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Purpose: Long-term post-stroke cognitive impairment (PSCI) exhibits 
an accelerated rate of long-term cognitive decline, which can impair 
communication, limit social engagement, and increase rate of institutional 
dependence. The aim of this case report is to provide evidence for the potential 
of home-based transcutaneous auricular vagus nerve stimulation (taVNS) for 
home-bound patients with severe, long-term PSCI.

Methods: A 71-year-old male suffered a stroke two and a half years ago, which 
imaging reported foci of cerebral infarction visible in the left temporal and 
parietal lobes. The patient was performed taVNS twice a day for 30  min, 5 times 
a week for 8  weeks. The patient was evaluated the changes of cognitive function 
and brain white matter at 4 time points: baseline (t0), 4  weeks without taVNS 
after baseline (t1), 4  weeks of intervention (t2), and 8  weeks of intervention (t3). 
The effect of taVNS on white matter changes was visualized by DTI.

Results: After 8  weeks of taVNS treatment, the scores of Montreal cognitive 
assessment improved and the time to complete the shape trails test decreased. 
The DTI results showed that white matter in bilateral dorsal lateral prefrontal 
cortex remodeled after taVNS.

Conclusion: Eight-week home-based taVNS may be  beneficial to long-term 
PSCI. Further studies of home-based taVNS treating patients with long-term 
PSCI are needed.
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Introduction

Post-stroke cognitive impairment (PSCI) is a common functional 
impairment after stroke, and has been defined as all problems in 
cognitive function that occur following a stroke, irrespective of the 
etiology (Quinn et al., 2021), typically impairing executive, memory, 
and visuoconstructional functions (Jokinen et  al., 2015). The 
prevalence was ranging from 20 to 80% (He et al., 2023; Sun et al., 
2014). Although cognitive function may initially exhibit signs of 
improvement and stabilization following stroke onset in patients with 
PSCI (Elgh and Hu, 2019), some individuals may subsequently 
experience long-term cognitive decline (Delavaran et  al., 2017; 
Mahon et al., 2017). A study indicated that certain stroke patients may 
experience cognitive impairment for up to a decade. Compared to 
both non-stroke individuals and post-stroke patients without 
cognitive impairment, patients with PSCI had a faster rate of cognitive 
deterioration (Delavaran et al., 2017). There are many home-bound 
patients with chronic stroke who have developed and experienced 
cognitive decline. Cognitive impairment significantly affects patients’ 
quality of life, hampers communication, limits social engagement, 
and imposes a substantial economic burden on both families and 
society (Wagle et al., 2011; Zhang J. et al., 2021). Moreover, PSCI is 
associated with an elevated risk of mortality, dependence, and 
institutionalization, resulting in a significant social and economic 
burden, especially in cases of long-term PSCI with cognitive 
deterioration (Obaid et al., 2020; Chen et al., 2023). At present, there 
is insufficient evidence for drug treatment for PSCI. In the prevention 
of PSCI, recommended medications include antihypertensive, lipid-
lowering, blood glucose control and other related drugs to control 
cerebrovascular disease risk factors. Non-pharmacological treatments 
such as compensation strategy training and direct cognitive skill 
training require high concentration, and patients’ compliance is poor. 
Non-invasive brain stimulation such as transcranial magnetic 
stimulation and transcranial electrical stimulation are relatively easy 
for patients to cooperate with, however, these devices need to 
be performed by a professional doctors and patients need to visit a 
hospital for treatment (Eskes et al., 2015; Quinn et al., 2021; Uzuner 
and Uzuner, 2023). Therefore, focusing on rehabilitation interventions 
of patients with long-term PSCI is crucial, especially those that allow 
patients to remain homebound.

