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Objective: Accurate localization of a seizure onset zone (SOZ) from

independent components (IC) of resting-state functional magnetic resonance

imaging (rs-fMRI) improves surgical outcomes in children with drug-resistant

epilepsy (DRE). Automated IC sorting has limited success in identifying SOZ

localizing ICs in adult normal rs-fMRI or uncategorized epilepsy. Children face

unique challenges due to the developing brain and its associated surgical risks.

This study proposes a novel SOZ localization algorithm (EPIK) for children

with DRE.

Methods: EPIK is developed in a phased approach, where fMRI noise-related

biomarkers are used through high-fidelity image processing techniques to

eliminate noise ICs. Then, the SOZ markers are used through a maximum

likelihood-based classifier to determine SOZ localizing ICs. The performance

of EPIK was evaluated on a unique pediatric DRE dataset (n = 52). A total of

24 children underwent surgical resection or ablation of an rs-fMRI identified

SOZ, concurrently evaluatedwith an EEG and anatomical MRI. Two state-of-art

techniques were used for comparison: (a) least squares support-vector

machine and (b) convolutional neural networks. The performance was

benchmarked against expert IC sorting and Engel outcomes for surgical SOZ

resection or ablation. The analysis was stratified across age and sex.

Results: EPIK outperformed state-of-art techniques for SOZ localizing

IC identification with a mean accuracy of 84.7% (4% higher), a

precision of 74.1% (22% higher), a specificity of 81.9% (3.2% higher),

and a sensitivity of 88.6% (16.5% higher). EPIK showed consistent

performance across age and sex with the best performance in those

< 5 years of age. It helped achieve a ∼5-fold reduction in the

number of ICs to be potentially analyzed during pre-surgical screening.
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Significance: Automated SOZ localization from rs-fMRI, validated against

surgical outcomes, indicates the potential for clinical feasibility. It eliminates

the need for expert sorting, outperforms prior automated methods, and is

consistent across age and sex.

KEYWORDS

resting state fMRI, seizure onset zone, resting state network, drug resistant epilepsy,

expert knowledge driven classification

Introduction

Epilepsy is devastating, affecting 50 million people

worldwide (WHO). One in 150 children have epilepsy (Aaberg

et al., 2017; Epilepsy Foundation, 2018), with 30% having

drug-resistant epilepsy (DRE; Wieser et al., 2001; Kwan and

Sander, 2004; Kwan and Brodie, 2010), which causes significant

morbidity and mortality (Sillanpää and Shinnar, 2010; Laxer

et al., 2014; Engel, 2016). A consensus proposal by the ad-hoc

Task Force of the International League Against Epilepsy

(ILAE) proposed the following definition for DRE: “a failure of

adequate trials of two tolerated, appropriately chosen, and used

antiepileptic drug schedules (whether as monotherapies or in

combination) to achieve sustained seizure freedom (considered

as freedom from all seizures, including auras) for at least 12

months” (Kwan et al., 2010).

Early diagnosis and treatment of DRE can potentially

deflect complications such as evolution into status epilepticus

(Prisco et al., 2020) and Sudden Unexplained Death in Epilepsy

(SUDEP), wherein the individual dies due to cardio-respiratory

failure from presumed nocturnal seizure activity (Sillanpää

and Shinnar, 2010). Moreover, in children, timely diagnosis,

intensive management, and treatment are pivotal in minimizing

neurological damage (Prisco et al., 2020). Further, the earliest

onset of severe epilepsy in the neonatal population can lead

to nearly constant life-threatening seizures requiring an urgent

need for surgical evaluation early in life (Russ et al., 2021).

Surgery for DRE

The most effective treatment for DRE is surgery (Luders

et al., 2006; Luckett et al., 2022). Early surgery is key:

“minimally invasive surgical treatment can be a life-changing

option for DRE patients; hence management of the SOZ

requiring disconnecting techniques (Young et al., 2020), or

deep sited lesions requiring excision should be considered

earlier rather than later (Chibbaro et al., 2017).” Notably, recent

findings showed that ultra-early (before 3 months old) surgical

intervention in children evaluated to have DRE after trials of an

average of four anti-seizure drugs, although seldom performed,

has excellent epilepsy outcomes and leads to a decrease in usage

of anti-seizure drugs, without any increased risk of surgery-

related permanent morbidity (Roth et al., 2021).

Brain imaging for pre-surgical screening

Surgical intervention in DRE requires accurate localization

of the seizure onset zone (SOZ) for success. We make

a distinction between the epileptic network (EN) and the

SOZ. The EN denotes regions where seizure propagates and

may be more extensive than the SOZ. As such, it may be

difficult as well as unnecessary to surgically eliminate the

EN since it can incorporate sensitive areas of the brain.

Several brain imaging techniques have been explored to

identify the ictal seizure onset zone, propagation zone (i.e.,

EN), and interictal activity (Table 1). This can be done with

nuclear medicine-based imaging techniques such as positron

emission tomography (PET) or ictal single-photon emission

computerized tomography (SPECT; Desai et al., 2013). Recent

studies suggest some SOZ identification capabilities for PET and

SPECT in both adults and children; however, their accuracy

heavily depends on the timing of the scan. Delay in drug infusion

can result in the detection of the EN instead of the SOZ. Invasive

modalities such as intracranial EEG (iEEG) are considered

the gold standard for SOZ identification and have shown

excellent accuracy for both adults and pediatric DRE. Stereo-

electroencephalography (SEEG) is minimally invasive, uses a

three-dimensional configuration of depth electrodes to localize

epileptiform activity, and has shown some SOZ identification

capability recently (Satzer et al., 2022).

However, traditional analysis of PET, SPECT, or SEEG

is relatively, temporally, and spatially restricted, whereas

functional interpolation of brain activity might allow for a

non-invasive three-dimensional representation of epileptiform

activity and avoid pitfalls inherent of other modalities (Table 1).

Recently, magnetoencephalography (MEG) and functional

magnetic resonance imaging (fMRI)-based non-invasive

techniques have been analyzed for DRE in both adults and

children and show decent SOZ identification capability. A

combination of MEG and fMRI imaging has also been proposed
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for accurate SOZ identification (Berger et al., 2021). However, a

major drawback of such brain imaging-based SOZ identification

techniques is the heavy reliance on manual sorting of images

and their components, which not only increases cost but also

reduces accessibility and repeatability.

Unfortunately, <1% of patients with DRE are evaluated for

surgery and only 25% of those undergo surgery (Engel, 2016),

partly due to the high cost of diagnostic and surgical treatment

(>$200,000/patient) and the risk of debilitating impairment

(Murray et al., 1996; Begley et al., 2000). Of the 1% evaluated,

surgical failure rates are 30–70% despite the use of non-invasive

SOZ-localization biomarkers such as anatomical MRI, scalp

EEG, simultaneous EEG-fMRI, and magnetoencephalography,

which are then often confirmed by invasive iEEG (McIntosh

et al., 2004; Luders et al., 2006; Sillanpää and Shinnar, 2010;

Bulacio et al., 2012; Laxer et al., 2014; Engel, 2016; Epilepsy

Foundation, 2018). Hence, for surgery to be safe and efficient

for wide acceptance (England et al., 2012), accessible, minimally

invasive, and accurate SOZ localization is essential.

One of the newer methods showing promise, to this

end, is resting-state functional MRI (rs-fMRI). Rs-fMRI has

been shown to have an accurate SOZ-localization capacity

through various analysis approaches (Bandt et al., 2014; van

Houdt et al., 2015; Malmgren and Edelvik, 2017; Boerwinkle

et al., 2018), but only independent component analysis

(ICA; Gonzalez-Martinez et al., 2007) has provided Level 1

evidence and has led to improvement in surgical outcomes

(Malmgren and Edelvik, 2017; Chakraborty et al., 2020) and

candidacy (Boerwinkle et al., 2019) in DRE. However, expert

interpretation of independent components (IC) into sources

of noise, normal resting state networks (RSN), and SOZs

(Hunyadi et al., 2014; Boerwinkle et al., 2017, 2020) limits

reproducibility and availability. An automated whole-brain

data-driven SOZ-localizing IC identification technique that

is rigorously validated against surgical destruction outcomes,

reproducible, equally effective across age and sex, and applicable

to all epilepsy subtypes may greatly improve epilepsy care

feasibility, morbidity, and mortality.

fMRI-based screening

Functional MRI (fMRI) is a popular imaging technique

originally used to identify brain activity in terms of blood

oxygenation level change in different parts of the brain for a

given mental task (Figure 1). However, for SOZ detection, it is

required to identify blood oxygenation changes due to the onset

of seizure. Hence, an important step is to remove other sources

of brain activity such as mental tasks, fMRI noise, and head

motion. Rs-fMRI requires the subject to be in a resting state,

which is achieved in a majority of children through sedation.

