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Spinal cord cross-sectional area (CSA) is a relevant biomarker to assess

spinal cord atrophy in neurodegenerative diseases. However, the considerable

inter-subject variability among healthy participants currently limits its usage.

Previous studies explored factors contributing to the variability, yet the

normalization models required manual intervention and used vertebral levels

as a reference, which is an imprecise prediction of the spinal levels. In this

study we implemented a method to measure CSA automatically from a

spatial reference based on the central nervous system (the pontomedullary

junction, PMJ), we investigated factors to explain variability, and developed

normalization strategies on a large cohort (N = 804). Following automatic

spinal cord segmentation, vertebral labeling and PMJ labeling, the spinal

cord CSA was computed on T1w MRI scans from the UK Biobank database.

The CSA was computed using two methods. For the first method, the CSA

was computed at the level of the C2–C3 intervertebral disc. For the second

method, the CSAwas computed at 64mm caudally from the PMJ, this distance

corresponding to the average distance between the PMJ and the C2–C3

disc across all participants. The e�ect of various demographic and anatomical

factors was explored, and a stepwise regression found significant predictors;

the coe�cients of the best fit model were used to normalize CSA. CSA

measured at C2–C3 disc and using the PMJ di�ered significantly (paired t-

test, p-value= 0.0002). The best normalizationmodel included thalamus, brain

volume, sex and the interaction between brain volume and sex. The coe�cient

of variation went down for PMJ CSA from 10.09 (without normalization) to

8.59%, a reduction of 14.85%. For CSA at C2–C3, it went down from 9.96 to

8.42%, a reduction of 15.13 %. This study introduces an end-to-end automatic

pipeline to measure and normalize cord CSA from a neurological reference.

This approach requires further validation to assess atrophy in longitudinal

studies. The inter-subject variability of CSA can be partly accounted for by

demographics and anatomical factors.
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Introduction

Various neurodegenerative diseases such as multiple

sclerosis (MS) are associated with spinal cord (SC) atrophy,

which is caused by demyelination, neuronal and/or axonal loss

(Lukas et al., 2013; Bonacchi et al., 2020). New techniques have

now become available through recent advancement in magnetic

resonance imaging (MRI) and are relevant to assess SC atrophy

(Moccia et al., 2019).

SC atrophy at the upper cervical levels can be defined

within its cross-sectional area (CSA) (Losseff et al., 1996; Lukas

et al., 2013). The use of this metric is yet still limited due

to considerable inter-subject variability. Finding factors that

contribute to the observed variability is important to improve

the SC CSA’s sensitivity and specificity.

Various studies have explored the correlation between SC

CSA and demographic, anatomical and biological factors. Sex

was a relevant factor to explain SC CSA variability, with females

having significantly smaller SCCSA thanmales (Engl et al., 2013;

Papinutto et al., 2020; Solstrand Dahlberg et al., 2020). While the

majority of studies have reported this significant effect, Fradet

et al. (2014) found it to be an irrelevant factor and Papinutto

et al. (2015) did observe the trend, but no statistical difference

was found. However, the absence of a statistical difference could

be explained by the relatively small sample size (30 participants).

Regarding the effect of age, a decrease of SC CSA was

previously reported (Ishikawa et al., 2003; Kato et al., 2012; Engl

et al., 2013; Papinutto et al., 2015, 2020). However, the effect was

not significant (Engl et al., 2013; Papinutto et al., 2015, 2020).

This trend is accentuated for older populations, but the effect of

age is still small (Engl et al., 2013). An increase of SC CSA values

followed by a decrease at 45 years old was also reported, but the

effect was not significant (Papinutto et al., 2020). The effect of

age on SCCSA needs further investigation, small sample size and

narrow range of age are limiting factors to assess the effect of age

on SC CSA.

As for height and body weight, no significant effect on SC

CSA was found according to recent studies (Papinutto et al.,

2015, 2020; Solstrand Dahlberg et al., 2020). The effect of height

may be driven by sex differences (Papinutto et al., 2020). Body

mass index (BMI) was also tested as a normalization strategy

for SC volume, but results were inconclusive as inter-subject

variability was increased (Sanfilipo et al., 2004). In another study,

no correlation was found with BMI by Solstrand Dahlberg et al.

(2020).

Abbreviations: BMI, body mass index; COV, coe�cient of variation; CSA,

cross-sectional area; CSF, cerebrospinal fluid; GM, gray matter; MS,

multiple sclerosis; PMJ, pontomedullary junction; SC, spinal cord; SCT,

spinal cord toolbox; STD, standard deviation; Vscale, scaling factor for

brain normalization due to di�erences in head size (SIENAX); WM, white

matter.

Strong correlation between brain metrics and SC CSA were

reported in prior studies (Engl et al., 2013; Papinutto et al.,

2015, 2020; Solstrand Dahlberg et al., 2020).White matter (WM)

volume significantly explains upper cervical area variability as

opposed to cerebrospinal fluid (CSF) volume, which was not

significant according to Engl et al. (2013). In addition, brain

volume correlated strongly with SC CSA as for intracranial

volume (Papinutto et al., 2015; Solstrand Dahlberg et al., 2020).

Papinutto et al. (2020) also found this effect with Vscale (scaling

factor for head size normalization) and considered it as the

most promising factor for normalization strategies. Intracranial

volume was also considered for normalization of SC volume but

had limited utility since it generally diminished the ability to

detect clinical-radiological correlations (Healy et al., 2012; Oh

et al., 2014). Since SC CSA is a useful metric to assess SC atrophy

and brain volume changes have also been associated with those

pathologies, intracranial volume would be a better factor to

consider for normalization strategies (Kesenheimer et al., 2021).

A strong correlation was also found between thalamus volume

and SC CSA by Solstrand Dahlberg et al. (2020). Axial canal area

was also a significant factor and promising for normalization

strategies but has not been explored yet by many (Papinutto

et al., 2020; Kesenheimer et al., 2021). A notable difficulty

for computing the axial canal area is the ability to properly

segment it.