Transcutaneous auricular vagus nerve stimulation (taVNS) is a 
non-invasive method targeting the auricular branches of the vagus 
nerve to modulate brain function. Existing research has highlighted 
the significant ameliorative impact of taVNS on central nervous 
system diseases (Choi et al., 2022; Murphy et al., 2023). The taVNS is 
neuroprotective against central nervous system injury by upregulating 
peroxisome proliferator-activated receptor γ expression (Eren and 
Yilmaz, 2022; Li et al., 2020). It was demonstrated that taVNS inhibited 
the expression of interleukin (IL)-1β, IL-6, and tumor necrosis factor-
α (TNF-α), and promoted the functional recovery of cerebral 
ischemia/reperfusion-injured rats (Dash et al., 2022; Zhao et al., 2022). 
Notably, one study suggested that taVNS could increase the complexity 
of white matter microstructure (Jenkins et  al., 2023). It has been 
shown that taVNS may inhibit post-stoke inflammation response in 
the white matter of cerebral ischemia model rats through TLR4/NF-κB 
and MAPK/NF-κB signaling pathways (Long et al., 2022; Xu et al., 
2023). The taVNS can affect brain regions related to cognitive 
function, such as frontal cortex and hippocampus, with mediation 

through the nucleus tractus solitarius (Kraus et al., 2007; Yakunina 
et al., 2017). It was shown that taVNS promoted cerebrospinal fluid 
circulation in transient bilateral common carotid artery occlusion 
model mice, significantly improved discrimination index scores in the 
novel object recognition test rates of spontaneous alternations in the 
Y-maze test, resulting in the recovery of impaired cognitive function 
(Choi et al., 2022). Besides, taVNS can also modulates disrupted brain 
functional connectivity (Fang et al., 2016; Liu et al., 2020). Zhang 
found that taVNS was effective in reducing scores on Pittsburgh sleep 
quality index (PSQI) and reducing functional connectivity (FC) 
within the default mode network (DMN), FC between DMN and 
salience network and FC between DMN and the occipital cortex 
(Zhang S. et  al., 2021). In addition, taVNS can improve mood 
problems. It can improve anxiety symptoms and modulate activation 
of the left triangle part of the inferior frontal gyrus in patients with 
Parkinson’s disease (Zhang et  al., 2024). The taVNS instantly 
modulated the activity of the DMN and the cognitive control network 
in patients with major depression disorder and induced at least 
12 weeks of clinical improvement (Rong et al., 2016; Sun et al., 2023). 
Together with its attributes of safety and portability, taVNS may be a 
potential option for long-term PSCI patients. Continuous supervised 
specific cognitive training and specialized equipment are not easy and 
convenient for home-bound PSCI patients. Thus, portable as well as 
easy-to-operate taVNS might be an effective strategy for home-based 
cognitive rehabilitation.

Diffusion tensor imaging (DTI) can be applied to white matter 
fiber tracking in the brain and quantitatively measure the integrity of 
white matter (Le Bihan et al., 2001). He et al. found that extensive 
damaged white matter microstructure in subacute PSCI patients (He 
et al., 2022). On voxel-wise analyses, reduced fractional anisotropy 
(FA) in almost all white matter tracts in early cognitive impairment 
patients with minor stroke (Zamboni et  al., 2017). In this study, 
we selected region of interest (ROI) for the initial exploration of taVNS 
action on white matter in PSCI patients. The dorsolateral prefrontal 
cortex (DLPFC), cingulate gyrus, hippocampus and thalamus are 
thought to be  closely related to cognitive function. The DLPFC 
impairment will lead to a series of impairments related to executive 
function and attention (Barbey et al., 2013a,b; Forbes et al., 2014). 
Anterior cingulate cortex (ACC) is involved in learning and outcome 
monitoring (Aly-Mahmoud et  al., 2017; Kawai et  al., 2015). The 
posterior cingulate cortex (PCC) is involved in maintaining attention 
and detecting environmental changes in order to change behavior 
(Leech and Sharp, 2014). The hippocampus regulates memory and 
plays an important role in spatial processing (Bird and Burgess, 2008). 
The thalamus plays integrative roles in cognition, ranging from 
learning and memory to flexible adaption (Wolff and Vann, 2018). The 
importance of these brain regions to cognitive function led us in this 
study to observe changes in their associated white matter after 
taVNS. Here, we provide evidence for the potential of home-based 
treatment for long-term PSCI patient and present the remodeling 
effects of taVNS on cognitively relevant white matter tracts by DTI.