Even if any mental task is eliminated, there is still the presence

of resting-state brain activity in subjects, whichmanifests as RSN
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FIGURE 1

The standard task-based fMRI protocol (top panel), resting state fMRI and data processing pipeline (middle panel), standard rs-fMRI-based

pre-surgical evaluation of SOZ location (lower left panel), automation objective of EPIK (lower right panel), and advantages of EPIK in terms of

reduction in manual processing requirements.

brain activity. Head motion is a significant source of noise. Even

if head motion is limited to <1mm, it still can pose a significant

amount of noise in the rs-fMRImeasurement. Automated image

registration is used to reduce head motion artifacts in rs-fMRI

(Figure 1 middle panel). The resulting rs-fMRI captures brain

activity due to several sources including (a) noise (fMRImachine

noise and head motion), (b) RSN (resting-state activity of the

brain), and (c) SOZ (change in blood oxygenation due to seizure

onset). To decouple the effects of noise, RSN, and SOZ in rs-

fMRI signals, ICA is used to recover mutually independent fMRI

signal components (ICs) that potentially only capture brain

activity from one of the three sources.

Rs-fMRI ICA results in ∼100 ICs. Each IC is a spatial-

temporal distribution of regions of synchronous activity. In

ICA of those with DRE, there are three IC categories: (1)

RSNs which are well-described and validated in the literature;

(2) SOZ which is, currently, highly dependent on expert

sorting; and (3) noise, which is also well-understood, resulting

from cardiovascular, cerebral-spinal-fluid-pulsation, or scanner

artifacts [see Boerwinkle et al. (2017) for details and examples].
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In standard rs-fMRI-based pre-surgical screening for children

with DRE, the entire set of ICs is analyzed by a neurosurgeon or

neurologist to determine which ICs capture blood oxygenation

changes due to seizure onset. Such ICs are referred to as SOZ

localizing IC. The neurosurgeon then determines the location

of seizure onset in the brain using the SOZ localizing IC and a

recommendation for a surgical procedure such as resection or

ablation or neurostimulation is made.

Given that ICA results in > 100 ICs and only < 10% are

SOZ localizing ICs, manual sorting of rs-fMRI ICs to search

for SOZ localizing IC is a significant time commitment by the

neurosurgeon, resulting in increased cost, reduced availability,

and a higher chance of false positives (Figure 1). This study

focuses on automating the task of IC sorting and reducing

the number of ICs to be analyzed by the neurosurgeon for

pre-surgical evaluation for children with DRE.

Automation of fMRI-based screening

Artificial Intelligence (AI) has been employed on rs-fMRI

to automatically identify several brain disorders including

Attention Deficit Hyperactivity Disorder (ADHD), Alzheimer’s

disease, White Matter Hyperintensity (WMH; Bharath et al.,

2019), and major depressive disorder (Nguyen et al., 2021).

Recent studies considered two automation objectives in epilepsy

with rs-fMRI (Table 2): (a) classification of subjects with or

without epilepsy by identifying epilepsy networks using rs-

fMRI blood oxygen level-dependent (BOLD) signal z-score

latency maps (Lopes et al., 2012; Bharath et al., 2019;

Nguyen et al., 2021), and (b) localization of the seizure

onset zone using rs-fMRI ICs (Hunyadi et al., 2014, 2015;

Shah et al., 2019). Epilepsy networks indicate the areas of

the brain that are affected by the propagation of a seizure.

As such, they may not indicate the origin of the seizure,

which is encapsulated by the SOZ. Our research focus

in this study tackles the second automation objective of

SOZ localization.

Automated classification of rs-fMRI ICs as SOZ or RSN has

been explored using supervised shallow machine learning (ML;

Nozais et al., 2021) and using deep learning (DL) in healthy

adults to identify the typical RSNs and is yet to be tested in

epilepsy (Zhang et al., 2019; Table 2). Supervised ML indicates

that the DRE population has to be divided into two parts: (a)

a training set, which is used to configure the ML, and (b) a

testing set, which is used to test the performance of the ML.

Some supervised ML can also choose to utilize a validation set

as mentioned in a previous study (Nguyen et al., 2021). The

performance of the ML technique on the validation set is used

to update the training process and improve the performance

in the validation set. Hence, the performance on the validation

set is excluded from the analysis in Table 2 and only the test

set performance is reported. Recent automated (Luckett et al.,

2022) methods to classify adult rs-fMRI into RSN, SOZ, and

noise ICs are of three types: (1) voxel-based network measures

quantifying the number of connections to each voxel in an IC,

called voxel degree connectivity (VDC), as indicators for SOZ

(Hunyadi et al., 2014; Lee et al., 2014). Such approaches have

a small sample size (n ≈ 20) and show a maximum reported

sensitivity of 77% and a specificity of 57% (Table 2); (2) ML-

based classification, with a sensitivity of 40% and a specificity

of 77% (Hunyadi et al., 2014); and (3) DL approaches for only

identifying RSN and noise, but not SOZs, for normal and non-

DRE patients with epilepsy [accuracy 92% (Nozais et al., 2021)

in Table 2].

To date, automated approaches have not been successful

in the classification of RSN, noise, and SOZ, in rs-fMRI for

pediatric patients with DRE due to the following challenges: (1)

Lack of normalized pathological rs-fMRI RSN data for children

(Zhang et al., 2019); (2) databases with balanced instances

of RSN, SOZ, and noise, large enough for DL techniques

to effectively recognize the three IC categories that are not

available; (3) the potentially inadequate performance of SOZ

identification in children with DRE can indicate a high risk of

developmental disorders post-surgery. Given that each patient

only has 5% ICs as SOZ, a 40% sensitivity (Hunyadi et al.,

2014) indicates that only two out of five SOZ ICs are correctly

identified but 14 of them are wrongly identified as SOZ;

and (4) fMRI-based pre-surgical mapping is more complicated

for children with DRE due to developmental changes during

cognitive maturation (Jiang et al., 2018; Bouyssi-Kobar et al.,

2019), the impairment experienced due to DRE, and the

normal representation of memory function during development

(Michels et al., 2012; Darki and Klingberg, 2015; Cui et al., 2018;

Kasradze et al., 2021), which may differ from adults (Faghiri

et al., 2017; Lee et al., 2019; DeGeorge et al., 2021; Moncrief et al.,

2021). Hence, the efficacy of fMRI classification techniques on

adults needs to be reexamined for children with DRE.

Most current studies (Table 2) focused on adult epilepsy

with an unknown effect of the degree of hypothesized network

disruption effect on localization. Currently available automated

IC sorting techniques either only identify SOZ or RSN localizing

ICs. Hunyadi et al. (2015), the first major work to attempt SOZ

localizing ICs identification, used supervised ML but could only

achieve a specificity of 77% and a sensitivity of 40% on a subset

of the adult patient population. A more recent technique by

Nozais et al. (2021) used DL to identify only RSN in healthy

adults and reports an accuracy of 92%. The major drawback of

DL techniques is the requirement for labeled data on all three

IC categories. Table 2 shows that such labeled data is rarely

available, even if we combine datasets from different authors,

IC data labeled as RSN and SOZ are only available from 212

children with DRE. For DL to successfully recognize SOZ, it

will need at least a balanced distribution of RSN and SOZ. The

DL works in this domain utilize RSN data from 2,000 healthy

subjects for appropriate training (Table 2; Nozais et al., 2021;

Frontiers inNeuroimaging 05 frontiersin.org

https://doi.org/10.3389/fnimg.2022.1007668
https://www.frontiersin.org/journals/neuroimaging
https://www.frontiersin.org


B
a
n
e
rje

e
e
t
a
l.