Only a few of the previous cited works have explored

normalization strategies for SC CSA. SC length was a relevant

factor for SC volume normalization compared to intracranial

volume (Healy et al., 2012; Oh et al., 2014). Mean SC volume

in healthy participants was also used to normalize SC volume

of patients with MS (Ruggieri et al., 2021). Regarding SC

CSA, age, intracranial volume, and sagittal vertebral area were

the most promising independent variables found by Papinutto

et al. (2015), but the method was based on 30 participants

only. Another model later including Vscale, axial canal product

(product of maximum axial anterior-posterior and lateral

diameters of the cervical SC) based on 129 participants

significantly reduced SC CSA variability (Papinutto et al.,

2020). Brain WM volume, sex and spinal canal area formed

a relevant normalization strategy. Total intracranial volume

can also replace brain WM volume for subjects with diseases

affecting WM. The main limitation here was the relatively small

number of participants (N = 61) (Kesenheimer et al., 2021).

As we can observe, brain/skull metrics and sex are important

factors to consider in a possible normalization method. Also,

the mentioned normalization methods are only reported in the

related papers; they are not easily reusable to integrate directly

within analysis pipelines.

In addition to the biological-derived normalization

strategy, previous studies have reported a variability in CSA

measures associated with the MRI acquisition parameters, and

segmentation method (Kearney et al., 2014; Papinutto and

Henry, 2019; Chien et al., 2020; Cohen-Adad et al., 2021).
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The majority of the studies regarding SC CSA use vertebral

levels as an anatomical reference (Casserly et al., 2018; Moccia

et al., 2019). However, inferring the position of the spinal

segments using vertebral levels is imprecise, adding variability to

CSA measures (Cadotte et al., 2015). Inferring neuroanatomic

positions with vertebral bodies doesn’t consider neck flexion

and extension. In addition, because of the intrinsic inter-subject

variability, the vertebral bodies only give a rough approximation

of the spinal segments (Cadotte et al., 2015). Segmental nerve

rootlets would provide a proper identification of the spinal

segments, it is however difficult to identify and requires high

resolution T2w scans and an expert rater to identify them. A few

studies have attempted to bypass the vertebral-based limitation

using the distance from an anatomical landmark, such as the

pontomedullary junction (PMJ) (Stroman et al., 2008; Cadotte

et al., 2015; Amann et al., 2016), and the conus medullaris

(Tsagkas et al., 2018). However, these methods require manual

intervention limiting large-scale applications. In addition, the

PMJ was not used in the context of measuring SC CSA (Stroman

et al., 2008; Cadotte et al., 2015; Amann et al., 2016; Tsagkas

et al., 2018). For cervical SC measures, the PMJ is a more

appropriate landmark due to its proximity to the cervical SC,

hence limiting the required field of view inMRI scans, compared

to conusmedullaris which could bemore appropriate for lumbar

SC measures.

While SC CSA variability across participants was shown

to be associated with multiple demographic, anatomical and

biological factors (Papinutto et al., 2015, 2020; Solstrand

Dahlberg et al., 2020; Kesenheimer et al., 2021), no previous

studies have addressed the variability associated with limitation

of vertebral based SC CSA measurement in the search for a

normalization method of SC CSA at a large scale.

In this study we quantify the contribution of various

factors on the inter-subject variability in cervical SC CSA

measurements. We notably introduce a method to replace

the commonly used vertebral-based referencial system (Moccia

et al., 2019) by an anatomical reference from the central nervous

system to overcome the imprecise prediction of the spinal

segments. More precisely, we (1) establish a fully-automaticMRI

data processing pipeline to compute SC CSA, (2) process MRI

data from a subset (N = 804) of the UK Biobank database, (3)

introduce a method to automatically use the PMJ as a referential

system to measure SC CSA, (4) develop a statistical model and

normalization method for SC CSA measurements.

Materials and methods

Demography

1,000 participants (48–80 years old, 56.3% female) were

selected from the UK Biobank database. Not knowing the effect

size we were after, we could not base this number on any

reliable power analysis. Hence, the number of participants was

selected as a compromise between the statistical power we

wanted to achieve in comparison with the previously-published

studies addressing similar scientific questions (typically <300

participants) and the time required to manually validate each

step of the processing pipeline (visual inspection, manual

correction of SC segmentation and/or PMJ labeling and/or

vertebral labeling).

Participants with a history of neurological diseases were

excluded from the study. Fields from the UK Biobank dataset

included in the category Nervous system disorders1 were used

to identify these participants. This brought the number of

participants from 1,000 to 972.

Image acquisition

Data used for this study were unprocessed NIfTI T1w

structural scans from the UK Biobank Brain Imaging dataset

(Miller et al., 2016). Images were acquired in four different

assessment centers on a Siemens Skyra 3T running VD13A

SP4 with a standard Siemens 32-channel receive head coil. T1w

structural scan has a field of view of 208 × 256 × 256 with

an isotropic resolution of 1 mm3. The superior-inferior field

of view of 256mm typically covers down to C3 vertebral level,

which is relevant for the present study as SC CSA was measured

around the C2–C3 vertebral level. TheUKBiobank data includes

preprocessed data (corrected for gradient non-linearity and

masked), however we could not use these data because the SC

was masked out.We therefore used the unprocessed T1w images

as input of the processing pipeline described in the next section.

Data processing

Data processing pipeline is based on spine-generic v2.6

pipeline2 (Cohen-Adad et al., 2021) and SCT v5.43 (De Leener

et al., 2017). The processing pipeline and its documentation are

both available on GitHub.4

Figure 1 presents an overview of the processing pipeline.

First, all images were reoriented to right-inferior-posterior

orientation. Since SC CSA is computed using T1w brain

images and SC is in the periphery of the images’ field of

view, gradient non-linearity distortions have a considerable

effect on CSA measures, depending on participant positioning

(Papinutto et al., 2018). Gradient non-linearity correction was

applied by the UK Biobank after brain extraction and was

1 https://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=2406

2 https://github.com/spine-generic/spine-generic/releases/tag/v2.6

3 https://github.com/neuropoly/spinalcordtoolbox/releases/tag/5.4

4 https://github.com/sct-pipeline/ukbiobank-spinalcord-csa/tree/v1.

