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Balancing is a very important skill, supporting many daily life activities. Cognitive-

motor interference (CMI) dual-tasking paradigms have been established to

identify the cognitive load of complex natural motor tasks, such as running and

cycling. Here we used wireless, smartphone-recorded electroencephalography

(EEG) and motion sensors while participants were either standing on firm

ground or on a slackline, either performing an auditory oddball task (dual-

task condition) or no task simultaneously (single-task condition). We expected

a reduced amplitude and increased latency of the P3 event-related potential

(ERP) component to target sounds for the complex balancing compared to the

standing on ground condition, and a further decrease in the dual-task compared

to the single-task balancing condition. Further, we expected greater postural

sway during slacklining while performing the concurrent auditory attention

task. Twenty young, experienced slackliners performed an auditory oddball task,

silently counting rare target tones presented in a series of frequently occurring

standard tones. Results revealed similar P3 topographies and morphologies

during both movement conditions. Contrary to our predictions we observed

neither significantly reduced P3 amplitudes, nor significantly increased latencies

during slacklining. Unexpectedly, we found greater postural sway during

slacklining with no additional task compared to dual-tasking. Further, we found

a significant correlation between the participant’s skill level and P3 latency, but

not between skill level and P3 amplitude or postural sway. This pattern of results

indicates an interference effect for less skilled individuals, whereas individuals

with a high skill level may have shown a facilitation effect. Our study adds to

the growing field of research demonstrating that ERPs obtained in uncontrolled,

daily-life situations can provide meaningful results. We argue that the individual

CMI effects on the P3 ERP reflects how demanding the balancing task is for

untrained individuals, which draws on limited resources that are otherwise

available for auditory attention processing. In future work, the analysis of

concurrently recorded motion-sensor signals will help to identify the cognitive

demands of motor tasks executed in natural, uncontrolled environments.

KEYWORDS

mobile EEG, cognitive-motor interference, dual-tasking, complex balancing, auditory
attention

Frontiers in Human Neuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://doi.org/10.3389/fnhum.2024.1382959
http://crossmark.crossref.org/dialog/?doi=10.3389/fnhum.2024.1382959&domain=pdf&date_stamp=2024-05-16
https://doi.org/10.3389/fnhum.2024.1382959
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnhum.2024.1382959/full
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-18-1382959 May 13, 2024 Time: 15:32 # 2

Papin et al. 10.3389/fnhum.2024.1382959

Introduction

Balancing is an everyday life challenge. Human balance control
can be described as a feedback system, continually integrating
incoming sensory inputs associated with body instability, and
inducing corrective actions (Paoletti and Mahadevan, 2012).
Individuals may manage this challenge more or less successfully
depending on different factors like age, attention, health, fatigue,
and physical status. Failing balancing demands usually results in
a fall which may lead to severe injury. The risk of falling is even
exacerbated when two tasks are executed concurrently, particularly
in elderly individuals (Beauchet et al., 2009); whereas children
seem to tackle balancing demands better (Schaefer et al., 2008).
Distributing our attention between two or more different tasks is,
however, very common and important in everyday life (Huxhold
et al., 2006). As our population is currently aging, studying the
underlying central neural mechanisms of balance control becomes
more important (Wittenberg et al., 2017).

One exercise considered a complex balancing task is slacklining
(Seidel-Marzi et al., 2021) During slacklining, not only the body’s
neuromechanical dynamics but also the external dynamics of the
webbing and rope movement introduced by body swaying must
be integrated by the feedback system (Paoletti and Mahadevan,
2012). Previous studies found that slackline training enhances
postural stability and improves task-related balance performance,
(Keller et al., 2012; Pfusterschmied et al., 2013; Giboin et al., 2018)
indicating that the feedback system becomes better at integrating
sensory stimuli with training. Hence, this whole-body balancing
task is not only used as additional training in different sports but
also in clinical settings (Seidel-Marzi et al., 2021). Further, practice
in complex balancing tasks may prevent falls in older individuals
(Sherrington et al., 2011). Studying this sport, especially with the
simultaneous performance of an additional task, may consequently
contribute to a deeper understanding of the underlying central
neural mechanisms of balance control.

The simultaneous performance of two tasks described above is
termed dual-tasking (DT). DT can be described as “the concurrent
performance of two tasks that can be performed independently,
measured separately, and have distinct goals” (McIsaac et al., 2015).
During cognitive-motor dual-tasks, i.e., simultaneous execution of
a cognitive and a motor task, an effect dubbed cognitive-motor
interference (CMI) may occur (Al-Yahya et al., 2011). CMI terms
a reduction of performance in either one or both tasks, relative
to performance in each task individually (single-tasking: ST). It
has been argued that the effect is proof of the brain’s limited
processing capacity (Plummer et al., 2013). According to the
capacity sharing model, two tasks sharing neural circuits are both
processed when executed at the same time, processing however
slows down as the overall task demands exceed the limited capacity
(Tombu and Jolicoeur, 2003). Further, the allocation of attentional
resources to either one of the tasks plays an important role as the
capacity is exceeded (Kok, 2001). However, attentional resources
are not allocated randomly but one of the tasks may be prioritized.
According to the posture-first hypothesis, individuals prioritize the
motor task to ensure physical integrity during CMI (Liston et al.,
2014; Reiser et al., 2021).