1
0
.3
3
8
9
/fn

im
g
.2
0
2
2
.1
0
0
7
6
6
8

TABLE 2 Comparison of related research highlighting innovative aspects of the proposed research.

Problem References Epilepsy
type

Epileptic
zone
indicators

Task objective Validation
modality

Machine
learning
method

Supervised
(sup)/
unsupervised
(U)

Performance N A adult
C child

N of epilepsy
Subjects (N
with DRE)

N of test
epilepsy
subjects

N of subjects
with surgical
outcomes

Detection of

epilepsy

Nguyen et al., 2021 DRE Epilepsy Network

(EN)

Epilepsy classification

using fMRI z score

latency

Seizures CNN Sup Accuracy in Epilepsy

identification= 74%

Sensitivity= 85%

Specificity= 71%

322 C 63 (63) 13 0

Lopes et al., 2012 Focal Not Specified (NS) Epilepsy classification

using BOLD time series

Seizures Time series

analysis

U Accuracy= 87.5% 15 A 15 (0) 15 subjects with 40

events

0

Bharath et al., 2019 Focal

Temporal

Lobe

Hand classification

EN

Epilepsy classification

using ICA

Seizures SVM Sup Accuracy= 97.5%

Sensitivity= 100%

Specificity= 94.4%

132 A 42 (0) 0 (No test data, cross

validation accuracy)

0

Pre-surgical

screening to

determine

seizure onset

zone (SOZ)

Boerwinkle et al.,

2017

DRE RSN and SOZ Manual SOZ

localization

iEEG and post-op

seizure

No automation Sup 89% accuracy 40 C 40 (40) 33 40

Shah et al., 2018 DRE NS Finding correlation

between fMRI z score

latency and seizure

freedom

Post-op seizure Statistical

correlation

measures

U 25 out of 26 subjects have

temporal lobe signal latency

26 C 26 (26) 26 26 (21 seizure free)

Shah et al., 2019 DRE NS fMRI z score

latency-based seizure

foci lateralization

Manual

lateralization

Statistical

correlation

measures

U Mean accuracy 70%

Mean sensitivity 85%

Mean Specificity 65%

38 C 38 (38) 38 38 (14 seizure free)

Hunyadi et al., 2015 DRE SOZ Automated SOZ

identification (ID)

EEG-fMRI LS-SVM Sup 40% sensitivity

77% specificity

18 A 18 (18) 10 Not Specified (NS)

Zhang et al., 2015 DRE SOZ SOZ localization with

the manual

determination of brain

boundary

Concordance with

surgery resection

Statistical methods

using thresholds

U 77.7% sensitivity*

57% specificity**

9 A 9 (9) 9 NS

Lee et al., 2014 Intractable

partial

SOZ VDC-based SOZ

localization

iEEG. Statistical methods

on time series

U 72.4% sensitivity*** 29 A 29 (29) 21 29 (2 seizure free)

Nozais et al., 2021 Healthy RSN DL-based RSN ID Manual IC Sorting MLP Sup 92% accuracy 2000 A 0 (0) 0 0

Luckett et al., 2022 Focal

Temporal

Lobe

RSN and SOZ DL-based SOZ

hemisphere ID

Hemisphere

lateralization of

SOZ, and RSNs

CNN Sup 90.6% accuracy***** 2164 A 32 (0) 32 15 (11 seizure free)

EPIK (current

study)

DRE RSN and SOZ Fully automated

unsupervised method

(EPIK)

Manual IC sorting

Comparison of

Hunyadi et al. and

Nozais et al. on the

same dataset; and

post-op seizures

Rule guided noise

elimination,

maximum

likelihood based

classification

U RSN success:

Specificity: 73.7%

Sensitivity: 72%

SOZ success:

Specificity: 81.9%

Sensitivity: 88.6%

52 C 52 (52) 52 24 (18 seizure free)

DL, deep learning; DRE, drug-resistant or intractable epilepsy; EEG-fMRI, simultaneous EEG and functional MRI; IC, independent component; ID, identification; iEEG, intracranial EEG; ML, machine learning; LS-SVM, least squares support vector

machine; VDC, voxel degree connectivity; CNN, convolutional neural network.
*Zhang et al. (2015) only mentions concordance with surgical resection. Concordance is assumed to be true positive, and failure is assumed to be false negative. Hence percentage concordance is assumed to be sensitivity.
**Zhang et al. (2015) mentions success in rejecting non-epilepsy related IC. Rejection of non-epilepsy IC is assumed to be true negative and failure to reject is assumed to be false positive. Hence success rate is specificity.
***Lee et al. (2014) defines accordance with IC EEG. Accordance is assumed to be true positive, and failure is assumed to be false negative. Hence, percentage accordance is assumed to be sensitivity.
*****Sensitivity and specificity not mentioned. The high accuracy could also be due to the presence of a large number of true negatives.

T epileptic networks were those found to be altered compared to healthy controls, however, were not identified as being causative of epilepsy or a seizure onset zone.
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FIGURE 2

Innovations in EPIK. Compared to prior ML techniques, EPIK first purges ICs with noise markers by employing rules compiled from experts. The

ICs that pass the initial purge, are then classified into RSN and SOZ based on the maximum likelihood-based clustering mechanism. The

italicized text marks the innovations in this work.

Luckett et al., 2022). Hence, to achieve balanced data, we would

need SOZ from at least 2,000 subjects, a sample size that is

currently not available.

There has been one prior unsupervised approach by Zhang

et al. (2015); however, it was applied to DRE adults and achieved

a sensitivity of 78% and a specificity of 57%. We cannot replicate

that study for this paper, because specific information about

parameter settings was not discussed in Zhang et al. (2015).

The di�erence between EPIK and
supervised ML

In this study, we present a novel, unsupervised technique

to identify SOZ localizing ICs that require no prior dataset for

training and classify ICs by encoding expert knowledge. The

unsupervised nature of our algorithm implies that the entire

dataset is used as a test set and no training dataset is required.

Our algorithm is tested on the largest number of children with

DRE among the recent studies on automated SOZ identification

mechanisms with rs-fMRI listed in Table 2. Figure 2 illustrates

differences from Figure 1. ML techniques (Figure 2) utilize

examples of SOZ and RSN ICs to learn a model in the training

phase, which is subsequently used for the identification of SOZ

on previously unseen rs-fMRI signals. Such techniques have

not been successful, possibly for the following reasons: (1) SOZ

biomarkers are not precise and exhibit significant individual

variances (Hunyadi et al., 2015; Boerwinkle et al., 2017) and (2)

patients have low numbers of SOZ localizing ICs as compared

to noise and RSN, leading to an imbalance in data and potential

overfitting of ML models.

In the current study, EPIK (ExPert Knowledge-based IC

categorization; Figure 2) is used with an alternative approach.

Instead of directly learning SOZ-related features from training

data, EPIK first used expert rules in a waterfall technique to

purge noise ICs. Noise markers used by EPIK such as clusters

outside brain boundaries or overlapping white matter or arteries

are well-established, evidenced by consistency across several

publications (Kelly et al., 2010; Griffanti et al., 2014, 2017).

It then used SOZ-specific spatial and temporal markers in a

maximum likelihood-based clustering to further classify the ICs

into RSN and SOZ. Clustering was unsupervised and did not

implement training with prior data to tune its parameters.

To illustrate differences compared to prior, we replicated

the shallow learning strategy of Hunyadi et al. (2014) and

implemented a Convolution Neural Network (CNN) based DL

technique (Krizhevsky et al., 2012; Cui et al., 2018; Nozais

et al., 2021) for the identification of SOZ localizing ICs from

rs-fMRI, thereby providing a preliminary comparative study of

all three approaches on the same dataset of children with DRE
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FIGURE 3

Study procedure for extracting noise, RSN, and SOZ localizing ICs. Subjects underwent video EEG and anatomical MRI as a part of the normal

pre-surgical evaluation. In addition, the study protocol was also administered where rs-fMRI was collected.

using the standard metrics of accuracy, precision, specificity,

and sensitivity. We hypothesize that EPIK will perform at least

equally well as prior methods and consistently across age and

sex, due to being informed by developmental- and sex-informed

expert sorting in the pediatric DRE population.