1#cord-csa-on-uk-biobank-brain-mri-databas

Frontiers inNeuroimaging 03 frontiersin.org

https://doi.org/10.3389/fnimg.2022.1031253
https://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=2406
https://github.com/spine-generic/spine-generic/releases/tag/v2.6
https://github.com/neuropoly/spinalcordtoolbox/releases/tag/5.4
https://github.com/sct-pipeline/ukbiobank-spinalcord-csa/tree/v1.1#cord-csa-on-uk-biobank-brain-mri-databas
https://github.com/sct-pipeline/ukbiobank-spinalcord-csa/tree/v1.1#cord-csa-on-uk-biobank-brain-mri-databas
https://www.frontiersin.org/journals/neuroimaging
https://www.frontiersin.org


Bédard and Cohen-Adad 10.3389/fnimg.2022.1031253

FIGURE 1

Overview of the processing pipeline. Correction for gradient non-linearities was applied on the T1w image and SC was segmented

automatically. Vertebral levels were identified, and SC CSA was computed at C2–C3 levels. The PMJ was labeled, and the centerline was

extracted to compute SC CSA from the PMJ.

therefore not possible for us to use since the cervical spine

is the subject of investigation in this study. Thus, correction

for gradient non-linearities was applied to the unprocessed

images using gradunwrap from the HCP project (Glasser et al.,

2013) and the coefficient file for the Siemens Skyra 3T gradient

system. Then, the SC was segmented automatically using SCT’s

sct_deepseg_sc (Gros et al., 2019). SC CSA was computed using

SCT’s sct_process_segmentation with two different methods

further explained below.

CSA based on distance from neurological
reference: Pontomedullary junction

To overcome the limitation of SC segment prediction with

vertebral bodies, SC CSA was measured from a distance of a

neurological reference; we chose the PMJ (Stroman et al., 2008;

Cadotte et al., 2015).

First, the PMJ was identified using SCT’S sct_detect_pmj.

Briefly, a 2D support vector machine trained with histogram of

oriented gradient features (HOG + SVM 2D classifier) was run

on the mid-sagittal slice to detect the PMJ (Gros et al., 2017).

However, the mid-sagittal slice does not necessarily correspond

to the anatomical medial plane if the participant’s head is slightly

tilted in the scanner for example. We used a sliding window

centered on the first estimated PMJ coordinate based on the

mid-sagittal plane and computed cross-correlation within the

window and its mirror image in the right-left orientation. We

assumed that themaximum cross-correlation corresponds to the

right-left symmetry slice. TheHOG+ SVM2D classifier was run

again on the updated medial plane.

Since the SC curvature associated with cervical lordosis

varies across individuals, the distance from the PMJ was

computed along the SC centerline following the arc-length. SC

segmentation normally doesn’t go as high as the PMJ. The PMJ

coordinate was then added to the SC segmentation prior to

extracting the SC centerline. Linear interpolation and smoothing

were used to extract the SC centerline. SC CSA was computed

at the mean distance between the C2–C3 disc and the PMJ

across all participants, which corresponds to 64mm. SC CSA

was computed along the SC centerline and then averaged on a

20mm extent as presented in Figure 2.

CSA based on C2–C3 vertebral levels

The second and more commonly used method to compute

the SC CSA was to use C2–C3 vertebral levels as an

anatomical reference for spinal segments (Casserly et al., 2018;

Moccia et al., 2019). We proceeded to vertebral labeling using

sct_label_vertebrae (Ullmann et al., 2014). SC CSA was then

averaged across C2–C3.

Quality control

After running a first pass of the automatic analysis

pipeline, we inspected results of the SC segmentations and
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FIGURE 2

(A) SC centerline from PMJ. The SC centerline was extracted from SC segmentation and the PMJ label using linear interpolation and smoothing.

The distance from PMJ is measured along the centerline following the arc-length. (B) Extent mask to average SC CSA. At 64mm from PMJ, CSA

was computed slice-wise, corrected for angulation, and averaged within a 20mm extent. The extent mask is centered at 64mm from PMJ.

of the PMJ and vertebral labeling using SCT’s quality report

(sct_qc). For more details about the procedure, see: https://

github.com/sct-pipeline/ukbiobank-spinalcord-csa/blob/v1.

1/README.md#quality-control. Segmentation and labeling

errors typically occurred if there were important artifacts in

the image, such as ghosting caused by poor shimming and/or

participant motion (e.g., swallowing, head tilting). PMJ and

vertebral labeling errors also sometimes happened if the field

of view was improperly positioned (e.g., excessive rotation

about the right-left axis). If images were too artefacted to

produce reliable morphometric measures (see examples at

https://github.com/sct-pipeline/ukbiobank-spinalcord-csa/

issues/61), these images were excluded from the statistical

analysis. This brought the number of participants from 972

to 826.

For less severe artifacts, manual corrections were

done on the segmentation and/or labeling. Making these

corrections ensured that the derived CSA measures are

reliable. Segmentations were corrected using ITK-SNAP by

adding or removing voxels when appropriate. To correct

vertebral labeling, we manually labeled the posterior tip of the

intervertebral discs C1–C2, C2–C3 and C3–C4 using SCT’s

sct_label_utils. A similar approach was done for the PMJ.

All manual corrections were added to the dataset under the

folder “/derivatives/labels” that follows the BIDS convention.

The whole analysis was then re-run and when existing,

the corrected segmentations/labels were used in lieu of the

automatic segmentations/labels.

Processing was distributed across 40 CPU cores

(one participant per CPU core) using sct_run_batch

on a 64-core CPU cluster. Processing took 01 h 53m

59 s.

Statistical analyses

Comparison of CSA measure with both
methods

To study the relationship between the PMJ-based and

vertebral-based CSAmeasures, we built a scatterplot and derived

a model. We also computed the distance between the C2–C3

disc and PMJ. Mean, standard deviation (STD), median and

coefficient of variation (COV) for both CSA measures were

computed. We performed a two-sided paired T-test to assess if

there is a statistically significant difference between PMJ-based

CSA vs. C2–C3-based CSA. All subsequent analyses were done

on both CSA at 64mm from the PMJ and at the C2–C3 disc.