Materials and methods

The patient has given written consent for the publication of this 
case report. This case report was approved by the ethics committee of 
Shanghai No. 3 Rehabilitation Hospital (ID: SH3RH-2023-EC-022).

https://doi.org/10.3389/fnhum.2024.1473535
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Chen et al. 10.3389/fnhum.2024.1473535

Frontiers in Human Neuroscience 03 frontiersin.org

The patient

A 71-year-old male suffered a stroke two and a half years ago, 
which imaging reported foci of cerebral infarction visible in the left 
temporal and parietal lobes. After early speech therapy, language 
skills improved and he was able to carry on a conversation, but 
after 6 months he  developed mild cognitive deficits and had 
increasing problems with attention. Therefore, we  used 
Non-language-based Cognitive Assessment to screen the patient. 
The patient scored 54 on a scale of 80, with a score of 70 or less 
indicating cognitive impairment. However, the patient 
subsequently returned home for personal reasons and stopped 
treatment. One year later, he came to us for cognitive treatment. As 
we were still able to communicate with the patient at this time, 
we chose to use the more sensitive and comprehensive Montreal 
cognitive assessment (MoCA) and mini-mental state examination 
(MMSE) for follow-up in order to more accurately assess his 
cognitive status. Given the patients’ satisfactory motor function 
and was not limited in activities of daily living, he opted to continue 
residing at home rather than rehospitalization post-discharge. To 
address the cognitive impairment, we initiated taVNS as a home-
based treatment, assessing cognitive changes using specific 
cognitive function scales and monitoring the treatment’s 
mechanisms through DTI.

The experimental protocol

We identified that patient could complete taVNS treatment with 
the help of family member, so we  trained the family on taVNS 
operation in the hospital. We provided taVNS device for them to take 
home from the hospital and requested the family member to report 
patient daily treatment status to us via video twice per day. The 
patient received no other cognitive therapy. We  ask the patient’s 
family to report the treatment status of the day daily. After 
we evaluated the patient at baseline (t0) and acquired the DTI, the 
patient was allowed to perform normal activities of daily living at 
home without treatment for four weeks. Then the patient would 
receive a second evaluation (t1) and DTI and began an 8-week 
treatment. We evaluated patient at two times: 4 weeks of intervention 
(t2) and 8 weeks of intervention (t3). We  perform behavioral 
assessments and collect DTI data from patient before and after each 
session. Behavioral assessments included MoCA and MMSE for 
global cognitive function, auditory verbal learning test-HuaShan 
version (AVLT) for memory function, shape trails test (STT) for 
attention and executive function, Hamilton depression scale (HAMD) 
for depression symptom, Hamilton anxiety scale (HAMA) for anxiety 
symptoms, and PSQI for sleep. The experimental design is shown in 
Figure 1.

Transcutaneous Electrical Nerve Stimulator (TENS-200A; Suzhou 
Medical Appliance Co. Ltd.) as taVNS on right ear was performed 
twice a day (morning and afternoon) for 30 min, 5 times a week. The 
stimulation parameters included the following: (1) a dilatational wave 
of 20/4 Hz (20 Hz for 7 s, 4 Hz for 3 s, the sparse and dense wave 
alternated). (2) intensity set to patient tolerance with no pain. 
We asked the patient’s family to record of his everyday situation, and 
conducted telephone interviews with both the patient and his family 
to promptly report any adverse reactions.