Materials and methods

Inclusion criteria

Patients who were determined to have DRE by a treating

epileptologist and received surgery evaluation were included.

Most of the patients had focal epilepsy; however, rapid

generalization of epileptiform activity from an epileptogenic

focus may appear to be generalized epilepsy when evaluated

using surface EEG. Hence, generalized epilepsy was not an

exclusion criterion.

Data collection method

The rs-fMRI data from 52 children with DRE aged 3

months−18 years old, who were under the care of a treating

epileptologist at Phoenix Children’s Hospital (PCH), were
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selected in descending alphabetical order from the PCH clinical

database (Age and sex distribution provided in Table 3). The

diagnosis of DRE was according to the treating epileptologist’s

documented medical record notes. The children received rs-

fMRI, video EEG, and anatomical MRI as part of standard

clinical MRI SOZ localization for epilepsy surgery evaluation

(Figure 3). For rs-fMRI, patients who were determined to

require conscious sedation, received a propofol infusion as a

part of standard care determined by the institution’s policies.

Of the 52 children, 39 required conscious sedation. The dataset

included patients who had<1mm head motion in any direction

during scanning. For children who received sedation, propofol

administered at levels to produce conscious sedation (80–110

micrograms/kilogram/minute), avoiding higher dosages typical

of general anesthesia, was utilized. Propofol administered at

levels producing conscious sedation reduces the BOLD signal

strength by∼10%, still allowing for complete network detection

(Vanderby et al., 2010; Schrouff et al., 2011). General anesthesia

causes gross loss of ability to detect the large-scale cortical

networks and, was, therefore avoided.

As part of the standard of care, the children also received

inpatient video EEG and anatomical MRI. This data also aided

the manual identification of SOZ localizing ICs in rs-fMRI

(Figure 3).

The MRI images were acquired using a 3T MRI unit

from Ingenuity Philips Medical systems. It has a 32-channel

head coil. The resting state fMRI parameters were set at TR

2,000ms, TE 30ms, matrix size 80 × 80, flip angle 80, number

of slices 46, slice thickness 3.4mm with no gap, in-plane

resolution 3 × 3mm, interleaved acquisition, and number of

total volumes 600, in two 10-min runs, with a total time

of 20 mins.

rs-fMRI pre-processing

Oxford Centre FMRIB (Functional MRI of the Brain)

Software Library tool MELODIC (Beckmann and Smith, 2004)

was used to analyze the rs-fMRI and extract ICs as detailed

in a previous study (Boerwinkle et al., 2019). Pre-processing

included deletion of the first five volumes to remove T1

saturation effects, passing through a high-pass filter at 100 s, slice

time correction, spatial smoothing of 1-mm full-width at half

maximum, andmotion corrected byMCFLIRT (Jenkinson et al.,

2002), with non-brain structures removed.

Linear registration was performed between the individual

functional scans and patients’ high-resolution anatomical scans

(Jenkinson and Smith, 2001), which was further optimized

using boundary-based registration (Greve and Fischl, 2009).

Individual rs-fMRI data sets then underwent independent

component analysis (ICA) as previously reported (Boerwinkle

et al., 2017).

Expert rs-fMRI evaluation methodology

The SOZ was evaluated by the expert epilepsy surgery

conference team and deemed to be consistent with the

other acquired data (video EEG and anatomical MRI) with

high enough evidence to surgically target the SOZ. Further,

the confirmation that the SOZ was deemed true by the

treatment team was evidenced by the Engel I and II scores 1

year post-operatively.

The ICA results were viewed by two blinded reviewers

(one neurologist and one neurosurgeon) who sorted the

ICs into three categories—noise, resting-state network,

and rs-fMRI SOZ—by the criteria below. In case of

disagreement between the first two reviewers, the opinion

of a third reviewer (a neurologist) was used to make

the final determination. In this study, there was no

disagreement between the blinded reviewers for the

selected subjects.

Rs-fMRI was categorized into noise, resting state network

(RSN), and SOZ using the following criteria.

Noise category

Consistent noise markers in rs-fMRI are reported in the

literature (Hunyadi et al., 2015; Boerwinkle et al., 2019). The

noise markers reported in different manuscripts are summarized

in Table 4.

RSN category

These are activations in the MRI images that are spatially

located in established anatomical regions. Such regions are

highlighted in literature (Boerwinkle et al., 2019) and include

“primary sensory motor networks located in the bilateral face

area, the bilateral leg area, and the unilateral right- and left-

hand regions; language networks primarily located within the

left and right inferior frontal gyrus, posterior–superior temporal

gyrus, posterior–superior temporal sulcus, posterior–middle

temporal gyrus, and the supramarginal gyrus; parietal networks

primarily located within the bilateral homologous parietal

gyri; frontal networks primarily located within the bilateral

premotor, and homologous bilateral frontal gyri; temporal

networks primarily located within the bilateral homologous

anterior and posterior temporal regions; visual networks located

within the bilateral homologous primary and secondary visual

association cortices; the default mode network located primarily

within the bilateral posterior cingulate gyrus, precuneus, inferior

parietal lobules, and medial prefrontal cortex; and the deep

gray networks located with the bilateral putamen and bilateral

mesial thalami.”
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TABLE 3 Patient distribution and information about the data set.

Number of subjects 52

Age ≤ 5 years 20

Age > 5 and ≤ 13 18

Age > 13 and ≤ 18 14

Men/Women 23/29

Prior surgery 2

Surgery post resting-state fMRI 24 (ablation 15, resection 7,

disconnection 2)

Seizure free post-surgery, and rs-fMRI SOZ is

the same location as the region destroyed

determined by expert review of pre-operative

rs-fMRI SOZ and post-operative imaging

16 (ablation 10, resection 6,

disconnection 1)

SOZ category

SOZ characteristics consist of two types of features: (a)

spatial features and (b) temporal features.

Spatial features

The activation must be located within the gray matter while

not overlapping with the RSN spatial patterns. It must have

a bullseye pattern, where two or more overlapping abnormal

neuronal IC can be identified, may have an alternating activation

and deactivation pattern that does not overlap noise zones,

(noise IC characteristics 2, 3, and 4 in Table 4), may extend to

ventricles through white matter, and may have irregular borders.

Temporal features

The SOZ BOLD signal power spectra must contain

dominant frequencies >0.073Hz, the rs-fMRI SOZ must have

power spectra at higher frequencies than RSN, and the BOLD

time series may have irregular patterns.

The rs-fMRI IC were sorted by an expert and

reported to the clinical epilepsy surgery evaluation team.

The data includes ICs extracted using the MELODIC

module in FSL (Beckmann and Smith, 2004). Table 3

provides the age and sex distribution and surgical

outcome statistics.

Ethics statement

Institutional IRB for retrospective analysis for this

project was approved by the PCH Institutional Review Board

(20–358), who determined that, since the retrospective

rs-fMRI for these subjects was collected as part of a

standard-preoperative MRI, no additional consent procedures

were required.

Data/code availability statement

The data were deidentified according to the National

Institutes of Health (NIH) Privacy Rule permits and made

available for research application. Further, in accordance with

the open science policy, we will provide interested researchers

access to EPIK to enable them to reproduce our results.

EPIK method

EPIK (Figure 4) considers noise markers for ICs in an rs-

fMRI, as documented in several studies including Griffanti et al.