Correlations with physical and brain measures

In this study, the effect of sex, age, physical measures, and

brain measures on SC CSA was explored by calculating Pearson’s

correlation coefficients. Physical measures included height and

weight. Brain measures included brain WM volume, brain gray

matter (GM) volume, brain volume, brain volume normalized

for head size, thalamus volume and ventricular CSF volume.

All data (images and demographic measures) were acquired

at the same time for each participant and were available in

the UK Biobank database. The brain metrics were computed

by the UK Biobank team as part of their processing pipeline

(Alfaro-Almagro et al., 2018).

E�ect of sex and age

To assess the effect of sex on SC CSA, a T-test for two

independent samples was performed to establish if the mean
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CSA for male and female has a significant difference. We fitted a

linear and quadratic regression to assess the effect of age on SC

CSA. R2 was reported.

Multilinear regression

The effect of all candidate predictors was evaluated using

a multilinear analysis. Sex was included as a dichotomous

variable to the regression. Any participant missing a parameter

was excluded from this analysis. This brought the number of

participants from 826 to 804. To select the relevant predictors

of the multilinear regression, a stepwise method was used. The

predictors are added to the model from the highest correlation

with CSA to the lowest if they are significant (p-value < 0.05).

After each addition of predictors, the significance of the current

parameters was computed again, and parameters with a p-value

> 0.05 were excluded from the model (Toutenburg et al., 1969).

The level of significance was the same for both entry and exit

tests. To validate the model, we proceeded to a residual analysis

and computed R2.

Pearson’s correlation coefficient between candidate

predictors was used to choose which parameter to include in the

stepwise model due to possible collinearity between parameters.

Normalization method

With the best multilinear regression fit, a regression-based

residual method (Sanfilipo et al., 2004; Papinutto et al., 2020)

was developed using the significant predictors, as described in

the following equation:

CSAi
norm = CSAi

meas + c1(X1, mean − X i
1, meas)

+c2(X2, mean − X i
2, meas )+ ...+ cn(Xn, mean − X i

n, meas)

where CSAi
meas is the computed SC CSA value from a given

participant i, CSAi
norm is the normalized CSA value, cj are the

coefficients of the multilinear regression, Xj, mean are the mean

values of all significant predictors, Xi
j, meas are values for the

given participant’s predictors, for j predictors (Papinutto et al.,

2020).

Since this method assumes that the regression line slopes

are parallel for both groups for sex (Sanfilipo et al., 2004),

the interaction between significant predictors and sex was also

explored afterward. If the interaction term was significant, it

was added to the model. The interaction term corresponds to

the predictor multiplied by sex (0 or 1) as we can see in the

following equation:

y = c1 ∗ X1 + c2 ∗ sex + c3 ∗ X1∗ sex

The effect of normalization was then evaluated by

comparing the COV of the normalized SC CSA (CSAi
norm)

and the measured CSA (CSAi
meas). We also present the mean

(µnorm) and STD (σnorm) of the normalized CSA measures

(CSAi
norm) and the z-score equation:

z-score =
CSAnorm − µnorm

σnorm

Results

SC CSA

In this study we compared SC CSA measured using the PMJ

as a reference or the C2–C3 disc as a reference (more popular).

When using the PMJ as a reference (64mm caudal to the PMJ),

the CSA ranged between 51.9 and 95.6 mm2 (mean ± STD:

66.2 ± 6.69 mm2). The COV was 10.09%. When using C2–C3

vertebral levels as a reference, the CSA ranged between 51.5 and

96.9 mm2 (mean ± STD: 66.4 ± 6.61. mm2). The COV was

9.96 %.

Figure 3A shows the relationship between CSA at 64mm

from the PMJ and CSA at C2–C3 vertebral levels. The linear

regression led to a R2 of 0.97. Figure 3B shows a scatterplot of

the distance from the PMJ and C2–C3 disc. Mean distance from

the PMJ to the C2–C3 disc is 64.37± 5.53mm.

We found a significant difference between the CSA

calculated at 64mm from the PMJ and the CSA measured at the

C2–C3 disc (paired t-test, t =−3.71, p-value= 0.0002).

Statistical analyses

Correlations with physical and brain measures

We investigated the relationship of SC CSA with sex, age,

physical and brain measures. Results of the correlation analysis

(Pearson’s) are reported in Table 1. Note that this correlation

matrix is not corrected for multiple comparisons because its

purpose was only to explore existing correlations. In subsequent

analysis (see Multilinear regression), a multivariate analysis will

account for the number of regressors in the estimated p-values.

Scatterplots of CSA(PMJ) and all parameters are shown in

Supplementary material (S1–S8). Ventricular CSF volume was

the only parameter to present a non-significant correlation

coefficient with both SC CSA measures (p-value > 0.05).

Thalamus, brain, brain WM and brain GM volume present

the highest correlations out of all parameters (Pearson’s r >

0.4). Among parameters, we notice in particular a very strong

correlation between thalamus volume and brain, brain WM and

brain GM volumes.

E�ect of sex and age

Participants in this study include 43.7% of males and 56.3%

of females. Figure 4 presents SC CSA violin plots for female and
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FIGURE 3

(A) Scatterplot of PMJ-based CSA at 64mm and vertebral-based CSA at C2–C3 vertebral levels. (B) Scatterplot of the distance between the PMJ

and the C2–C3 disc.

male with mean and STD. We found a significant difference for

CSA between female and male for both CSA at 64mm from the

PMJ and at C2–C3 disc (CSA(PMJ): t =−5.37, p-value < 10−7,

CSA(C2–C3): t =−5.17, p-value < 10−7).

To explore the relationship between age and SC CSA, we

calculated a linear and quadratic fit. The age of the participants

ranged between 48 and 80 years old. The linear fits are presented

at Figure 5. The equations for the quadratic fit are:

CSA (PMJ) : y = 72.93 − 0.0469 · x − 0.000907 · x2;

R2 = 0.031

CSA (C2–C3) : y = 75.17 − 0.1076 · x − 0.000475 · x2;

R2 = 0.034

The constant and the linear coefficient are the same for

both linear and quadratic fits per CSA methods (PMJ and C2–

C3). The quadratic coefficient is very small for both methods

(CSA(PMJ): 9.07 ×10−4; CSA(C2–C3): 4.75 ×10−4). There is

almost no quadratic trend in both cases.

