neural correlation time series are 
shown for all speech conditions, frequency bands, and behavioural 
models in Figure 9. As expected, in the gamma frequency band no 
significant results were obtained for any speech condition or 
behavioural model, and there is no discernible, consistent temporal 
structure in any of the plots. The mu band similarly shows no 
discernible or consistent temporal structure, and no significant 
results were obtained.

In summary, the present results provide support for very weak but 
statistically significant encoding of the stiffness-duration relationship 
only in the beta motor rhythm. This encoding is statistically robust in 
only one speaking condition and is very weak in terms of magnitude 
of correlation. However, it is well-structured in time and shows an 
appropriate and expected temporal relationship (about −90 ms) with 
respect to movement onset.

Discussion

Localization of speech motor cortex

The results of our speech localiser analyses show a single 
statistically significant cluster in the left hemisphere, located 
immediately inferior to the hand motor cortex (hand knob) as 
identified with the independent button press localiser task. The cluster 
coordinates are centred on the posterior region of the middle frontal 
gyrus (pMFG) and extend posteriorly to encompass the middle 
portion of the precentral gyrus (midPrCG). This middle zone of the 
precentral gyrus—inferior to the precentral hand representation and 
superior to the ventral representations of face, mouth and larynx in 
the classical Penfield motor homunculus - corresponds to a functional-
anatomical zone of the precentral gyrus that has been termed “dorsal 
laryngeal motor cortex” (dLMC; Bouchard et al., 2013; Eichert et al., 
2020), a second representation of the larynx in addition to the ventral 
laryngeal motor cortex (vLMC) representation of the classical motor 
homunculus. The dorsal laryngeal representation appears to be unique 
to human motor cortex; this dual mode of organisation been proposed 
to underpin the extensive human capacity for voluntary control of 
vocalisation relative to non-human primates and other mammalian 
species (Belyk et al., 2021).

The present results align with an emerging neuroscientific 
consensus which assigns novel and previously overlooked roles in 

FIGURE 8

RSA model evaluation. Black lines show group mean correlations between behavioural and neural RDMs; shading shows standard errors. Left panel: 
The beta-band profile for /api/ normal rate shows three significant correlational clusters against the stiffness-duration RDM. The first positive cluster 
begins about 90 ms prior to onset of the first opening movement of BC. A second positive cluster occurs beginning at time zero, and a third cluster of 
weak negative correlations begins about 180 ms post movement-onset. Right panel: Beta correlation against amplitude-velocity time profile shows a 
similar positive peak circa -90 ms, although the t-value clusters do not survive cluster correction for FDR rate.
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speech motor planning and execution to the midPrCG and the 
immediately adjacent portion of the pMFG (area 55b; Glasser et al., 
2016). Recent data from invasive neurosurgical and functional 
neuroimaging investigations have implicated the midPrCG in a variety 
of language and speech functions, ranging from direct laryngeal motor 
control to auditory-motor integration to higher level aspects of speech 
motor sequence planning that have previously been assigned to Broca’s 
area in models of speech processing (see reviews by Hickok et al., 2023, 
and Silva et al., 2022). Invasive neurostimulation of this area evokes 
involuntary vocalisations (Dichter et  al., 2018). The midPrCG is 
anatomically contiguous with and tightly functionally associated with 
the pMFG, an area that has recently been implicated in the production 
of fluent speech (Glasser et al., 2016; Silva et al., 2022). Focal surgical 
resection of the pMGF and midPrCG has been reported to result in a 
case of pure apraxia of speech (Chang et al., 2020), a speech motor 
planning disorder associated with problems in hitting articulatory 
targets (articulatory groping) and transitioning between syllables. In 
light of these findings two recent theoretical models of speech 
production have posited a critical role for these areas in coordinating 
complex phonological sequences into motor plans, either in and of 
themselves (Silva et al., 2022), or as a subsystem of a dual (dorsal and 
ventral) motor speech coordination system (Hickok et al., 2023). Our 
results are clearly supportive of these models, since fluent reiterated 
(nonword) speech relies heavily on the capacity to coordinate and 
maintain the ordering of phonological sequences.