A common neuropsychological method used to assess CMI
is electroencephalography (EEG). It has been argued that there

is a direct link between the event-related potential (ERP)
component P3 and the allocation of cognitive resources and
cognitive processing speed in DT paradigms (Kok, 2001). While
P3 amplitudes mirror processing capacity (Polich, 1986; Kok, 2001)
P3 latencies reflect cognitive processing speed (Yagi et al., 1999).
When comparing P3 amplitudes and latencies under DT and
ST conditions, amplitudes are often reduced while peak latencies
are delayed during DT (Rosenfeld et al., 1993). Hence, the P3
component marks CMI (Kok, 2001) and is therefore frequently
used to assess CMI.

The majority of neuroscientific studies in the field have
relied on classical laboratory settings, which helped to gain a
deeper understanding of the underlying mechanisms. Immobile
setups do, however, not allow to investigate DT under real-
world conditions. Studies using mobile EEG technology enable the
recording of electrical brain activity during natural movements
and have become popular over the past 10 years. A robust finding
in this field is a reduction of the auditory P3 amplitude during
walking as compared to a stationary condition (Debener et al.,
2012; De Vos et al., 2014a; Reiser et al., 2019, 2021; Scanlon
et al., 2021). Similar results were reported for cycling (Zink et al.,
2016; Scanlon et al., 2019) in scenarios where participants could
freely move around, but not when a stationary task was performed
(Gramann et al., 2010; Zink et al., 2016; Scanlon et al., 2017; Maidan
et al., 2019). Regarding latencies, Maidan et al. (2019) reported
increased P3 latencies during DT treadmill walking (Maidan et al.,
2019). A less frequently studied, but just as important parameter
during cognitive-motor DT is the movement itself (Bayot et al.,
2018). Studies measuring gait parameters reported that a decline
in cognitive performance is accompanied by reduced gait speed
or increased gait variability during DT compared to ST gait (Al-
Yahya et al., 2011; Patel et al., 2014; Koren et al., 2022). Studies
measuring postural sway on a balance pad provide evidence for
greater sway during DT compared to ST stance on an unstable
surface. These effects are stable across age groups (Ward et al.,
2022) but are influenced by cognitive task demands. The more
demanding the concurrent task, the greater the postural sway
(Pellecchia, 2003). Overall, the findings indicate that DT may
decrease auditory P3 amplitudes and prolong P3 latencies in
scenarios where participants can freely move. Furthermore, DT
can be expected to cause altered gait patterns and increased
postural sway.

The current project investigates whether complex balancing
and the ability to attentively listen to sounds influence each
other in young healthy adults. Participants were asked to perform
two tasks simultaneously, while EEG and motion signals were
recorded. As a primary task, participants were instructed to
stand on a slackline while silently counting targets of an
auditory oddball task as a secondary task. Here, participants
were instructed to prioritize the oddball. We implemented two
control conditions where participants either stood on firm ground
while performing the oddball task or stood on a slackline merely,
without an additional task. We hypothesize that, compared to
standing on firm ground (ST), (i) target-tone induced P3 latencies
increase and (ii) P3 amplitudes decrease in the DT condition.
Further, we hypothesize that (iii) postural sway increases during
DT compared to slacklining without a concurrent task. Since
primary task difficulty in the complex balance condition may
be lower for more experienced compared to less experienced
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slackliners, primary task difficulty should be correlated with
P3 effects (Polich, 1986). Skilled participants should show a
less severe reduction in the P3 amplitude and a weaker peak
latency delay during DT compared to less experienced slackliners.
It was hence explored whether the change of individual P3
parameters are correlated with skill and if these are mirrored by
postural sway.

Materials and methods

Participants

Twenty young healthy adults participated in the study [Meanage
(M) = 27.3 years, standard deviationage (SD) = 4.6 years, 6 female,
14 male]. To be included, participants needed to be able to
stand on a slackline for at least 2 min. Participants gave written
informed consent and received an honorarium of 10€/h. Due to
technical malfunctions during the EEG recording, the data of
two participants had to be excluded from further analysis. The
final sample consisted of N = 18 participants. The experimental
procedure was approved by the Ethics Committee of the Carl von
Ossietzky University of Oldenburg (Drs.Nr.EK/2021/108).