(2014, 2017). The method applies rules in a waterfall technique

to classify an IC as noise (Figure 4). If an IC is not noisy, then

it classifies the IC as either an RSN or a SOZ. In detail, there

are six expert-derived rules for IC noise markers, combined

from Boerwinkle and Hunyadi’s works (Table 4). Automated

application of such rules necessitates the development of the

following key components:

a) Voxel cluster detection algorithm: A density-based scanning

approach is undertaken to derive voxel clusters (upper

panel Figure 4). The algorithm takes two configurable inputs:

neighborhood, which includes a distance metric and a value

ǫ, and the minimum number of nearby voxels vmin. If a voxel

has more than vmin voxels in the ǫ neighborhood, then it

is marked as a core point of a cluster. If a voxel is not a

core point but is in ǫ neighborhood of a core point, then it

is identified as a border point. All other points are ignored

from clusters. Core points, that are in ǫ neighborhood of each

other, are combined into one cluster, and border points are

assigned to the cluster of the nearest core point. The output

of this step is the set of clusters in each IC slice.

b) Brain boundary/periphery detection: Contours in the brain

are derived using a Sobel filter-based edge detection

technique (Figure 4; Chakraborty et al., 2020). The lowest

intensity contour is most likely the outer contour of the

brain. However, the cerebrospinal fluid and blood vessels also

present as low-intensity contours. The method searches for

the contour that encompasses all other contours, which gives

us the brain periphery.

c) White matter detection: The white matter manifests as

the brightest contour in the brain. The blood vessels and

cerebrospinal fluid in the white matter contour are discarded.

d) Blood vessel detection: The major basal-region blood vessels

present themselves as low-intensity contours encompassed in

the brain periphery contour.

e) Noise IC classification: Utilizing the a, b, c, and d steps, an IC

can be classified as noise (Figure 5). From each slice of an IC,

the clusters and the contours are extracted. An overlapping

cluster can cause the contour detection algorithm to fail
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in extracting the peripheral, the white matter, and the blood

vessel contours. In the initial pass through the ICs, EPIK

obtains a version of each slice devoid of clusters, which is

subsequently used to identify contours. The algorithm then

reruns through each slice of an IC and performs cluster

detection. It then evaluates the overlap of the largest cluster

with the brain boundary (first row in Figure 5) and the

intersection of the largest cluster with the white matter and

blood vessels (third row in Figure 5). The output of the first

stage classifier (upper panel in Figure 4) is a statistic for each

slice on the cluster size, the percentage (%) overlap with the

brain boundary, the blood vessels, and the white matter for

each cluster in a slice.

Each IC has multiple slices (around 55 for PCH dataset).

The second stage classifier sorts the slices in decreasing order of

cluster size (lower panel of Figure 2). It selects the top 10 slices

TABLE 4 Noise markers in fMRI IC.

Noise independent component (IC) characteristics

1. A large number of small voxel clusters

2. Cluster peaks in the white matter

3. High overlap with the white matter, the cerebrospinal fluid, or the

blood vessels

4. Crescent shape aligning with the brain boundary

5. Sudden changes in the oscillation pattern in the BOLD signal

6. Located within area of signal loss

and checks the percentage overlap to determine noise slices. If

the majority of the top 10 slices are noise, the IC is classified

as a noise IC. If the IC passes through the majority evaluation,

it is passed to the second-level classifier, which determines if it

is a normal RSN or an SOZ (Figure 4). The SOZ classification

is based on expert guidance on the SOZ markers in ICs, as

documented in Hunyadi et al. (2013; 2015; Table 4).

f) BOLD signal feature extraction: The BOLD signal was first

divided into windows of length 256 samples. Four levels of

activelet transformation coefficients using “à trous” algorithm

with exponential-spline wavelets were extracted from each

window. Sparsity in the activelet coefficients was evaluated

using the Gini Index metric (Lerman and Yitzhaki, 1984).

A Gini Index of >0.75 is sparse. If an IC is classified as

white matter noise, then it can be classified as an SOZ if

the Gini Index in the BOLD signal is >0.75. In addition,

sparsity in matching pursuit using a sine dictionary limited to

frequencies between 0.01 and 0.1Hz was also evaluated using

the Gini index. If an IC was classified as white noise, then it

can be classified as SOZ if the BOLD signal Gini Index in the

sine dictionary matching pursuit is >1.72.

DL strategy for SOZ localization

Nozais et al. (2021) recently proposed a DL-based technique

where a multi-layer perceptron (MLP) is trained on 12,690

RSNs from 282 participants. As such, it does not incorporate

FIGURE 4

EPIK: Unsupervised approach for SOZ classification. The EPIK method is applied on individual IC to classify it as SOZ or RSN or noise.
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FIGURE 5

Demonstration of unsupervised IC sorting mechanism.

any expert knowledge but instead attempts to build its own

hypothesis from examples. The technique has not been used

to classify SOZ and can currently only identify RSNs. We

implemented CNN-based DL for SOZ localization.

For the CNN technique, hyperparameter tuning

is one of the most important steps. A KerasTuner

was implemented to get the optimal values of the

hyperparameters. We used a hyperband algorithm

with the objective of least validation loss to

select the best model of CNN by optimizing the

following hyperparameters:

• Number of layers: [3; 4; 5]

• Number of units/filters per layer: min_value = 32,

max_value= 512, default= 128.

• Learning rate: [10−2; 10−3; 10 −4]

• Dropout rate: [0; 0.2; 0.33; 0.4; 0.5; 0.66].

We used 4,212 ICs for training and 1,404 ICs for validation

in the hyperparameter tuning process. The input shape of the IC

image was downsampled from 1,006 × 709 × 3 to 270 × 400

× 3 during preprocessing. Binary cross-entropy was used as a

loss function, and Adam was used as an optimizer. To avoid the
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overfitting problem, “dropout” and “early stopping” strategies

were implemented. “ReLU” (rectified linear unit), being more

computationally efficient, was used as an activation function

for the input and hidden layers, and the “Sigmoid” activation

function was used for the output layer. For CNN, weights were

initialized using the “He uniform” initializer.

Shallow learning strategy

The technique proposed by Hunyadi et al. (2013, 2014, 2015)

was replicated. The rs-fMRI image and BOLD signal features

were extracted from the IC images. From the entire pool of ICs,

60% of the data were randomly sampled to be used as training

data. The remaining 40% were used for testing. The features

extracted from the rs-fMRI image and BOLD signal were used

to train a Least Squares Support Vector Machine (LS-SVM), as

described by Hunyadi et al. (2013, 2014, 2015).

The following features were extracted from each IC

following the study of Griffanti et al. (2014): (a) number of

clusters greater than a pixel size of 135; (b) asymmetry of an

IC using the difference in the z-scored value of the voxels in

the left hemisphere and their contralateral voxels in the right

hemisphere; (c) sparsity in activelet basis using the Gini index

metric; (d) sparsity in sine basis using the Gini index metric.

The SVM was then trained for the two-class classification task

[(either RSN vs. noise) or (SOZ vs. non-SOZ)]. We utilized

two kernels: radial basis function (RBF) and linear kernel. The

performance for the linear and RBF kernels was similar and,

hence, followed Occam’s Razor theory; in this manuscript, we

only report the performance for the linear kernel.

Metrics and statistical analysis method

We evaluated the performance of each approach for two

objectives: (a) noise IC removal and (b) SOZ localizing IC

identification. For the first objective, we defined true positives

(TP) as ICs that are classified as RSN or SOZ by both expert

and the automated approach, true negatives (TN) as ICs that

are classified as noise by both the expert and the automated

approach, false positives (FP) as ICs classified as noise by the

expert but RSN or SOZ by the automated approach, and false

negatives (FN) as ICs classified as RSN or SOZ by the expert but

noise by the automated approach. For the second objective, we

define TP as ICs classified by both the expert and the automated

approach as SOZ or RSN, TN as ICs classified by both the expert

and the automated approach as not SOZ, FP as ICs classified as

non-SOZ by the expert but SOZ by the automated approach,

and FN as ICs classified as SOZ by the expert but non-SOZ

by the automated approach. From these, we derived accuracy,

precision, sensitivity, and specificity.

We evaluated the statistical significance of a difference in

performance metrics between the two approaches by utilizing

a one-sided paired t-test. The alternate hypothesis was that

there is a positive non-zero difference between EPIK and any

other approach (LS-SVMor CNN). The alternate hypothesis was

rejected if the p-value for the paired t-test was <0.05.

We also evaluated the effect of age and gender on each

approach using a mixed-effects model with each parameter as

the observation variable and age or gender as the predictor

variable. A random effect on the patient ID was also introduced.

For each algorithm, a separate mixed-effects model was

generated for each metric and for each predictor variable,

i.e., age/gender.

Results

Overall identification results

We compared the performance of EPIK with two competing

ML-based approaches: shallow learning (LS-SVM) and deep

learning (CNN). For the ML-based approach, training data

was used from every subject. This is also known as the

user-dependent (Bhakta et al., 2020) supervised classification

approach and gave us the best performance metrics. For EPIK,

no such training set is needed. The results in Table 5 show

that EPIK outperforms both LS-SVM and CNN approaches for

SOZ localizing IC identification tasks. The CNN approach is

more accurate in noise removal but performs poorly in the SOZ

identification task.