Multilinear regression

Based on the Pearson’s correlation analysis presented in

Table 1, the following parameters were input in the stepwise

linear regression: sex, height, weight, age, brain volume,

ventricular CSF volume, and thalamus volume. Since brain WM

volume, GM volume and brain volume have a very strong

correlation (0.94 and 0.96), brain WM volume and GM volume

were not included in the model to avoid collinearity.

The stepwise method yielded a model including brain

volume and thalamus volume for CSA(PMJ) and CSA(C2–C3).

The resulting model is shown in Table 2 for CSA at 64mm from

the PMJ and at Table 3 for CSA at C2–C3 disc. Adjusted R2 is

0.265 for CSA(PMJ) and 0.271 for CSA(C2–C3). Both models

show a significant association with CSA (p-value < 0.0001).

Normalization

Brain and thalamus volumes

The presented model’s coefficients led to the following

normalization equation with thalamus volume and brain volume

and their respective mean for CSA at 64mm from the PMJ and

at C2–C3 disc. Normalized CSA(PMJ) had a mean and STD of

66.26± 5.72 mm2 and for CSA(C2–C3), 66.40± 5.64 mm2.

CSA(PMJ):

CSAi
norm = CSAi

meas + 1.986 · 10−3
· (15266− X i

TV )

+ 7.56 · 10−6
· (1156171− X i

BV )

z-score =
CSAnorm − 66.26

5.72

CSA(C2–C3):

CSAi
norm = CSAi

meas + 0.002 · (15266− X i
TV )

+ 7.30 · 10−6
· (1156171− X i

BV )

TV : thalamus volume (mm3); BV : brain volume (mm3)

z-score =
CSAnorm − 66.40

5.64

With the CSA at 64mm from the PMJ normalization, COV

went from 10.09 (CSAi
meas) to 8.64% (CSAi

norm), a reduction of

14.37%. With the CSA at C2–C3 disc normalization, COV went

from 9.96 (CSAi
meas) to 8.51% (CSAi

norm) a reduction of 14.61%.

Frontiers inNeuroimaging 07 frontiersin.org



Bédard and Cohen-Adad 10.3389/fnimg.2022.1031253
T
A
B
L
E
1

P
e
a
rs
o
n
’s
c
o
rr
e
la
ti
o
n
a
m
o
n
g
S
C
C
S
A
,
p
h
y
si
c
a
l,
a
n
d
b
ra
in

m
e
a
su

re
s.

S
ex

A
g
e

H
ei
g
h
t

W
ei
g
h
t

V
sc
al
e

V
en

tr
ic
u
la
r

C
S
F

vo
lu
m
e

B
ra
in

G
M

vo
lu
m
e

B
ra
in

W
M

vo
lu
m
e

B
ra
in

vo
lu
m
e

n
o
rm

B
ra
in

vo
lu
m
e

T
h
al
am

u
s

vo
lu
m
e

C
S
A
(P
M
J)

C
S
A
(C

2
–

C
3
)

Se
x

1.
0

0.
07
*

0.
71
**
*

0.
48
**
*

−
0.
59
**
*

0.
33
**
*

0.
39
**
*

0.
53
**
*

−
0.
2*
**

0.
49
**
*

0.
36
**
*

0.
19
**
*

0.
18
**
*

A
ge

1.
0

−
0.
07
*

−
0.
05

−
0.
05

0.
41
**
*

−
0.
35
**
*

−
0.
12
**
*

−
0.
56
**
*

−
0.
24
**
*

−
0.
33
**
*

−
0.
18
**
*

−
0.
18
**
*

H
ei
gh

t
1.
0

0.
57
**
*

−
0.
58
**
*

0.
21
**
*

0.
45
**
*

0.
51
**
*

−
0.
13
**
*

0.
51
**
*

0.
42
**
*

0.
2*
**

0.
19
**
*

W
ei
gh

t
1.
0

−
0.
41
**
*

0.
16
**
*

0.
3*
**

0.
39
**
*

−
0.
09
**

0.
36
**
*

0.
25
**
*

0.
13
**
*

0.
12
**
*

V
sc
al
e

1.
0

−
0.
46
**
*

−
0.
78
**
*

−
0.
84
**
*

0.
24
**
*

−
0.
85
**
*

−
0.
61
**
*

−
0.
32
**
*

−
0.
32
**
*

V
en
tr
ic
ul
ar

C
SF

vo
lu
m
e

1.
0

0.
08
*

0.
25
**
*

−
0.
53
**
*

0.
18
**
*

−
0.
09
**

−
0.
02

−
0.
04

B
ra
in

G
M

vo
lu
m
e

1.
0

0.
81
**
*

0.
33
**
*

0.
94
**
*

0.
75
**
*

0.
4*
**

0.
4*
**

B
ra
in

W
M

vo
lu
m
e

1.
0

0.
22
**
*

0.
96
**
*

0.
76
**
*

0.
45
**
*

0.
46
**
*

B
ra
in

vo
lu
m
e
n
or
m

1.
0

0.
29
**
*

0.
36
**
*

0.
24
**
*

0.
25
**
*

B
ra
in

vo
lu
m
e

1.
0

0.
79
**
*

0.
45
**
*

0.
45
**
*

T
ha
la
m
us

vo
lu
m
e

1.
0

0.
51
**
*

0.
52
**
*

C
SA

(P
M
J)

1.
0

0.
99
**
*

C
SA

(C
2–

C
3)

1.
0

p
-v
al
ue
:*
0.
01

<
P

<
0.
05
,*

* 0
.0
01

<
P

<
0.
01
,*

**
P

<
0.
00
1.

Brain and thalamus volumes and sex
interaction with brain volume

Figures 6, 7 show scatterplots of CSA at 64mm from

the PMJ and at the C2–C3 disc with both predictors (brain

volume and thalamus volume) separated for sex. Qualitatively,

we observe that the slopes for female and male are different

with the brain volume predictor, however the slopes are

closer with the thalamus volume predictor. To quantitatively

validate if the interaction coefficient is significant in the model,

we computed the interaction of both predictors with sex.