DTI data acquisition and analysis

All DTI data were collected using a 3-Tesla MRI scanner 
(SIEMENS VERIO, Erlangen, Germany) with an 8-channel head coil 
at Yueyang Hospital of Integrated Traditional Chinese and Western 
Medicine, Shanghai University of Chinese Traditional Medicine, 
China. The patient had 4 scans total at t0, t1, t2 and t3. Each scan 
session included DTI and T1-weighted structural scans. The 
acquisition parameters were used for T1-weighted structural scan as 
follows: repetition time (TR) = 1900 ms; echo time (TE) = 2.93 ms; field 
of view (FOV) = 256 mm × 256 mm; flip angle = 9°; acquisition matrix 
size = 256 × 256; voxel size = 1 mm × 1 mm × 1 mm; number of 
slices = 160; slice thickness = 1 mm, with no gap. The acquisition 
parameters were used for DTI scan as follows: TR = 10,000 ms; 
TE = 89 ms; FOV = 240 mm × 240 mm; flip angle = 90°; acquisition 
matrix size = 128 × 128; direction = 62; b = 0, 1,000 s/mm2; slice 
thickness = 2 mm and slice gap = 0.

All DTI data were preprocessed using FSL software1 in order to 
obtain FA maps of the patient each data collection time point (Menke 
et al., 2014). Then, Diffusion Toolkit2 was used to track whole-brain 
fiber tracts. The maximum turning angle of the fiber >45° or the 
FA < 0.2 was set as the terminating conditions. To extract individual 
region of interest (ROI) FA, the FA maps were warped to the 
T1-weighted structural image in the native diffusion space using affine 
registration (FLIRT) and non-linear registration (FNIRT) registration 
algorithms (Menke et al., 2014). The automated anatomical labeling 
(AAL) atlas3 was warped from the MNI space to the native diffusion 
space (Qiu et al., 2017). We used the bilateral DLPFC (left DLPFC: 
Frontal_Sup_L and Frontal_Sup_Medial_L; right DLPFC: Frontal_
Sup_R and Frontal_Sup_Medial_R), the bilateral ACC (Cingulum_
Ant_L and Cingulum_Ant_R), the bilateral PCC (Cingulum_Post_L 
and Cingulum_Post_R), the bilateral hippocampus (Hippocampus_L 
and Hippocampus_R) and the bilateral thalamus (Thalamus_L and 
Thalamus_R) as the ROIs. Finally, the mean value of FA was extracted 
from each ROI.

Results

Behavior data

The patient’s family reported no discomfort during the taVNS 
treatment, and the patient’s habits and diet remained consistent. At 
baseline (t0), the patient’s MoCA score was 7. Following four weeks of 
living without any intervention (t1), the score was 8. After 4 weeks of 
intervention (t2) the score increased to 10, and further increased to 11 
after eight weeks of intervention (t3) (Table 1; Figure 2a).

In contrast, the MMSE showed no significant trend during the 
trial period. The scores at t0, t1, t2, t3 were 15, 19, 19, and 20, 
respectively (Table 1; Figure 2a).

Regarding STT, STT-A, assessing attention, showed no significant 
change in the time spent at each time point (t0, t1, t2, t3) with values 
of 225.63, 194.84, 445.00, 195.08 [seconds], respectively. On the other 

1 http://www.fmrib.ox.ac.uk/fsl

2 http://www.trackvis.org/dtk/

3 http://www.gin.cnrs.fr/AAL
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hand, STT-B, assessing executive function, showed a notable 
improvement during the intervention period, with patient requiring 
less time to complete the test at the four time points (1130.00, 992.75, 
648.00, and 557.86 s), compared to when there was no taVNS 
intervention (Table 1; Figure 2b). Regarding AVLT, immediate recall 
abilities (N1, N2, and N3) showed no significant changes over the four 
time points. The fractions of N1 are 1, 2, 1, and 1; for N2, 1, 3, 2, and 2; 
and for N3, 2, 3, 2, and 2. N5, which assessed long delayed recall ability, 
with scores of 0, 3, 3, and 1 at each of the four time points, and scores 
of 0, 17, 15, and 16 for the recognition component at each time point, 
all of which showed no significant change (Table 1; Figure 2c).