EPIK has high sensitivity in the SOZ identification task

with a low number of FNs. This implies that EPIK rarely

misses any SOZ localizing IC. The LS-SVM approach is poor

in noise removal, but its performance improves for the SOZ

identification task. The confidence interval is specified as [a,b]

for metrics with a p-value < 0.5.

Performance variation with age and
gender

Table 6 shows the variation of the performance metrics for

EPIK, LS-SVM, and CNN with respect to age and gender. The

accuracy, precision, and sensitivity of EPIK for noise removal

do not have a statistically stable dependence on age or gender.

The specificity of EPIK for noise removal decreases with age,

resulting in more FPs, where noise is categorized as RSN or SOZ.

For the SOZ identification task, there is a statistically significant

trend for sensitivity to increase and specificity to decrease

with age. This implies that, as age progresses, EPIK tends to

classify more RSN or noise as SOZs; however, fewer SOZs are

ignored as noise. Consequently, EPIK is observed to have an
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TABLE 5 Overall RSN or SOZ identification results for the three approaches.

Approach RSN or SOZ vs. noise SOZ vs. non-SOZ (RSN or noise) Key observations

Accuracy Precision Sensitivity Specificity Accuracy Precision Sensitivity Specificity

EPIK

(this paper)

71.7% 73.1% 72% 73.7% 84.7% 74.1% 88.6% 81.9% Best performance for SOZ

identification

LS-SVM

(Hunyadi et al., 2014)

61.8% 52.2% 43% 73.6% 80.7% 52.2% 72.1% 78.7% High false positives and false

negatives

Significant variance

across patients

One sided t-test for+ve

difference between EPIK and

LS-SVM

p-value=∼0

[5, 15.2]

p-value=∼0

[18.7, 27.4]

p-value=∼0

[27.4, 45.9]

Rejected

p-value= 0.9

p-value=∼0

[2, 6.5]

p-value=∼0

[20.7, 29.1]

p-value=∼0

[14.1 25.3]

Rejected

p-value= 0.06

CNN (Nozais et al., 2021) 82.45% 82.7% 82.1% 81.5% 73.5% 28.5% 97.7% 42.85% Best RSN identification

performance.

Poor SOZ performance due to

lack of hand sorted SOZ

IC examples.

One sided t-test for+ve

difference between EPIK and

CNN

Negative

change

P-value∼ 0

[−5.1,−13.2]

Rejected

P-value= 0.6

Negative

change

P-value∼0

[−7,−12.1]

Negative

change

P-value= 0.02

[−4.1,−9]

P-value∼0

[8.3, 15.7]

P-value∼ 0

[51.2, 60]

Negative

change P-value

∼ 0

[−4.2,−11.3]

P-value= 0.001

[31.6, 45.2]
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TABLE 6 Age- and sex-segregated metrics for the unsupervised IC classification algorithm, the LS-SVM approach by Hunyadi et al., and the CNN deep learning approach.

Metric Algorithm 0 <Age ≤5

(N = 20)

5 < Age ≤13

(N = 18)

13 < Age ≤18

(N = 14)

P-value fixed

effects on age

Men

(N = 23)

Women

(N = 29)

P-value fixed

effects on sex

Key observations

Noise vs. network/SOZ performance metrics

Accuracy EPIK 69.4% (±9%) 74% (±8.2%) 71.7% (±5.8%) 0.32 73.8% (±5.3%) 70% (±9.4%) 0.04† CNN gives the best RSN

identification accuracy for all age

categories. followed closely by

EPIK

LS-SVM 55.8% (±11.5%) 63.7% (±7.7%) 65.3% (±8.4%) 0.004† 63.6% (±9.5%) 59.1% (±10.6%) 0.06 LS-SVM is poorest in identifying

RSN since it only considers SOZ

markers in ICs.

CNN 73.2% (±4.5%) 76.1% (±0.6%) 80.2% (±5.8%) ∼0 72.8% (±8.2%) 77.4% (±4.7%) 0.09 Success of CNN can be attributed

to availability of a significant

number of normal RSN ICs (n

= 2,427)

Precision EPIK 74.9% (±16.2%) 73.6% (±13.7%) 66.5% (±10%) 0.048 73.5% (±11.5%) 71.1% (±16%) 0.27

LS-SVM 55.6% (±32.4%) 52.8% (±15.9%) 46.5% (±18%) 0.3 54.8% (±22.2%) 50.1% (±25.4%) 0.24

CNN 68.2% (±11.7%) 75.2% (±1.5%) 75.4% (±7.3%) ∼0 69.2% (±13%) 75.91% (±15.1%) 0.3

Sensitivity EPIK 63% (±18%) 76.6% (±9.3%) 76.8% (±9.7%) 0.001† 75.2% (±10.7%) 68.43% (±16.9%) 0.047

LS-SVM 27.5% (±25.9%) 50.8% (±26.9%) 55.1% (±22%) 0.001† 52.6% (±28.9%) 35.4% (±24.9%) 0.012†

CNN 86.09% 81.5% 85.96% 78% 79.5%

Specificity EPIK 79% (±13.8%) 72.7% (±17.1%) 68.2% (±8.4%) 0.01† 73.4% (±13.5%) 74.2% (±15.2%) 0.41

LS-SVM 80.5% (±17.4%) 68.8% (±23%) 70% (±10%) 0.035† 71.3% (±17%) 75.5% (±19.9%) 0.2

CNN 60.5% 70.8% 75% 67.9% 75.31%

SOZ identification metrics

Accuracy EPIK 87.5% (±7.6%) 83.5% (±9.6%) 82.2% (±6.1%) 0.025† 84.6% (±6.7%) 84.7% (±9.3%) 0.48 EPIK has the best performance for

SOZ localizing IC identification

LS-SVM 85.3% (±6.6%) 77.2% (±9.4%) 78.6% (5.7%) 0.008† 79.5% (±8.8%) 81.6% (±7.7%) 0.17 EPIK has consistent performance

across age.

CNN 75.5% (±27.7%) 75.3% (±26.6%) 76.5% (±21%) 0.8 71% (±28.2%) 73% (±30.2%) 0.44 EPIC has the best performance for

children of age <5 years. This is a

key benefit because it is known

that earlier surgery for epilepsy

yields better surgical and

developmental outcomes.

Precision EPIK 76.7% (±16.3%) 75.2% (±14.4%) 69.2% (±9.9%) 0.07 76.3% (±10.7%) 72.5% (±16.5%) 0.17

(Continued)

F
ro
n
tie

rs
in

N
e
u
ro
im

a
g
in
g

1
5

fro
n
tie

rsin
.o
rg

https://doi.org/10.3389/fnimg.2022.1007668
https://www.frontiersin.org/journals/neuroimaging
https://www.frontiersin.org


Banerjee et al. 10.3389/fnimg.2022.1007668
T
A
B
L
E
6

(C
o
n
ti
n
u
e
d
)

M
et
ri
c

A
lg
o
ri
th
m

0
<
A
g
e
≤
5

(N
=
2
0
)

5
<
A
g
e
≤
1
3

(N
=
1
8
)

1
3

<
A
g
e
≤
1
8

(N
=
1
4
)

P
-v
al
u
e
fi
x
ed

eff
ec
ts
o
n
ag
e

M
en

(N
=
2
3
)

W
o
m
en

(N
=
2
9
)

P
-v
al
u
e
fi
x
ed

eff
ec
ts
o
n
se
x

K
ey

o
b
se
rv
at
io
n
s

L
S-
SV

M
62
.5
%
(±

17
.2
%
)

56
.9
%
(±

15
%
)

51
.4
%
(±

15
%
)

0.
06

54
.7
%
(±

15
.7
%
)

55
%
(±

16
.3
%
)

0.
2

C
N
N

53
.8
%
(±

50
.2
%
)

50
%
(±

51
.4
%
)

45
%
(±

50
%
)

0.
03
5

45
.9
%
(±

49
.9
%
)

54
.4
%
(±

50
%
)

0.
54

Se
n
si
ti
vi
ty

E
P
IK

8
6
.8
%
(±

8
.8
%
)