Invasive neurosurgical studies of midPrCG/pMFG function have 
focussed on the left hemisphere but there is currently little evidence 
to bear on the question of whether speech motor coordination 
functions of these areas have a lateralised or bilateral organisation 
(Silva et al., 2022; Hickok et al., 2023). The present speech localiser 
results showing a single significant cluster in the left hemisphere are 
generally consistent with those of a recent MEG study by De Nil et al. 
(2021), who (using the same analysis toolbox as the present study) 
compared beta-band responses to simple (a sequence of four 
repetitions of individual syllables /pa/, /ta/ or /ka/) and complex 
sequences (pseudo random combinations of four syllables, e.g., /
patakapa/) of nonword vocal productions. These authors reported that 
beta-band event-related desynchronisation for both simple and 
complex verbal tasks was bilateral in premotor and motor cortical 
areas, but “statistically stronger” in the left hemisphere. We are aware 
of a single previous neuroimaging (fMRI) study using a continuously 
reiterated speech task that is overall comparable to ours. As in our 
study Riecker et  al. (2000) required participants to continuously 
produce nonword utterances during exhalation of a single breath 
intake. They used nonword items /ta/, /stra/ and /pataka/ that were 
consistent with German phonotactic rules but differed in articulatory/
complexity. Consistent with our results, these authors reported highly 
focal activations of sensorimotor cortex for all task items. These 
activations were bilateral for the single syllable tasks, while the 
multisyllabic /pataka/ task showed activity only in the left hemisphere. 
Taken together, our results and those of Reicher et al. (2000) suggest 
that left lateralised speech motor function is associated with task 
requirements for more complex articulatory transitions in 
multisyllabic relative to monosyllabic utterances. A separate study by 
our group (Anastasopoulou et al., 2023 preprint) has further shown 
that typically developing children exhibit bilateral responses to the 
same disyllabic utterances used in the present study, indicating a 

developmental trajectory that shifts control of complex phonological 
sequencing from bilateral processing in childhood to left hemispheric 
dominance in adults.

Decoding of speech-related brain activity

In recent years, a series of MEG studies have aimed to decode 
neural activity patterns associated with speech in the context of 
advancing the development of brain-computer interfaces (BCIs) 
(Dash et  al., 2019, 2020a,b, 2021). Using advanced artificial and 
convolutional neural network classifiers at the phrase level, Dash et al. 
(2020a,b) have reported excellent classification accuracies for a five-
class discrimination task (80–95%) for both imagined and overt 
speech, relative to comparable EEG studies achieving accuracies in the 
range of 35% (Cooney et al., 2019). A single previous MEG study 
(Dash et  al., 2020a,b) has also achieved accurate (average 80%) 
decoding of speech-associated jaw motion kinematics from 
concurrently acquired MEG signals, using a long short term memory 
(LSTM) model.

The present work makes three main contributions to this 
emerging body of MEG speech decoding literature. First, as discussed 
above, it provides a methodological and analytical approach for 
spatially constraining the overall decoding approach, effectively 
reducing the dimensionality of the problem from 160 MEG channels 
(or alternatively, thousands of source-reconstructed voxels) to a single 
virtual sensor. Further, there is now substantial evidence that the brain 
regions activated by our reiterated nonword speech task play a central 
role in in control and coordination of integrative speech movements, 
providing a highly plausible functional/anatomical candidate for more 
detailed interrogation of the kinematic representational structures that 
confer this control.

Second, the study incorporates a novel MASK technology which 
allows us, for the first time, to obtain detailed movement profiles of key 
articulators associated with the specific speech productions in our 
speech task in the same experimental setup as the MEG brain recordings 
and in temporal and spatial co-register with the brain data. Third, 
we describe an analytic pipeline using classification/decoding techniques 
that allow us to systematically query the nature the information 
contained in these kinematic representations, by testing specific 
hypotheses derived directly from overt movement behaviours. This 
analytic framework further permits strong inferences concerning the 
timing of relevant neural activations with respect to behavioural outputs.

Recent results from invasive ECoG studies of human 
neurosurgical patients provide compelling reasons to believe that 
concurrent neuroimaging speech tracking will be  important for 
future progress in understanding speech motor control. For 
example, Chartier et al. (2018) obtained direct cortical recordings 
of human speech sensorimotor cortex together with (inferred) 
articulatory kinematics derived from a recurrent neural network 
based articulatory inversion technique which learned a mapping 
from produced speech acoustic to a speaker generic articulator 
space. This study showed that articulator movements were reflected 
significantly better in measured neural activity than were either 
acoustic or phonemic features of speech; that encoding is more 
related to coordinated movements of multiple articulators than to 
movements of single articulators; and that the behaviours of 
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encoded movements were governed by damped oscillatory 
dynamics. These authors concluded that these coordinative and 
dynamical properties align neatly with the properties of articulatory 

units of speech (vocal tract gestures) as conceived within the 
theoretical framework of articulatory phonology and its associated 
task dynamics model (Saltzman, 1986; Browman and Goldstein, 

FIGURE 9

Group mean behavioural-neural correlations for all frequency bands, speech conditions, and behavioural models. Black lines show group mean 
correlations; shading shows standard errors.
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1992; Goldstein and Fowler, 2003). As such, it seems clear that 
concurrent speech movement tracking and non-invasive 
neuroimaging should provide richer datasets with mutually 
reinforcing inferential power and precision relative to experiments 
that currently are largely conducted with only one or the other 
measure of speech motor control.