The interaction coefficient for brain volume was significant

(CSA(PMJ): p-value = 0.006; CSA(C2–C3): p-value = 0.005)

and sex was also significant when adding the interaction

parameter (CSA(PMJ): p-value = 0.005; CSA(C2–C3): p-value

= 0.004). For thalamus volume, the interaction coefficient was

not significant (CSA(PMJ): p-value = 0.227; CSA(C2–C3): p-

value = 0.218) neither was sex (CSA(PMJ): p-value = 0.227;

CSA(C2–C3): p-value= 0.213). The interaction of brain volume

and sex was therefore added to the previous model since it

has a significant effect. The following equation presents the

corresponding normalization equation:

CSA(PMJ):

CSAi
norm = CSAi

meas + 1.98 · 10−3
· (15266− X i

TV )

+ 2.45 · 10−6
· (1156171− Xi

BV )

− 15 · (0.437− Xi
sex)

+ 1.26 · 10−5
· (530335− Xi

sex·X
i
BV )

z-score =
CSAnorm − 66.26

5.59

CSA(C2–C3):

CSAi
norm = CSAi

meas + 1.98 · 10−3
· (15266− X i

TV )

+ 2.49 · 10−6
· (1156171− X i

BV )

− 1.235 · (0.437− Xi
sex)

+ 1.26 · 10−5
· (530335− Xi

sex·X
i
BV )

z-score =
CSAnorm − 66.40

5.61

The model was significant (p-value < 0.0001) for both

CSA(PMJ) and CSA(C2–C3). Normalized CSA(PMJ) had a

mean and STD of 66.26 ± 5.69 mm2 and for CSA(C2–C3),

66.40 ± 5.61 mm2. The COV of CSA(PMJ) went from 10.09 to

8.59%, a reduction of 14.85%. The COV of CSA(PMJ) went from

9.96 to 8.42%, a reduction of 15.13%. Adjusted R2 was 0.271 for

CSA(PMJ) and 0.276 for CSA(C2–C3).

Brain volume and sex interaction

Since measuring thalamus volume is not always convenient,

we also proposed a model without the thalamus volume as a
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FIGURE 4

(A) Violin plot of SC CSA at 64mm from the PMJ for female and male with mean (µ) and standard deviation (σ ) for each sex and t-value and

p-value from the two independent samples t-test. (B) Violin plot of SC CSA at C2–C3 disc for female and male with mean (µ) and standard

deviation (σ ) for each sex t-value and p-value from the two independent samples T-test. F = female; M = male.

FIGURE 5

(A) Linear fit for CSA at 64mm from the PMJ as a function of age. (B) Linear fit for CSA at C2–C3 disc as a function of age.

predictor and kept only brain volume, sex, and the interaction.

Normalized CSA(PMJ) had a mean and STD of 66.26 ± 5.94

mm2 and for CSA(C2–C3), 66.40 ± 5.86 mm2. The COV went

from 10.09 to 8.96%, a reduction of 11.22% for CSA(PMJ) and

the adjusted R2 was 0.209. The COV went from 9.96 to 8.88%,

a reduction of 11.39% for CSA(C2–C3) and the adjusted R2

was 0.212. Both models were also significant (p-value < 0.0001).

Even if this model is less performant than the one including

the thalamus volume, we present it given that thalamus volume

is not often measured in neuroimaging analysis pipelines or in

the presence of thalamic atrophy (Rocca et al., 2010; Foo et al.,

2017; Azevedo et al., 2018; Eshaghi et al., 2018; Schönecker et al.,

2018; Finegan et al., 2020). The normalization model has the

following equation:
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TABLE 2 Multilinear regression analysis for SC CSA(PMJ) (N = 804

participants).

R2 R2 adj F p-value AIC

0.267 0.265 145.7 1.077e−54 5,093

Coeff t p-value

Const 27.18 11.634 5.154e−29

Thalamus volume 1.99e−03 8.344 3.131e−16

Brain volume 7.56e−06 2.407 0.016

TABLE 3 Multilinear regression analysis for SC CSA(C2–C3) (N = 804

participants).

R2 R2 adj F p-value AIC

0.267 0.269 148.7 1.18e−55 5,072

Coeff t p-value

Const 27.49 11.924 2.737e−30

Thalamus volume 0.002 8.498 9.373e−17

Brain volume 7.30e−06 2.355 0.019

CSA(PMJ):

CSAi
norm = CSAi

meas + 2.37 · 10−5
· (1156171− X i

BV )

− 15 · (0.437 − X i
sex )

+ 1.24 · 10−5
· (530335 − Xi

sex·X
i
BV )

z-score =
CSAnorm − 66.26

5.94

CSA(C2–C3):

CSAi
norm = CSAi

meas + 2.38 · 10−5
· (1156171− X i

BV )

− 15.23 · (0.437 − X i
sex )

+ 1.25 · 10−5
· (530335 − Xi

sex·X
i
BV )

z-score =
CSAnorm − 66.40

5.86

Discussion

In this work, we quantified the contribution of various

factors on inter-subject variability in cervical SC CSA

measurements in 804 participants with a fully-automatic

processing pipeline. We implemented a measurement

method for SC CSA that uses the PMJ as opposed to the

vertebral reference to overcome its limitations associated

with the head position variability. Finally, we developed

a normalization model which can reduce inter-subject

variability by up to 14.85% for CSA(PMJ) or 15.13%

for CSA(C2–C3).

CSA results

We obtained mean CSA values of 66.2 and 66.4 mm2

for PMJ-based and vertebral-based CSA respectively, which

is lower than what was reported in other studies (Papinutto

et al., 2020; Solstrand Dahlberg et al., 2020; Kesenheimer

et al., 2021). Lower values could be explained by various

factors. Firstly, the population studied here is relatively older

than in other published studies (range: 48–80, mean: 64).