8
9
.4
%
(±

6
.8
%
)

9
0
.4
%
(±

7
.6
%
)

0
.0
8
5
†

88
.1
%
(±

7.
1%

)
89
.1
%
(±

8.
5%

)
0.
34

L
S-
SV

M
58
.8
%
(±

33
.9
%
)

74
.6
%
(±

19
.5
%
)

87
.8
%
(±

23
%
)

0.
00
1†

78
.8
3%

(±
25
.6
%
)

66
.7
%
(±

30
.4
%
)

0.
06
5

C
N
N

11
.1
%
(±

3%
)

0
(±

0)
0
(±

0)
0.
00
1

20
%
(±

5%
)

3.
44
%
(±

3%
)

0.
00
2

Sp
ec
ifi
ci
ty

E
P
IK

8
6
.6
%
(±

1
2
.8
%
)

7
9
.9
%
(±

1
5
.6
%
)

7
7
.8
%
(±

8
%
)

0
.0
2
†

81
.7
%
(±

12
.1
%
)

82
%
(±

14
.2
%
)

0.
47

L
S-
SV

M
86
.4
%
(±

14
.1
%
)

73
.2
%
(±

21
.8
%
)

74
.9
%
(±

9.
3%

)
0.
01
5†

75
.3
%
(±

17
%
)

81
.5
%
(±

17
%
)

0.
09

C
N
N

74
.9
%
(±

27
.6
%
)

75
.3
%
(±

26
.6
%
)

76
.1
%
(±

22
%
)

0.
4

75
.3
7%

(±
28
.2
%
)

76
.5
9%

(±
30
%
)

0.
8

†
In
d
ic
at
es

th
at
th
e
re
su
lt
h
as

a
p
-v
al
u
e
o
f
<

0.
05

an
d
is
st
at
is
ti
ca
ll
y
si
gn

ifi
ca
n
t.
B
o
ld

va
lu
e
re
fe
rs
to

o
u
r
te
ch
n
iq
u
e
E
P
IK

’s
re
su
lt
s.

accuracy >85% at ages below 5, which is higher than those

previously reported.

The LS-SVM approach had consistently better performance

for the SOZ identification task than noise removal. It also

had the same pattern of increasing sensitivity and decreasing

specificity with age. The LS-SVMapproach had a higher variance

in performance across subjects. This indicates that the hand-

crafted features chosen by Hunyadi et al. may be less applicable

to specific scenarios of DRE in children.

The CNN approach outperformed EPIK and LS-SVM for

all age groups for noise removal. However, it had a lower

performance for SOZ identification. In the training data,

there were only 318 SOZ localizing ICs as opposed to 2427

RSN IC. This may have led to an underfitting of the CNN

technique for SOZ identification. For the CNN technique in

noise removal, both sensitivity and specificity increased with

age. This potentially indicates that the CNN technique is finding

novel hidden features from the ICs that are characteristic of RSN

but not SOZ.

Overall, EPIK provided a consistent performance across the

three age categories considered in this study compared to prior

reportedmethods.Whereas, theML techniques of Hunyadi et al.

(2015) and CNN have significantly higher variance, possibly

indicating inconsistent performance.

Performance on subjects undergoing
surgery

Out of the 52 subjects considered in this study, 24

underwent surgery. The surgical outcomes were varied with

16 subjects becoming seizure-free (Engel I) after surgically

destroying an expert-identified SOZ using rs-fMRI and seven

having reduced post-operative seizure frequency (Engel II;

Table 7). We focused on EPIK and LS-SVM for the SOZ

identification task on the 24 subjects that underwent surgery

because CNN had significantly poorer performance than the

other two.

Table 7 shows that, for subjects whose post-operative

outcomes are either seizure-free or have significantly reduced

frequency, the agreement between EPIK and expert-hand

classification is significantly high (88.9% sensitivity and 79%

specificity). Although the LS-SVM approach has nearly similar

accuracy as EPIK, the sensitivity is far lower in LS-SVM,

with significant individual variance. To better understand the

difference between EPIK and the LS-SVM approach, Figure 6

shows the receiver operating characteristics (ROC) curve for

both EPIK and LS-SVM. EPIK exhibits higher sensitivity and

specificity than LS-SVM, which appears to possibly sacrifice one

for the other.

For patients undergoing ablation surgery, the specificity

for EPIK was 82.9%, while the sensitivity was 88%. This
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TABLE 7 Performance of EPIK and LS-SVM approaches for subjects undergoing surgery.

Age, years

(months)

Sex Pre-surgery

frequency (per

month)

Post-surgery

frequency (per

month)

Procedure Method Accuracy Precision Sensitivity Specificity

18 (0) W 1 0 A* EPIK 82.8% 71.7% 82.5% 82.9%

LS-SVM 78.7% 58.8% 76.9% 79.4%

14 (8) M 1 0 A EPIK 85.2% 75.5% 90.2% 82.1%

LS-SVM 68.2% 48% 92.3% 58.1%

14 (7) W 3 1 (66% reduced) A EPIK 86.5% 78.2% 95.6% 79.7%

LS-SVM 71.4% 52% 100% 58.6%

14 (10) M 1 0 A EPIK 86.3% 77.1% 86.1% 86.4%

LS-SVM 82% 35.7% 100% 80%

16 (3) W 210 0 A EPIK 86.5% 67.9% 97.4% 82.4%

LS-SVM 91.3% 37.5% 100% 63.5%

10 (1) W 240 0 A EPIK 74.2% 60.5% 95.8% 60.5%

LS-SVM 76% 60% 100% 62.5%

8 (2) M 4 2 (50% reduced) A EPIK 83.3% 77% 94.1% 73.1%

LS-SVM 85.4% 71.4% 83.3% 86.2%

15 (6) W 12 0 A EPIK 86% 62.9% 78.6% 88%

LS-SVM 87.3% 0 0 97.9%

10 (5) W 60 8 (87% reduced) A EPIK 85.5% 69.6% 91.4% 82.9%

LS-SVM 83% 40% 66.7% 85.4%

3 (2) W 60 1 (98% reduced) A EPIK 87.4% 78% 86.5% 87.8%

LS-SVM 88.9% 81.8% 75% 94%

17 (9) M 2 0 A EPIK 74.3% 50% 88.9% 69.2%

LS-SVM 75% 25% 66.7% 76%

11 (8) M 1 0 R* EPIK 80.6% 62.5% 65.8% 85.8%

LS-SVM 82.8% 16.7% 16.7% 90.4%

4 (9) W 2 0 R EPIK 84.1% 72.7% 84.2% 84%

LS-SVM 80.4% 14.3% 25% 85.7%

18 (1) W 5 0 R EPIK 72% 55.6% 87% 64.4%

LS-SVM 71.4% 50% 75% 70%

10 (5) W 8 0 R EPIK 57.5% 44.1% 93.8% 38.7%

LS-SVM 63.1% 58.8% 100% 22%

13 (8) M 120 1 (99% reduced) R EPIK 82.9% 72.9% 93.5% 75.4%

LS-SVM 77.8% 43.7% 87.5% 75.7%

2 (7) W 2 0 D* EPIK 84.5% 53.2% 100% 81.3%

LS-SVM 81.8% 38.5% 100% 79.5%

2 (7) M 720 0 A EPIK 89.1% 81.3% 88.6% 89.3%

LS-SVM 90.4% 50% 60% 93.6%

0 (3) W 90 30 (66% reduced) A EPIK 98.8% 100% 92.9% 100%

LS-SVM 97.1% 100% 50% 100%

2 (10) W 300 0 R EPIK 84.8% 74.5% 97.4% 75.5%

LS-SVM 89.2% 71.4% 100% 85.2%

2 (11) M 4 0 D EPIK 69.1% 61% 96.2% 44.8%

LS-SVM 81.8% 78.9% 100% 42.8%

2 (1) W 3,000 0 A EPIK 88.4% 45% 60% 91.6%

LS-SVM 88.1% 25% 20% 94.4%

3 (6) M 30 0 A EPIK 88.6% 78.6% 91.7% 87%

LS-SVM 78.6% 68.4% 100% 60%

1 (4) F 180 0 R EPIK 94.1% 94.3% 84.6% 98%

LS-SVM 88.9% 50% 16.7% 98%

(Continued)
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TABLE 7 (Continued)