These new technical capabilities have clear clinical relevance for 
advancing our understanding and treatment of developmental and 
acquired disorders of speech. Speech-sound difficulties are the most 
common problems encountered by paediatricians and present 
formidable social, educational and employment obstacles in cases 
where these problems cannot be readily treated and resolved (Morgan 
and Webster, 2018). Childhood apraxia of speech (CAS) is an 
intriguing example of a highly debilitating and persistent disorder of 
speech development whose origins are considered to lie within the 
brain mechanisms responsible for coordinating and sequencing 
speech movements, but whose study with conventional neuroimaging 
approaches has so far proved highly resistant to establishing any clear 
connection to any particular brain region. In such cases, the capability 
to directly map speech kinematic and coordination function in speech 
motor control centres within highly focal and specific brain regions 
promises to provide more powerful insights into the origins of speech 
problems in CAS (and conversely, into why speech development 
proceeds more smoothly in most other children). Similarly, acquired 
apraxias of speech are a common and debilitating outcome of strokes 
and other brain injuries. The greater functional specificity of 
MASK-MEG has a clear bearing on studies aimed at understanding 
the nature and degree of functional compromise and plastic 
capabilities in the brain of these patients.

Limitations

While our analytic framework dramatically and effectively 
reduces the dimensionality of the MEG analytic problem, there 
remains a large decision space concerning the selection of speech 
behaviours for input to the overall analyses. Here we have fairly 
arbitrarily focussed on a single articulator metric (the first 
opening movement of the bilabial closure gesture) and have tested 
2 simple models (derived from the observed kinematic profiles) 
of the neural informational structures that may underlie this 
movement. Our results nonetheless provide support for the 
conclusion that the stiffness-duration relationship of the first 
opening movement of the bilabial closure may be (very weakly) 
encoded in the beta-band sensorimotor rhythm, with a timing 
beginning approximately 90 ms before the onset of the movement. 
The reason for the occurrence of a second period of significant 
(but oppositely valanced) association with stiffness-duration at a 
latency of about 200 ms post movement is presently unclear: one 
possibility is that reflects a sensory reafference event that provides 
a check on the motor commands.

Overall, since we have obtained only a weak association between 
speech behaviour and neural activity (and in only one of four speech 
conditions), it is clear that future work should more systematically 
probe the sets of possible models of speech movement encoding, 
including models that describe relationships between articulators 

that are likely required for integrative speech behaviours e.g., the 
Linguistic Gestural Model (LGM) which is a combination of 
Articulatory Phonology and Task Dynamics (Saltzman and Munhall, 
1989; Browman and Goldstein, 1992; Browman and Goldstein, 1995), 
the speed-accuracy trade off known as Fitts’ law (Fitts, 1954; Neufeld 
and van Lieshout, 2014; Gafos and van Lieshout, 2021; Kuberski and 
Gafos, 2021).

Finally, the present decoding framework employs a simple binary 
discriminant classifier and a simple RSA correlational mapping 
approach, which we  have chosen for their ease of use and the 
straightforward inferential capabilities. At the present time artificial 
and convolutional neural network classifiers are undergoing rapid 
development with dramatic improvements in accuracy (see Dash 
et al., 2019, 2020a,b, 2021 for recent examples with application to 
MEG speech decoding) and we anticipate that these improvements 
will be able to accordingly extend the accuracy and scope of MASK-
based studies of speech motor control.

Conclusion

MASK-MEG addresses an important gap in current 
neuroscientific capabilities for studying expressive language function 
in the human brain. While we possess robust and well-established 
methods for measuring and characterising overt movements of the 
speech articulators, and highly sophisticated equipment and methods 
for defining the brain activities that control these movements, the two 
methodologies are not readily or easily combined within a single 
experimental setup. As a result, speech movement tracking and 
speech neuroimaging methods have largely evolved within separate 
laboratories—even separate disciplines—and there remains no easy 
way to co-register and reconcile the different types of information 
that are derived from them. The advent of neuroimaging-compatible 
speech tracking technologies such as MASK opens a new window for 
integrative studies of human speech motor control, combining 
precision measures of overt speech behaviours with temporally 
co-registered and spatially localised measures of brain function and 
new machine-learning based decoding approaches capable of 
interrogating the kinematic information structures represented in 
speech motor cortex.
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