Materials

EEG data were recorded using a wireless amplifier (Smarting,
mBrainTrain, Belgrade, Serbia) mounted to the participants’ head
capturing 24-channel EEG data using passive wet electrodes
(Ag/AgCl sintered) embedded into a custom cap (Easy Cap
GmbH, Herrsching, GER). Ground and reference were placed
at positions FCz and AFz, respectively. Sampling rate was set
to 250 Hz. Easycap electrode gel (Abralyt HiCl) as well as light
rubbing with a cotton swab were used to lower impedances of
all electrodes until a good conductivity (<10 k�) was achieved.
EEG data were streamed onto a smartphone (Hardware: Sony
XPERIA Z1 C6903, Software: AndroidTM version 5.1.1.) via
Bluetooth where it was acquired using the Smarting application
(mBrainTrain, version: 4.6) (see Figure 1). Participants placed
the smartphone in a pocket near their waist. The Presentation R©

app (version: 23.0, build 10.27.21 computer, version: 2.1.8.
smartphone; Neurobehavioral Systems, Inc., Berkeley, CA, USA)
was used to control the experiment. Additionally, gyroscope
(Gyro) data were recorded from the amplifier, and accelerometer
(Acc) data were recorded from the smartphone. Acceleration
[m/s2] was sampled with a rate of 250 Hz. The gyroscope
measuring angular velocity [◦/s] had a sampling rate of 50 Hz.
Acceleration, and angular velocity were used as measures of
postural sway.

Procedure

All data were recorded outdoors, mainly at a city park near
the city center of Bremen, Germany. First participants performed
a 2-min standing baseline followed by an auditory oddball
task. It was played binaurally through in-ear headphones (Sony

FIGURE 1

Electroencephalography data were acquired using a 24-channel
cap connected to a wireless amplifier. The data were streamed onto
a phone via Bluetooth where it was recorded. Stimuli were
presented from the phone via earphones. Participants put the
phone in a pocket near their waist during the recording.

MDR-EX150AP). Volume was individually adjusted according to
the participants’ needs, thus the current background noise and
their hearing abilities. Overall background noise level was not
controlled; however, it was made sure that there were no dominant
sound sources nearby. Therefore, the stimulus presentation was not
set to a well-defined dB HL range but kept constant throughout
the experiment. The participants’ task was to silently count rare
target tones presented in a series of frequently occurring standard
tones whilst either standing on firm ground or a slackline. The
target occurred with a probability of 15%, while 85% of the
tones played in the task were non-targets. The two pure tones of
the frequency 800 Hz (non-target) and 1,000 Hz (target) had a
length of 60 ms. Pre-tone intervals randomly varied between 750
and 1,250 ms with a 125 ms uniform distribution. In addition,
participants stood on the slackline without a simultaneous task.
The three resulting conditions were split into runs of 2-min length
resulting in 18 runs per person, with the order counterbalanced
across subjects (see Figure 2). Breaks between runs were self-
timed. Participants were given 15 s to get on the slackline before
the oddball task started. Per run, between 12 and 18 (15 ± 1.6)
target tones were presented. This relatively easy oddball task was
chosen to ensure that ERP signal quality could be easily verified
even in uncontrolled, mobile conditions. Further specifications
of slackline details are provided in Supplementary material.
Participants were instructed to immediately step back onto the
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FIGURE 2

(A) Recording setup. At Weserdeich, Bremen, Germany. The
participant performs the auditory oddball whist balancing on the
slackline (green line, 30 cm above the ground). (B) Experimental
procedure.

line if they fell off. They were asked to keep both their arms up
whilst standing on the slackline and to fix their gaze to a point
at eye level. Participants with corrected vision were instructed
to wear glasses.

Questionnaire data

Participants reported how many deviant tones they counted
in a particular run immediately after completing the respective
run. This information was noted by the experimenter (see
Supplementary Table 4). Participants also filled out a questionnaire
asking for demographic data (Fragebogen zur Ausgangslage: FAL)
prior to EEG data acquisition. Additionally, a short version of
the NASA-TLX (National Aeronautics and Space Administration –
Task Load Index) was filled out after the recording. This
second questionnaire assessed subjective task difficulty by asking
to indicate perceived cognitive and physical demands. The
questionnaire was used to assess whether slacklining influenced
the experienced mental load. To objectively assess the participants’
skill level, they were categorized according to the following criteria.
Firstly, the longest longline (min. 30 m long) they ever send (walk
line without falling) (Balas et al., 2023) and crossed (walk line
with falling) (Singh et al., 2020) in meters. Secondly, the longest
highline (min. 35 m above ground) the respective participant ever
send and crossed. A highline is usually harder to cross than a
longline, since the dynamics of the line as well as other factors
(e.g., fear) play an important role. Thirdly, the participant’s current
training length in meters (see Supplementary Table 5). In order to
evaluate secondary task performance, we calculated how accurately
participants counted target tones.