During the period between t2 and t3, the patient and his family 
had a violent quarrel due to financial reasons, and the family reported 
that the patient seemed to be in a bad mood and low motivation since 
the argument. Emotionally, the HAMA showed that the subject 
showed improvement in anxiety symptoms during the first 4 weeks of 
taVNS treatment, with scores dropping from 8 to 3. However, there 
was a recurrence of anxiety symptoms in the latter 4 weeks (with 
HAMA scores rising to 9 at t3). The HAMD results showed scores of 
20 and 22 at t0 and t1, respectively; after receiving the intervention, 
scores were 4 and 7 at t2 and t3, separately. Patients’ depressive 
symptoms improved after receiving taVNS compared to the two 
phases (Table 1; Figure 2d).

In terms of sleep, the PSQI showed scores of 9 and 11  in the 
absence of intervention (t0 and t1), which then decreased to 4 after 
4 weeks of taVNS, indicating an improvement of patients’ sleep quality. 
However, in the latter 4 weeks of intervention PSQI scores increased 
to 7, suggesting a decrease in sleep quality. Table  1 showed the 
behavior data scores of the patient at each time point.

DTI data

At baseline, before the initiation of the treatment (t0 and t1), the 
results showed reduced FA values in the left DLPFC, right DLPFC and 
left ACC (Table 2; Figure 3). After the treatment (t2 and t3), the FA 
values in these ROIs were subsequently increased (Table 2; Figure 3). 

Similarly, the decreased number of fiber tracts in the left ACC, left 
PCC, right PCC and right thalamus observed prior to the treatment 
increased post the treatment (Table 3; Figure 4). These results were 
consistent with the behavioral results.

In addition, the number of white matter fiber tracts continued to 
decrease in the left DLPFC and right DLPFC, either before or after the 
treatment (Table 3; Figure 4a). However, after 8 weeks of treatment 
(t3), the fiber tracts passing through the bilateral DLPFC increased 
significantly (Table 3; Figure 4a).

FIGURE 1

The experimental protocol. t0, baseline; t1, without treatment for four weeks; t2, 4-week taVNS treatment after t1; t3, 8-week taVNS treatment after t1. 
taVNS, transcutaneous auricular vagus nerve stimulation; DTI, diffusion tensor imaging.

TABLE 1 The behavior data scores of the patient (t0, t1, t2, and t3).

Behavior data scores

t0 t1 t2 t3

MMSE 15 19 19 20

MoCA 7 8 10 11

AVLT

N1 1 2 1 1

N2 1 3 2 2

N3 2 3 2 2

N4 0 3 1 0

N5 0 3 3 1

N6 0 1 0 1

Recognition 0 17 15 16

STT-A (s) 225.63 194.84 445.00 195.08

STT-B (s) 1130.00 992.75 648.00 557.86

HAMA 9 8 3 9

HAMD 20 22 4 7

PSQI 9 11 4 7

t0, baseline; t1, 4 weeks after baseline without intervention; t2, 4 weeks after intervention; t3, 
8 weeks after intervention. MMSE, mini-mental state examination; MoCA, Montreal 
cognitive assessment; AVLT, auditory verbal learning test-HuaShan version; STT, shape trails 
test; HAMA, Hamilton anxiety scale HAMD, Hamilton depression scale; PSQI, Pittsburgh 
sleep quality index.
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FIGURE 2

The results of behavior data. (a) Changes in global cognitive function. (b) Changes in STT. (c) Changes in AVLT. (d) Changes in emotion and sleep. STT, 
shape trails test; AVLT, auditory verbal learning test-HuaShan version.

TABLE 2 The FA values from ROIs of the patient (t0, t1, t2, and t3).