Secondly, the segmentation method has an impact on defining

the boundary between the SC and surrounding CSF. SCT’s

sct_deepseg_sc is more conservative than other software in

defining this border, which results in a smaller CSA (Weeda

et al., 2019; Lukas et al., 2021). This is due to the segmentation

algorithm: if we adjust the threshold for determining the

boundary between the SC and the background (CSF), the

produced segmentation becomes systematically scaled up/down

depending on the threshold value. This translates to a systematic

bias, similar to a calibration problem, which applies, in

average, equally across data quality. Therefore, when it comes

to using CSA values for clinical studies, it only adds an

offset and does not affect the precision of the measure.

Thirdly, acquisition parameters (which drive image contrast)

also influence CSA values (Kearney et al., 2014; Papinutto

and Henry, 2019; Cohen-Adad et al., 2021). Furthermore,

gradient echo T1w acquisitions are prone to motion artifacts,

which hamper the performance of SC segmentation. COV

were 9.96 and 10.09% (C2–C3, PMJ), which is similar to

what was observed in previous studies (Papinutto et al.,

2020; Solstrand Dahlberg et al., 2020; Kesenheimer et al.,

2021).

PMJ-based CSA method

Regarding vertebral-based CSA and PMJ-based CSA, COVs

are very similar (9.96% C2–C3, 10.09% PMJ) as for CSA

values (see Figure 3). The CSA measures between the PMJ

and C2–C3 disc reference were statistically different (p-

value = 0.0002). This suggests that using the PMJ as a

reference for CSA measurement is relevant to overcome the

imprecise prediction of the spinal segments. This enforces

the fact that vertebral levels are not a precise surrogate

for spinal levels. In terms of variability, there is no clear

conclusion if the PMJ-based method reduces the inter-subject

variability, which is a relevant indicator in cross-sectional

studies (e.g., used to assess the signature of a biomarker
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FIGURE 6

Scatterplots of CSA(PMJ) as a function of brain volume and thalamus volume separated for sex with linear fit.

FIGURE 7

Scatterplots of CSA(C2–C3) as a function of brain volume and thalamus volume separated for sex with linear fit.

with different phenotypes). However, for longitudinal studies

(i.e., intra-subject COV), given that head tilting might change

across sessions, it is possible that a PMJ-based method is

preferred. While no clear conclusion can be drawn from

the PMJ-based method in comparison with the vertebral-

based method in terms of inter-subject CSA variability, this

study sets the foundations, which are hard to establish, to

further investigate the relevance of a PMJ-based method

since it is fully-automatic and suggests promising results for

longitudinal studies.

Some limitations are associated with the PMJ-based

CSA method. The use of the PMJ label to interpolate

with the centerline is not the exact extrapolation of the

centerline. SC curvature at the PMJ varies across individuals,

which adds variability to the computed distance. PMJ label

positioning across participants may also differ, also affecting the

measured distance.

Moreover, the absolute distance from PMJ doesn’t consider

the fact that the SC length varies across individuals (Lang

and Bartram, 1982; Boonpirak and Apinhasmit, 1994). Using a

relative distance to predict the spinal segments from the PMJ

could be relevant to overcome this limitation. Results from this

study show a difference between SC CSA using a vertebral-

based vs. PMJ-based reference, but not between the inter-subject

variability. A comparison with the nerve rootlets is necessary

to assess which method ensures proper prediction of the spinal

segments; it will be the subject of further investigations.

Another question remains about the robustness of the PMJ-

based CSA method in the presence of lesions in the brainstem

and the spinal cord. The presence of lesions in the brainstem

could lower the performance of the automated identification

of the PMJ, which needs to be further assessed in pathological

data. The other important aspect of the PMJ-based method is

the spinal cord centerline, which is extracted from the spinal
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cord segmentation. In the presence of lesions, the automatic

segmentation could also be less reliable, requiring manual

correction. Future developments of spinal cord segmentation

algorithms that are robust to the presence of lesions would

address this limitation.

In the case of high atrophy rate in the brainstem, we expect

that it is very unlikely that the PMJ won’t be easily identifiable,

considering it is the only required label in the brainstem region

for this method. Additionally, we don’t expect that the centerline

extraction will be affected by lesions in the brainstem since it

only relies on the spinal cord segmentation. However, a high

atrophy rate in the spinal cord would affect the spinal cord

segmentation. The centerline would lose some precision since it

is extracted by computing the center of mass of each slice of the

spinal cord segmentation. This could result in loss of precision

in the computation of the distance from the PMJ in order to

compute CSA, but further investigations are needed to establish

the impact of lesions in the brainstem or spinal cord on the

PMJ-based CSA method.

Correlation with SC CSA

Our analysis shows a strong correlation between brain

volume, brain WM volume, brain GM volume and thalamus

volume with CSA, as previous studies have reported (Engl

et al., 2013; Papinutto et al., 2015, 2020; Solstrand Dahlberg

et al., 2020). The highest correlation was found with thalamus

volume (Pearson’s r = 0.51). Numerous ascending tracts project

from the spinal cord to various thalamus nuclei (spinothalamic

tract), which could explain a close correlation between CSA and

thalamus volume compared to other brain structures (Giesler

and Willis, 1981; Hodge and Apkarian, 1990; Torrico and

Munakomi, 2022). No significant correlation was found with

ventricular CSF volume. Correlations with height and weight

are low.

It would have been interesting to explore other potential

regressors explaining SC CSA, such as other deep gray matter

structures, as well as brainstem structures (e.g., pons, medulla)

due to their closeness to the cervical SC. These additional

regressors would help elucidate if the strong correlation between

the thalamus volume and SC CSA is unique to the thalamus or if

it is also found in other structures.

We found a statistical difference between SC CSA between

male and female; females have a significantly smaller CSA than

males as previous studies have shown (Papinutto et al., 2015,

2020; Solstrand Dahlberg et al., 2020).

Regarding the effect of age on SC CSA, we found a decrease

of CSAwith age. Linear and quadratic fit gave very similar results

(CSA(PMJ): R2 = 0.031 and CSA(C2–C3): R2 = 0.034 for both

fits). Since the age range of the participants goes from 48 to 80

years old, it is not surprising that a linear fit is also adequate,

in comparison with results reported by others (Papinutto et al.,

2020; Kesenheimer et al., 2021). Since CSA peaks around 45

years old (Papinutto et al., 2020; Kesenheimer et al., 2021), CSA

values for the age range of this study are decreasing with age as

we observed (see Figure 5).