Data analysis

After acquisition the data were analyzed offline, using
MATLAB (© 1984-2020 The MathWorks, Inc., Natick, MA, USA,
Version R2020b 9.9.0, RRID:SCR_001622), and the MATLAB
toolbox EEGLAB (version 2021.0, RRID:SCR_007292) (Delorme
and Makeig, 2004). BIDS (RRID:SCR:016124) (Gorgolewski et al.,
2016) extended for EEG data (Pernet et al., 2019) was used to
organize the data recorded in the current study. After raw data
import the channel location coordinates were added. First a 1 Hz
zero-phase, non-causal high-pass filter [finite impulse response
(FIR) filter, high-pass filter, transition bandwidth: 1 Hz, passband
edge: 1 Hz, cut-off frequency: 0.5 Hz, order: 827) followed by a
30 Hz zero-phase, non-causal low-pass filter (FIR filter, low-pass
filter, transition bandwidth: 7.5 Hz, passband edge: 30 Hz, cut-off
frequency: 33.75 Hz, order: 111) were applied to the data. Then,
flatline channels and channels with samples exceeding a threshold
of 100 µV or the SD of all channels by 2 SDs were excluded
from further analyses. As a result, between 0 and 3 channels
(M = 1.2 channels) were removed per participant. Subsequently,
the datasets were converted into consecutive epochs. Epochs
containing atypical artifacts were removed first if they had a joint
probability value exceeding 2 SDs (jointprob) and second if they
had a kurtosis value larger than 2 SDs (rejkurt). The resulting data
were decomposed using independent component analysis (ICA,
pop_runica, max. 512 steps, extended InfoMax algorithm). ICA
weights were applied to the unfiltered, continuous dataset. ICLabel
(Pion-Tonachini et al., 2019) was used to identify components
representing artifacts. They were removed if their probability of
being artifact (Muscle, Eye, Heart, Line Noise, Channel Noise, and
Other) related was over 80%. Then a 0.3 Hz zero-phase, non-
causal high-pass (FIR filter, high-pass filter, transition bandwidth:
0.3 Hz, passband edge: 0.3 Hz, cut-off frequency: 0.15 Hz, order:
2,751) followed by a 30 Hz zero-phase, non-causal low-pass filter
(FIR filter, point low-pass filter, transition bandwidth: 7.5 Hz,
passband edge: 30 Hz, cut-off frequency: 33.75 Hz, order: 111)
were applied to the data. Epochs ranging from −200 to 800 ms
around tone onset were extracted and baseline corrected (−200
to 0 ms). Epochs with atypical artifacts not accounted for by
ICA were rejected if their joint probability was exceeded by 3
SDs or if joint kurtosis was exceeded by 3 SDs. This process
allowed to retain between 58.9% and 92.5% of trials per participant
(M = 76.2% ± 9.6%). Data were re-referenced to the average of
electrodes Tp9 and Tp10. ERPs were calculated from extracted
epochs around stimulus onset. This was done for each movement
type (standing/slacklining) and stimulus type (deviant/standard).
ERP peak latencies and amplitudes at electrode Pz were determined
for each participant and condition by finding the maximum
deviation from zero between 200 and 600 ms. Latency was defined
as the exact time at which this maximum occurred. To determine
the P3 amplitude, a general time window for all participants and
conditions was chosen (grand average P3 maximum ±100 ms),
respective values were calculated by averaging across this time
window. To evaluate ERP noise and data integrity for stationary
and mobile recording conditions, we calculated the root mean
square (RMS) of each target pre-stimulus baseline (−200 to
0 ms) epoch. We then averaged across all epochs for each
movement type and participant, directly following the assumptions

Frontiers in Human Neuroscience 04 frontiersin.org

https://doi.org/10.3389/fnhum.2024.1382959
https://scicrunch.org/resolver/RRID:SCR_001622
https://scicrunch.org/resolver/RRID:SCR_007292
https://scicrunch.org/resolver/RRID:SCR:016124
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-18-1382959 May 13, 2024 Time: 15:32 # 5

Papin et al. 10.3389/fnhum.2024.1382959

of the additive ERP model. This resulted in a measure of EEG
noise that could be statistically compared between conditions
(De Vos et al., 2014a).

We extracted 2-s segments of Gyro and Acc data simply starting
at the beginning of each trial (i.e., 2-min segments the conditions
were split into during the experiment). We then calculated SDs
across these 2-s segments to assess motion extent (postural sway).
This was done for each participant and condition (ST and DT
slacklining) individually.

Statistical analyses

The software RStudio Version 1.4.1106 (© 2009-2021 RStudio,
PCB, RRID:SCR_000432) was used to assess the data statistically.
Applied packages were psych, stats, psycho, dplyr, devtools, lsr,
DescTools, ggplot2, and ggpubr.

The level of significance for all of the following tests was set
to α = 0.05. We first assessed whether RMS, amplitudes, latencies,
and accuracies were normally distributed using a Shapiro–Wilk
test. Furthermore, the similarity of variances was evaluated by
performing an F-test of variance on amplitudes and latencies
individually. A 2 × 2 repeated measures ANOVA was used to
evaluate differences in the amplitudes in different movement
type (standing/slacklining) and stimulus type (standard/deviant).
Additionally, a one-tailed paired samples T-test was calculated
on P3 latencies. To correct for multiple comparison of the
P3 effects (amplitude and latency) alpha was corrected using a
Bonferroni correction (Bonferroni, 1936), resulting in α = 0.025.
Finally, Spearman’s rank correlation (Best and Roberts, 1975)
was computed to estimate whether the individual change in P3
amplitude and peak latency between standing and slacklining was
correlated with participants’ skill level. As RMS and accuracies
were not normally distributed, Wilcoxon signed rank tests were
calculated to assess whether they differed between types of
movement (Wilcoxon, 1945). Effect sizes (Cohen’s d/eta squared)
were calculated if tests resulted in p < 0.05.