FA values (mean  ±  SD)

t0 t1 t2 t3

Left DLPFC 0.515546 ± 0.126256 0.482298 ± 0.158521 0.505693 ± 0.154693 0.581205 ± 0.164973

Right DLPFC 0.530893 ± 0.154891 0.488349 ± 0.144625 0.489671 ± 0.133767 0.601236 ± 0.160932

Bilateral DLPFC 0 0 0 0.660146 ± 0.153723

Left ACC 0.542786 ± 0.161377 0.530512 ± 0.159607 0.544636 ± 0.156398 0.555200 ± 0.155973

Right ACC 0.496703 ± 0.146860 0.506063 ± 0.156758 0.491279 ± 0.146987 0.536186 ± 0.153576

Left PCC 0.557581 ± 0.154165 0.547122 ± 0.179424 0.561405 ± 0.177470 0.516437 ± 0.157602

Right PCC 0.585838 ± 0.118165 0.621691 ± 0.187571 0.575283 ± 0.128870 0.586830 ± 0.148985

Left Hippocampus 0.545657 ± 0.144594 0.545813 ± 0.171751 0.492800 ± 0.142462 0.560647 ± 0.158447

Right Hippocampus 0.593796 ± 0.181242 0.550097 ± 0.168247 0.510966 ± 0.163347 0.739227 ± 0.177355

Left Thalamus 0.517213 ± 0.156864 0.538497 ± 0.175191 0.508432 ± 0.155435 0.541396 ± 0.179948

Right Thalamus 0.509219 ± 0.150010 0.570285 ± 0.172985 0.520737 ± 0.160423 0.551718 ± 0.162511

Left Supramarginal 0.324865 ± 0.103233 0.362453 ± 0.112139 0.268231 ± 0.065067 0.372718 ± 0.113100

Right Supramarginal 0.450374 ± 0.127879 0.485388 ± 0.134930 0.480543 ± 0.140268 0.468455 ± 0.128942

Left Angular 0.261181 ± 0.057556 0.249850 ± 0.037677 0.241302 ± 0.056893 0.375398 ± 0.149067

Right Angular 0.554801 ± 0.163894 0.573882 ± 0.163452 0.537636 ± 0.143805 0.542962 ± 0.149138

FA, fractional anisotropy; ROI, region of interest; DLPFC, dorsolateral prefrontal cortex; ACC, anterior cingulate cortex; PCC, posterior cingulate cortex; t0, baseline; t1, 4 weeks after baseline 
without intervention; t2, 4 weeks after intervention; t3, 8 weeks after intervention.
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Discussion

It has been shown that taVNS has an ameliorative effect on 
cognitive function in patients with mild cognitive impairment and 
healthy individuals, in terms of global cognitive function, memory 
function, or executive function (Ridgewell et al., 2021; Wang et al., 
2022). This provides the basis for taVNS being a possible treatment 
for PSCI. Our case focused on long-term PSCI patient who was 
treated with taVNS for 8 weeks. We  analyzed the white matter 
remodeling effects of taVNS on long-term PSCI by DTI to observe the 
feasibility of taVNS as a home-based treatment for long-term 
PSCI patient.

The ease of use of the machine was praised by the patient’s 
family, who said that the patient did not experience discomfort 
during the treatment and that the patient was proactive throughout 
the treatment cycle. Our results showed that 8 weeks of taVNS can 
improve MoCA, STT-B to varying degree, suggesting that taVNS 
improved global cognitive function and executive function in this 

long-term PSCI patient. The completion of STT-B is more 
dependent on executive function and memory, and its shortening 
completion time may indicate the improvement of function (Zhao 
et al., 2013). Meanwhile, the patient’s mood and sleep symptoms 
fluctuated during taVNS treatment despite improvement, possibly 
related to family troubles that occurred during the period from T2 
to T3. It has been shown that emotional symptoms and sleep can 
cause cognitive decline (Koppel et  al., 2012; Lo et  al., 2014). 
We therefore hypothesized that the changes in mood and sleep 
problems observed during the period between t2 and t3, may 
influence the improvement of cognitive function by taVNS.