Approach Mean accuracy (SD) Mean precision (SD) Mean sensitivity (SD) Mean specificity (SD)

Agreement with expert hand classification for seizure-free/reduced post-operative outcome

EPIK 83.3% (8.43%) 69.45% (13.6%) 88.9% (9.6%) 79% (14.4%)

LS-SVM 80.45% (9.8%) 47.6% (23.9%) 72.5% (32.6%) 75.5% (19.5%)

Agreement with expert hand classification for ablation procedures

EPIK 85.5% (5.8%) 71.6% (13.4%) 88% (9.3%) 82.9% (9.6%)

LS-SVM 82.8% (8.1%) 50.2% (24.9%) 72.7% (30.5%) 79.3% (15.3%)

Agreement with expert hand classification for resection procedures

EPIK 79.4% (11.6%) 68.1% (16%) 86.6% (10.5%) 74.5% (18.9%)

LS-SVM 79.1% (9.4%) 43.6% (21.1%) 60.1% (39.1%) 75.3% (25.2%)

The table also shows the difference in agreement between the automated approach and the expert hand classification for subjects with seizure-free/reduced frequency post-operative

outcomes and without any change in seizure frequency.
*A, Ablation; R, Resection; D, Disconnection.

FIGURE 6

Receiver operating characteristics (ROC) curve for EPIK and the LS-SVM approach for patients undergoing surgery. A curve close to the top

left-hand corner of the graph is favorable and shows a balance between sensitivity and specificity.

is preliminarily an encouraging result, given that ablation is

minimally invasive and thus largely accepted as less risky than

resection. The specificity and sensitivity in EPIK for patients

undergoing resection reduce to 79.5 and 86.6%, respectively.

Of the 15 subjects who underwent the ablation procedure, 10

were seizure-free (Engel 1 outcome), which is slightly better than

recently reported statistics [66% in this study vs. 60.4% reported

in Kanner et al. (2022)]. Supplementary Table 1 gives the SOZ

location and fMRI evidence of SOZ for all subjects in the study.

Reduction in IC sorting e�ort for the
neurosurgeon/neurologist

The ICs marked as SOZ by the EPIKmethod can be supplied

to the neurosurgeon or neurologist for localization of SOZs in

the brain. The number of SOZ classifications in EPIK per subject

is 22 (±4). Out of 22, 16 are true positive SOZ ICs, two are noise

ICs, and four are RSN ICs. These ICs are then evaluated by the

neurosurgeon or neurologist for determining SOZ in the brain.
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This implies that there is ∼5 times reduction in the number

of ICs to be analyzed by the neurosurgeon or neurologist.

This can significantly aid in presurgical screening by reducing

the cognitive burden of the neurosurgeon or neurologist and

improving the accuracy of the SOZ identification.

Discussion

A strength of EPIK, which may increase its utility, is that

it does not require any prior training data and hence it uses

a plug-n-play IC sorting method. EPIK combines spatial and

temporal markers specific for RSN and SOZ, which results in

possibly equivalent or better performance than prior methods.

The waterfall technique removes the number of noise ICs using

well-established expert rules; hence, it may reduce false positives

and increase true positives of SOZ localizing ICs.

For subjects with good postoperative outcomes, there was

excellent agreement between expert hand sorting and EPIK-

based SOZ localizing IC identification. Also, EPIK appeared to

perform well in those <5 years of age, in whom surgery yields

improved developmental outcomes (Pindrik et al., 2019; Perry

and Shandley, 2021).

The LS-SVM approach did not perform as well for the

noise identification task but did show a drastic improvement

in performance for the SOZ identification task. This was

expected because the hand-selected features proposed by

Hunyadi et al. (2013, 2015) are specifically geared toward

the SOZ identification task. However, LS-SVM exhibits

significant variance in performance across subjects, resulting in

inconsistent accuracy in this study. EPIK had a higher and more

consistent balance in the identification of all three categories of

IC compared to LS-SVM herein.

The CNN approach had a lower performance for SOZ

identification. However, there was a significant improvement in

the performance of the noise identification task. This can be

explained by the difference in data availability for the two tasks.

This gives confidence that CNN can perform better if given an

adequate number of training-SOZ-localizing ICs; this could be

an avenue for future research.

The general assumption in supervised machine learning is

that elements from each class come from a unique distribution

specific to the class. The ML technique then attempts to learn

the differences in the distribution of each class and evaluate the

best fit distribution for the test data. The fundamental limitation

of the LS-SVM approach is that SVM is inherently a two-class

classifier. Although there are multi-class versions of SVM, the

multi-class classification is performed in stages, where each stage

is a two-class classifier. For rs-fMRI sorting, this would mean

that the RSN and noise class will have to be combined into one

composite class, while the SOZ ICs are labeled as the class of

interest. In rs-fMRI, noise ICs are composed of several different

categories of noise such as peripheral noise, white matter noise,

and artery noise. Each such noise characteristic has different

feature distributions; however, they are considered to be the

same class by the supervised ML technique. Moreover, the noise

class is combined with the RSN class to make a non-SOZ

composite class. Hence, the non-SOZ composite class for rs-

fMRI ICs has a composite distribution. As such, it is very difficult

for the supervised ML classifier to learn the unique distribution

of the non-SOZ IC class. A way around this is to learn each kind

of noise and RSN separately. However, that requires data for

each kind of noise from each patient. This cannot be guaranteed

in a practical real-life setting.

The performance of the CNN-based DL strategy suffered

because of the differences in the size of the three classes. RSN

and noise classes had a nearly balanced data size, and the CNN

strategy had good performance in distinguishing between them.

However, since there are very limited SOZ IC examples, the

CNN strategy could not reliably identify them.

The unsupervised technique utilizes expert knowledge and

image processing algorithms to detect each kind of noise without

the need for training a machine. Hence, it learns the noise

characteristics without utilizing noise data from each patient.

This capability of the unsupervised technique to employ specific

algorithms for each type of noise and RSN is one of the major

reasons for its success in separating noise, RSN, and SOZ ICs.

Limitations and future directions

This study (n = 52) evaluated a small group of data, and

prior automated methods perform well on small samples but

have reduced performance on larger datasets; hence, EPIK needs

large set validation, which is a future direction. Larger datasets

for focused performance evaluation within each age bracket,

including young and separately older adults, and the very

young vs. middle childhood are needed. Subtypes of epilepsy—

acquired, congenital/genetic—and surgical approaches’ success

metrics should be statistically evaluated with acceptable power.

Last, repeat studies in the same individuals over time would

increase knowledge of the validity and reproducibility of

the tool.

The majority of the subjects in this study received propofol

infusion for sedation as part of a standard of clinical care

for epilepsy surgery evaluation. Head motion maximum was

<1mm of frame wise displacement in any direction. Although

propofol use has minimal effect on the overall rs-fMRI BOLD

signal, it puts small but additional risks on the child (Pizoli

et al., 2011). Several research studies proposed alternate methods

of reducing head motion by engaging the child with videos

and post-processing by measuring and accounting for head

movements through computational methods (Dosenbach et al.,

2017; Greene et al., 2018; D’Andrea et al., 2022). An area

of future study is to evaluate the effect of sedation on the

EPIK SOZ identification accuracy and integration of live

motion monitoring and reduction-based approaches toward the

elimination of head movement artifacts.
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Conclusion

1. EPIK identified seizure onset zone (SOZ) localizing resting-

state fMRI-independent components in children with drug-

resistant epilepsy with an accuracy of 84.7% in this

preliminary study.

2. EPIK can reduce the number of potential ICs to be analyzed

by the neurosurgeon by∼5-fold, hence significantly reducing

the time commitment for pre-surgical evaluation.

3. EPIK is unsupervised and does not need any prior example

of SOZ and works by codifying expert knowledge about fMRI

noise and SOZ markers.

4. EPIK had consistent performance across age and gender and

has been validated with surgical outcomes.

5. EPIK appeared to perform best for those under 5 years of age

and thus may enable successful surgeries early in their life,

potentially improving long-term postoperative outcomes.

6. EPIK preliminarily performed as well or better than shallow

and deep learning systems for the identification of SOZ

localizing ICs in a resting-state fMRI.
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