To investigate whether motion magnitude during ST and DT
slacklining varied, we calculated the SD across the three dimensions
x, y, and z for each motion sensor (Acc and Gyro) and averaged
these values for consecutive 2 s segments. To obtain a null
distribution for the motion data we randomly shuffled the data in
time repeatedly (10,000 iterations) and compared the mean SD with
the distribution of the permuted data. This process was performed
for each participant and each sensor. A binomial test compared
the proportion of significant effects of the single participants
for both sensor types against the theoretical chance level (50%)
proportion. Finally, Spearman’s rank correlation was computed to
estimate whether the single subject mean SDs were correlated with
participants’ skill levels.

Results

Single-trial noise

Distributions of single-trial RMS values were plotted
for each participant and movement type individually (see

Supplementary Figure 3) Wilcoxon signed rank test revealed
a significant difference in RMS between conditions (V = 32,
p = 0.021, d = 0.574), with larger RMS during slacklining
(slacklining: min. = 0 µV, max. = 8.77 × 10−5 µV; standing:
min. = 0 µV, max = 5.00 × 10−5 µ V).

ERP morphology and topography

Target ERP morphologies appeared to be similar between all
conditions, that is, target stimuli evoked a P3 ERP component at
electrode Pz, standard stimuli on the other hand did not elicit a P3
(see Figure 3). An auditory evoked potential (N1) was visible in
all four conditions. Descriptively, the standard error of the mean
(SEM) did not differ between movement types. Topographies were
similar in both movement types (standing and slacklining). They
showed posterior-central P3 maxima.

P3 amplitudes and latencies

A 2 × 2 repeated measures ANOVA with the factors Movement
Type (standing/slacklining) and Stimulus Type (standard/deviant)
was used to evaluate differences in the average amplitudes recorded
between 268 and 468 ms after tone onset. The main effect of
Stimulus Type was significant [F(1,68) = 91.116, p < 0.001,
η2 = 0.573], with larger amplitudes following deviant tones
[T(35) = 9.769, p < 0.001, d = 1.628]. The main effect of Movement
Type was not significant [F(1,68) = 0.616, p = 0.435]. Furthermore,
there was no significant interaction effect between Stimulus
Type and Movement Type [F(1,68) = 1.612, p = 0.209]. The

FIGURE 3

Grand average ERP of all 18 subjects at channel Pz for two
movement types; (A) standing and (B) slacklining. Grand average
ERP while standing time-locked to the deviant tone (red) and
standard tone (gray) is shown in panel (A). Panel (B) depicts similar
oddball conditions, these ERPs were recorded whilst participants
stood on the slackline (deviant, blue; standard, gray). The
topographies represent an average of the amplitudes of all channels
measured between 268 and 468 ms either during standing (A) or
slacklining (B), the respective time interval is marked (gray box) in
the graphs. P3 amplitudes are visible in both panels (A,B). The
colored areas surrounding ERPs represent the SEM across
participants respectively.
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non-significant effect, however, went into the expected direction,
single-subject ERP evaluation shows higher P3 amplitudes in
11 out of 18 participants during standing (see Figure 4B).
Amplitudes recorded whilst participants stood on firm ground
were about 0.92 µV larger on average. A one-tailed paired T-test
was performed to test whether the P3 latency was delayed whilst
balancing on a slackline compared to standing on firm ground. The
test found no significant delay of P3 peak latencies [T(17) = −1.362,
p = 0.095]. Figure 4A depicts that the differences in latencies
went into the expected direction. The majority (11 out of 18
participants) had a shorter peak latency during the less demanding
movement type. The mean difference across all participants was
16 ms shorter whilst they stood on firm ground compared
to slacklining.

To further explore time on task effects we split the runs into first
and second-minute segments and analyzed P3 target amplitudes
at channel Pz using a 2 × 2 repeated measures ANOVA with
the factors movement type (standing/slacklining) and time-on-task
(first minute on task/second minute on task). There was no
significant effect of time-on-task [F(1,68) = 31.477, p = 0.059].
Further, there was neither a significant effect of movement type
[F(1,68) = 16.091, p = 0.174], nor a significant interaction between
time-on-task and movement type [F(1,68) = 0.079, p = 0.924].

Correlations between
neurophysiological measures and skill

We further tested whether participants’ skill level was
correlated with individual P3 amplitude and latency effects.
A Spearman’s correlation test found no significant correlation
between skill and individual P3 amplitude effects (rho = −0.371,
p = 0.130, see Figure 5B). Skill and P3 latency effects were
significantly correlated (rho = −0.513, p = 0.029, see Figure 5A).
The P3 latency was longer during slacklining than standing in less

skilled participants. Participants with a higher skill level on the
other hand showed a smaller difference or an even shorter latency
in the slackline condition compared to standing.