Our DTI results showed the FA values that declined in left 
right DLPFC before treatment, increased after taVNS. Furthermore, 
disorders of white matter integrity in the angular and 
supramarginal gyrus were adjusted during treatment. FA value can 
measure the integrity of white matter microstructure, reflecting 
potential changes in axon diameter, density, and myelination (Lim 
et  al., 2015). The DLPFC plays an important role in cognitive 

FIGURE 3

The FA values from ROIs of the patient (t0, t1, t2 and t3). (a) The FA values in the DLPFC; (b) the FA values in the ACC and PCC; (c) the FA values in the 
Hippocampus; (d) the FA values in the Thalamus; (e) the FA values in the Supramarginal; (f) the FA values in the Angular. FA, fractional anisotropy; ROI, 
region of interest; DLPFC, dorsolateral prefrontal cortex; ACC, anterior cingulate cortex; PCC, posterior cingulate cortex; t0, baseline; t1, 4  weeks after 
baseline without intervention; t2, 4  weeks after intervention; t3, 8  weeks after intervention.
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function such as memory (Barbey et  al., 2013a,b), executive 
function (Dubreuil-Vall et al., 2019), and attention (Kang et al., 
2009), and is involved in regulating emotions (Salehinejad et al., 
2017). It has been shown that FA values in frontal regions correlate 
with executive function (Mayo et al., 2018). The supramarginal 
gyrus and angular gyrus constitute the posterior parietal cortex 
(PPC). The PPC and DLPFC are coactivated in cognitive control 
during cognitive operations that requiring attention and working 
memory, but inactivation of the PFC leads to more severe 
impairments of coginitive function such as memory, executive 
function, and attention, and is involved in regulating emotions in 
these cognitive domains (Katsuki and Constantinidis, 2012).

In our DTI results, the number of fiber tracts in the bilateral 
DLPFC continued to decrease after 8-week taVNS, while the number 
of the fiber tracts passing through the bilateral DLPFC increased after 
8-week taVNS treatment. Atrophy of the corpus callosum consisting 
of interhemispheric fiber tracts, may be an important predictor of 
global cognitive impairment, and slowing damage to these 
interhemispheric fiber tracts may prevent the development of 
dementia (Yamauchim, 2003). Patients in the early stage of stroke may 
exhibit only intraregional white matter damage, whereas the 
exacerbation of vascular risk factors may lead to progression of white 
matter damage to concomitant corpus callosum atrophy, affecting 
interhemispheric connectivity and cooperation. Increased fiber tracts 
between hemispheres and enhanced white matter tracts integrity can 
increase information transfer (Yang et  al., 2022). The fiber tracts 
within the unilateral DLPFC have some short connections, whereas 
the fiber tracts between bilateral DLPFC are long connections. The 
reorganization of both short and long connections within and between 
the fiber tracts of the DLPFC, along with changes of white matter 
integrity in the DLPFC and PPC, improves the efficiency of 

information conduction. This provides a structural basis for the 
functional reorganization of the central nervous system.

In cognitive control system, DLPFC provides top-down support for 
task-appropriate behaviors, while the ACC may be  involved in the 
processes of assessment and monitoring that indicate when more robust 
control is needed (Badre and Wagner, 2004; MacDonald et al., 2000). 
Our results showed a rise in FA in the left ACC after taVNS, which were 
consistent with the behavioral results. A study demonstrated that FA in 
the left ACC was associated with strategic game learning (Ray et al., 
2017). This may also be  the reason behind the patient’s improved 
performance in STT-B, who successfully choose the correct answer 
among the interfering items. But the patient forgot the number when 
he went through the cueing errors during the STT-B test and did not 
know how to proceed. It has been shown that the PCC supports change 
monitoring, engages in strategy control and switching (Pearson et al., 
2011). In our results, the FA values of the PCC did not change much, 
which could explain this patient’s inability to cope with sudden changes 
in events. Nevertheless, we found an increase in the number of the PCC 
fiber tracts in both hemispheres, which increased information transfer 
(Yang et al., 2022), perhaps indicating a positive phenomenon. This 
system, in which the ACC and DLPFC are located, is also associated 
with emotions, and changes in the white matter microstructure within 
this system can also alleviate emotional symptoms.

It has been shown that patients with Alzheimer’s disease have 
reduced FA values in the hippocampus (Fellgiebel et al., 2004). In 
patients with mild cognitive impairment, reduced hippocampus-
related fiber tracts were associated with cognitive dysfunction; 
reduced thalamus-related fiber tracts were associated with depressive 
symptoms (Zhou et al., 2022). The thalamus is a key integrating 
center within the brain’s functional networks, maintaining functional 
and structural connection with multiple cortical networks. Through 
information transfer and convergence with these networks, the 
thalamus can facilitate a variety of cognitive functions (Hwang et al., 
2017). Structural and functional alterations in the thalamus influence 
the severity of cognitive impairment (Schoonheim et  al., 2015). 
Study showed that a mouse model of thalamic lacunar infarction 
exhibited impaired learning and memory (Zhang et al., 2023).

We found that after taVNS, the fiber tracts in the hippocampus 
and thalamus of this patient fluctuated during treatment, but there 
was an elevation after 8 weeks, compared to the untreated period. The 
modulation of white matter integrity disturbances within the 
hippocampus and thalamus by taVNS also provides a basis for 
improved cognitive functioning.

Although this case report demonstrates the potential of home-
based taVNS to affect the brain structurally and functionally in 
patients with long-term PSCI, the fact that there was only one 
patient makes the results limited in terms of generalization. 
Furthermore, this case report lacks a follow-up, leaving us uncertain 
about the duration of the taVNS effect. Therefore, randomized 
controlled trials with larger sample sizes are still needed to explore 
the effects of home-based taVNS on the progression of cognitive 
impairment in patients with long-term PSCI.

Conclusion

The findings presented in this case report provide a potentially 
viable taVNS treatment option for home-bound patients with 

TABLE 3 The number of fiber tracts from ROIs of the patient (t0, t1, t2, 
and t3).

Number of fiber tracts

t0 t1 t2 t3

Left DLPFC 122 90 52 49

Right DLPFC 184 181 134 119

Bilateral DLPFC 0 0 0 4

Left ACC 1,045 951 1,060 1,163

Right ACC 917 828 725 1,391

Left PCC 204 128 181 292

Right PCC 290 127 204 212

Left Hippocampus 1,024 864 729 806

Right Hippocampus 1,118 863 595 1,454

Left Thalamus 909 678 523 1,319

Right Thalamus 1,304 867 892 1,558

Left Supramarginal 65 129 26 75

Right Supramarginal 447 799 522 533

Left Angular 58 83 20 22

Right Angular 1,319 810 1,177 911

ROI, region of interest; DLPFC, dorsolateral prefrontal cortex; ACC, anterior cingulate 
cortex; PCC, posterior cingulate cortex; t0, baseline; t1, 4 weeks after baseline without 
intervention; t2, 4 weeks after intervention; t3, 8 weeks after intervention.
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long-term PSCI. The behavioral and DTI results recorded also show 
the potential benefits of this approach.
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FIGURE 4
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SupraMarginal; (f) the number of fiber tracts in the Angular. ROI, region of interest; DLPFC, dorsolateral prefrontal cortex; ACC, anterior cingulate 
cortex; PCC, posterior cingulate cortex; t0, baseline; t1, 4  weeks after baseline without intervention; t2, 4  weeks after intervention; t3, 8  weeks after 
intervention.
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