Movement data

Two-sided permutation tests indicated that SDs of movement
data recorded during ST- and DT-slacklining did significantly
differ in 14 (acceleration) and 13 (angular velocity) participants,
respectively (see Supplementary Tables 1–3). The proportion of
significant findings in the permutation tests was significantly above
chance level for both sensor types (Acc data: 14 of 18, p = 0.015;
Gyro data: 13 of 18, p = 0.048). Post-hoc one-sided permutation
tests revealed that SD was greater in the ST slacklining – compared
to the DT condition. Binomial tests confirmed that the proportion
of significant findings was significantly above chance level for
accelerometer data (14 of 18, p = 0.015) but not for gyroscope data
(11 of 18, p = 0.240). Further, the pattern of results we found did
not correlate with participants’ skill level, which was the case for
both sensor types (Acc: rho = 0.165, p = 0.513, see Figure 6A; Gyro:
rho = 0.120, p = 0.635, see Figure 6B).

Questionnaire results

The NASA-TLX data of four participants were missing due to
human error. They were hence excluded from statistical analyses.
Participants who answered the questionnaire rated the mental
demand (8.0 ± 4.8), physical demand (9.3 ± 4.5), and effort
(9.9 ± 4.7) as medium. Temporal demand (4.7 ± 3.9), and
frustration (5.2 ± 4.8) were rated as medium to low. Performance
(3.9 ± 4.3) was rated as good. All categories, however, showed
a large standard deviation across participants. A non-parametric
one-sided Wilcoxon signed rank test was performed to assess

FIGURE 4

(A) Distribution of P3 latencies (between 268 and 468 ms) across sample. Solid lines within the boxes depict the mean. Dots beyond the whiskers
represent outliers. Gray lines show individual changes in latencies. (B) Distribution of amplitudes (average across 268–468 ms) across the sample
(n = 18). The edges of the boxes mark 25th and 75th percentiles. Solid lines within the boxes depict the mean. Dots beyond the whiskers represent
outliers. Gray lines show individual changes in amplitudes. Non-significant differences are marked with ns, and significant differences with p < 0.001
are marked using∗∗∗.
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FIGURE 5

(A) Correlation between individual P3 latency effects and participants skill level. (B) Correlation between individual P3 amplitude effects and skill. All
participants are represented in the graphs, certain dots, however, overlap. Light gray dots represent outliers.

FIGURE 6

(A) Correlation between individual standard deviation of acceleration and participants skill level. (B) Correlation between individual standard
deviation of angular velocity and skill. Light gray dots represent outliers.

whether participants counted target tones more accurately whilst
standing on firm ground. Accuracies did not differ significantly
between movement types (V = 74, p = 0.632). The percentage of
correctly counted target tones in both movement types was very
high (slacklining: 97.2% ± 3.9%, standing: 97.5% ± 3.5%).

Discussion

We here demonstrated that good-quality ERPs can be obtained
from EEG recordings taken during a complex balancing task,
in a natural outdoor environment. ERPs morphologies and
topographies were similar in stationary and balancing conditions.
Consistent with previous studies (Ladouce et al., 2017; Scanlon
et al., 2017, 2019; Reiser et al., 2019) topographic analysis confirmed

that the P3 was most prominent at posterior scalp site, suggesting a
P3b potential (Conroy and Polich, 2007).

P3 effects

As expected, a significant main effect of stimulus type on
amplitude was found in the P3 time-window of interest, showing
that the experimental manipulation was effective. These results
echo numerous previous studies, showing the neural response
to deviant sounds (Polich, 2007; Debener et al., 2012; Scanlon
et al., 2022). Interestingly, contrary to our hypothesis, the type
of movement had no significant effect on target elicited P3
amplitudes. Previous studies have found medium to large effects
on P3 amplitudes while free walking (Debener et al., 2012;
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De Vos et al., 2014a,b; Reiser et al., 2019, 2021; Scanlon et al., 2022),
and cycling (Scanlon et al., 2019), while no significant effect of
stationary exercise on P3 has been found in others (Zink et al.,
2016; Scanlon et al., 2017). Ladouce et al. (2019) described larger
P3 amplitudes during treadmill compared to hallway walking
(stationary vs. freely moving), and static vs. dynamic view, they
conclude that free movement is more demanding due to increased
visual and inertial demands (Ladouce et al., 2019). A possible
explanation for the absence of a significant effect observed in the
current study could hence be the stationary scenario with a lack
of visual flow. Additionally, the run length of 2 min was rather
short. While previous studies have used substantially longer silent
counting oddball run durations (e.g., Debener et al., 2012, 2015),
balancing on a slackline much longer than 2 min would have been a
real challenge even for the experienced slackliners that participated
in this study. As a result, the shorter run length has probably
led to a rather low cognitive load of the oddball task demands.
Taken together this may have resulted in a lower task difficulty
than in other studies. The absence of P3 amplitude effects on group
average marks similar cognitive demands during the slackline and
the standing condition. Here, we did not observe a shift of shared
cognitive resources toward the complex balancing task (Polich,
1986; Kok, 2001). In hindsight, sitting might have been a more
suitable control condition.

We hypothesized that P3 latencies would increase during
slacklining compared to standing. Yet, P3 latencies were not
modulated by movement type. A previous study reported similar
latencies in both sitting and stationary cycling (Zink et al., 2016).
Another study found longer P3 latencies during walking compared
to standing (Maidan et al., 2019). The components’ peak latency is
thought to be delayed as primary task difficulty increases (Polich,
2007). Therefore, the difference in primary task difficulty between
standing and slacklining could have been too small to yield
detectable effects on the cognitive processing speed reflected by the
P3 latencies in trained slackliners (Yagi et al., 1999).

Although single-trial noise significantly differed between
conditions, ERP amplitudes measured following standard tones
did not differ between movement types. Specifically, the N1
morphology was similar in both movement types. It is therefore
rather unlikely that noise level differences are responsible for the
P3 amplitude reduction. Scanlon et al. (2019) reported a higher
level of noise whilst cycling compared to sitting, and walking can
induce movement artifacts in mobile EEG recordings (Jacobsen
et al., 2021). While Scanlon et al. (2019) did not report on the effect
size, they concluded that CMI, rather than the difference in noise
was responsible for the effect of task on the P3.

Regarding individual differences, for P3 latency but not
amplitude we found an interference effect for less skilled
individuals, whereas individuals with a high skill level may
have even shown a facilitation effect. This result indicates that
participants with a high skill level most likely experienced a small
if any, difference in primary task difficulty between the movement
types. These results mirror the findings of different studies that
demonstrated that experts usually outperform novices when asked
to maintain their performance in dual-tasking scenarios (Schaefer,
2014). Other researchers reported on cognitive-motor facilitation
during moderate stationary exercise, such as treadmill walking
(Penati et al., 2020; Patelaki et al., 2023). The same individuals
showed CMI effects during more demanding tasks like overground

walking (Penati et al., 2020). These studies argue that prefrontal
resources accompanied by increased arousal levels and improved
task performance may be more adequately activated by moderate
exercise (Patelaki et al., 2023). Such activations may lead to
facilitation effects. We assume that the definition of moderate
exercise is highly individual depending on many factors such
as training hours and effort one puts into a specific task. It is
hence likely that skilled individuals experienced the task effort as
moderate while less skilled individuals experienced a high motor
task load. We argue that these differences are reflected by either
interference or facilitation effects indicated by individual P3 effects.
Hence, not only factors like primary task load, age, anatomical
differences (Conroy and Polich, 2007; Yerlikaya et al., 2022), or
disease (Polich, 2007) play a role. We conclude that individual
motor skill differences influence how strong individual P3 dual-
tasking effects are.

Movement differences

Movement patterns, that is postural sway, differed significantly
between conditions. Yet, neither the change in acceleration nor
the change in angular velocity correlated with participants’ skill
levels. Contrary to our hypothesis we found more acceleration in
the single-tasking condition while angular velocity did not differ
significantly between conditions. Higher acceleration values may
indicate a less stable stance on the slackline. This interpretation
is in line with a previous study by Huxhold et al. (2006).
Here, postural control performance increased when participants
performed easy cognitive tasks while standing on a force platform
compared to standing on the platform without an additional task.
This effect was reversed when cognitive tasks were more difficult
(Huxhold et al., 2006). The platform they used was stable and
therefore may not represent a complex balancing task very well.
Nevertheless, an explanation for the deviation of our results from
other literature (Pellecchia, 2003; Ward et al., 2022) could be the
cognitive task used since an oddball task does not pose strong
cognitive task demands.

Beilock et al. (2002, 2004) found that expert golfers and
soccer players perform better under DT conditions than when
purely focusing on the skill, thus ST, this pattern was reversed
in novices. As with golf and soccer, active attention allocation
toward slacklining may have had a negative impact on performance
in the ST condition, as none of our participants were beginners.
Another possible explanation for these unexpected results could
be the Hawthorne effect. According to the effect, participants
change their natural behavior because they know they are under
observation while participating in a study (McCarney et al., 2007).
The effect has previously been reported to alter gait characteristics
during treadmill walking (covert vs. overt evaluation) using
a motion capture system (Farhan et al., 2023). Furthermore,
Andersson et al. (2002) provided evidence that postural sway
becomes greater when participants are instructed to rate their
sway, thus, focus on their balance (Andersson et al., 2002).
Participants likely felt more observed and consequently tended
to focus on their postural sway in the absence of distraction
through the cognitive task. Their behavior might have been altered
through these factors, resulting in a less stable stance in the
ST condition.
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Further, movement differences to study using motion sensors
would have been the characteristics and frequency of fall
occurrences as well as their relation to skill level and condition (ST
vs. DT). However, none of the participants included in the statistical
analysis fell off the slackline during recording. Unfortunately, one
participant fell off during an early run, due to personal reasons
the experiment was terminated and not enough data from this
person could be acquired. Besides, the posture first hypothesis
(Liston et al., 2014) could explain our findings. The hypothesis
states that resources in dual-tasking are not allocated randomly,
but priority will likely be on motor tasks to ensure physical
integrity (Liston et al., 2014). Participants likely prioritized their
posture during slacklining in the dual task condition to avoid
falls. Movement patterns therefore represent better (acceleration)
or similar (angular velocity) posture during DT. Taken together
with the neurophysiological results we provide evidence that the
paradigm led to a modulation of cognitive performance while
motor performance seemed to be facilitated likely because of an
interaction of rather low cognitive task demands with prioritized
posture and focus on posture control during DT.

Questionnaire data

Participants rated their performance as good and the overall
task demands, effort, and frustration across the experiment as low
to medium. Participants in previous cognitive-motor interference
studies rated task demands higher during more complex movement
types (Reiser et al., 2019). A collection of behavioral data (NASA-
TLX) for both movement types individually could improve the
assessment of task demands. This would further contribute to
evaluating primary task difficulty and its relationship to the
factor skill.

In the current project, accuracies did not differ significantly
between types of movement. These results are in line with a
previous study assessing CMI whilst skateboarding (Robles et al.,
2021). Our findings, however, deviate from other findings where
accuracy was found to be reduced as movement complexity
increased (Reiser et al., 2019, 2021). Furthermore, participants
counted targets less accurately in previous studies. One important
difference between the current- and other studies assessing CMI
using a similar cognitive task (Scanlon et al., 2017, 2019; Reiser
et al., 2019, 2021), was that the time participants had to execute the
task was substantially shorter here, participants needed to sustain
attention for a shorter period of time. This might have influenced
the accuracies positively. The average accuracy in both standing
and slacklining was over 95%. It can thus not be excluded that
ceiling effects influenced the outcome. Moreover, the computation
of accuracies in this study was based on participants’ reports on the
number of target tones they counted within one trial. It was hence,
impossible to distinguish between correctly counted targets and
false positives. Authors of previous publications asked participants
to press a button whenever they heard a target tone (Reiser
et al., 2019, 2021). This approach could have improved accuracy
acquisition in the current study. Here participants, however used
their arms to tackle the balancing demands posed on them through
slacklining, a button in one of their hands would likely have
influenced balancing performance.

Future directions

The effect of primary task difficulty on the P3 of an auditory
oddball is well-known and has been replicated many times using
different movement types. Assessing the effect of skill on an
auditory P3, however, is a novel approach. It would, hence, be
interesting to evaluate the effects of skill on the P3 during different
types of movement including a greater variety of skill levels, i.e.,
novices and professionals. Exploring the impact of visual flow, run
length and choice of control conditions on P3 effects is crucial. This
could be implemented by adding conditions to the already existing
paradigm, one such condition could introduce a visual flow to the
stationary setup, while another could extend the duration of runs
(e.g., until participants are no longer able to maintain balance on
the slackline). Further, when assessing CMI in real-life scenarios
brain, movement data, and other factors such as the Hawthorne
effect on measures should be taken into consideration.

Limitations

We aspired to keep all factors constant between conditions.
While out-of-the-lab studies may suffer from a lack of
standardization, the replication of laboratory findings in real-
world environments can help to identify robust patterns of results.
It is unlikely that the magnitude of environmental distraction (e.g.,
street noise, passing by passengers) posed a systematic confound.
However, to evaluate their influence, future studies should consider
monitoring these context factors (Holleman et al., 2020). Another
limiting factor is our relatively small sample size since we could
include only those as participants who could easily balance on a
slackline for several minutes. This requirement minimized our
chances of acquiring data from a large sample size, despite strong
efforts to include suitable candidates from the north-western
region of Germany.

Conclusion

The present study adds to the growing field of CMI research
in naturalistic environments. Contrary to prior work we found no
CMI effects marked by P3 effects (Debener et al., 2012; De Vos
et al., 2014a; Ladouce et al., 2017; Reiser et al., 2019; Scanlon et al.,
2019; Liebherr et al., 2021). Lower task load through the stationary
scenario and comparatively short condition length may explain
these results. Moreover, we suggest that the factor skill, which
correlated with individual P3 latency but not amplitude, interfered
with the outcome. We argue that the individual CMI effects on the
P3 ERP reflects how demanding the balancing task is for untrained
individuals, which draws on limited resources that are otherwise
available for auditory attention processing. This interference has
most likely also contributed to the rather unexpected results.
Regarding movement patterns we provide deviating results from
previous literature where postural sway was found to be increased
during DT- compared to ST balancing (Pellecchia, 2003; Ward
et al., 2022). Again, low cognitive task demand through short
trial duration and a rather easy task could explain these results
(Huxhold et al., 2006). Besides, awareness of observation through
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the experimenter leading to increased focus on posture during
ST and prioritization of posture during DT may have led to
better posture control and stability during DT. Taken together,
we demonstrate the feasibility of mobile EEG acquisition during
human balance control and provide evidence that cognitive and
motor processes may draw from the same pool of processing
resources that may be misleadingly labeled as purely cognitive.
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