Normalization methods

Stepwise linear regression led to thalamus volume and brain

volume as predictors for SC CSA. We introduce for the first

time thalamus volume as a predictor for normalization of SC

CSA. Thalamus volume presented a high correlation with brain

volume (Pearson’s r = 0.79), hence some collinearity between

both predictors may reduce the statistical power in the obtained

model. However, we decided to keep both variables in order

to preserve some potentially useful interaction measures. This

model significantly reduced inter-subject variability; COV went

down from 10.09 to 8.64%, which represents a reduction of

14.37% for CSA(PMJ). COV went down from 9.96 to 8.51%,

which represents a reduction of 14.61% for CSA(C2–C3). Other

parameters were not significant since they were excluded during

the stepwise model (p-value > 0.05). Sex alone was not a

significant predictor (p-value> 0.05) even if there is a significant

difference between male and female CSA. Note the strong

correlation between sex and thalamus volume (Pearson’s r =

0.36) and between sex and brain volume (Pearson’s r = 0.49).

When adding the interaction between sex and brain volume,

sex and the interaction became significant. The effect of brain

volume on SC CSA varies between male and female as we

can observe in Figures 6, 7. The interaction between thalamus

volume and sex wasn’t significant. The model including brain

volume, thalamus volume, sex and sex/brain volume interaction

led to a COV of 8.59%, a reduction of 14.85 % for CSA(PMJ)

and for CSA(C2–C3), a COV of 8.42%, a reduction of 15.13%.

Including sex and brain volume interaction led to the best

COV reduction. To our best knowledge, interaction of sex and

brain volume was never considered in previous normalization

models, only the fixed effect of sex on CSA was included.

These findings reveal the importance to consider that factors

can vary differently for males and females. We also proposed

a model without the thalamus volume, given the difficulty

to measure it (it requires the proper anatomical sequence

with sufficient contrast and resolution) and/or in the case of

abnormal thalamic atrophy, which could happen in various

pathological conditions. This model reduced CSA variability less

than when including thalamus volume [11.22% of reduction

for CSA(PMJ) vs. 11.39% for CSA(C2–C3)]. The combination

of thalamus volume, brain volume and sex better explains

CSA variability.

Even if CSA at 64mm from the PMJ and at C2–C3 disc

differed significantly, the normalization analysis and obtained

models did not vary and the coefficients of the models were

very similar.

We obtained a smaller reduction than other models

presented in previous studies (Papinutto et al., 2020;
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Kesenheimer et al., 2021). Kesenheimer et al. (2021) obtained a

reduction of COV of 23.7% using sex, brain WM volume and

SC canal area, Papinutto et al. (2020) obtained a reduction of

17.74% using Vscale and axial-canal product. It is important

to consider that the predictors of the normalization methods

were different, mainly regarding metrics related to the SC

canal which could explain the smaller reduction of COV

obtained with our model [CSA(PMJ): 14.85% or CSA(C2–C3):

15.13%]. We did not include SC canal metrics in our analysis

because of the lack of automated methods for robust SC canal

segmentation combined with the large number of participants

in this study. Also, the size of the cohort is larger than in the

previously mentioned works, N = 60 for (Kesenheimer et al.,

2021) and N = 129 for (Papinutto et al., 2020), which impacts

the distribution and coverage of the data of the participants and

affects the normalization method.

Age was not a significant predictor for SC CSA. Trends for

CSA and brain volume for the age range of our study are very

similar. The effect may differ for younger people since brain

volume decreases linearly with age while CSA increases until

about 45 years old and decreases afterward (Papinutto et al.,

2020).

We have to consider the fact that older people may be more

subject to motion in the MRI than younger people (discomfort,

difficulty breathing) resulting in a bias in the measured CSA

(blurring, motion artifact ghosting). Further investigations are

needed to validate if the model can expand to ages not included

in this study.

The normalization model was generated from T1w

data with a specific protocol. Subsequent studies should

assess whether the model is adequate for other acquisition

parameters and contrasts. It is known that the output

CSA varies for different acquisition protocols (Cohen-

Adad et al., 2021). However, since there is a direct

relationship between CSA values from different contrasts,

there would be a systematic offset in the produced

CSA. Since the model is linear, it should hold for

different contrasts.

It is important to note that the choice of processing

software package (and its version) used to compute the

brain morphometrics affects the measured brain and thalamus

volumes, and hence the proposed normalization model. The

proposed normalization model would then require data to be

processed using the same processing software as that used for

the UK Biobank analysis pipeline (Alfaro-Almagro et al., 2018).

The model was developed from healthy participants; the

question remains if it would be applicable to patients with

neurodegenerative diseases such as MS. Thalamic atrophy is

common in neurodegenerative diseases such as MS (Rocca et al.,

2010; Foo et al., 2017; Azevedo et al., 2018; Eshaghi et al., 2018;

Schönecker et al., 2018; Finegan et al., 2020). In the case of

such atrophy, one should refrain from normalizing CSA with

thalamus volume since the normalization would be biased. This

is why we proposed a model without the thalamus volume.

Also, brain volume changes have been associated with atrophy

for various neurodegenerative diseases. A normalization model

including brain volume may not be generalizable for those

patients. As done in other studies (Kesenheimer et al., 2021),

intracranial volume could be a relevant substitute for brain

volume since it is not affected by neurodegenerative diseases.

Including sex interaction here will also be important and can

improve the normalization model. Further studies could include

intracranial volume in the normalization model.

Furthermore, other confounding factors could possibly

affect image acquisitions for pathological patients. Severe

motor disability could induce some breathing difficulties which

induces considerablemotion artifacts, thus SC segmentation and

CSA bias.

SCT normalization feature

We made available the obtained normalization model in the

open-source software SCT within sct_process_segmentation.

Since thalamus volume may not be available in all SC MRI

studies, we made it possible for the user to normalize CSA

values without thalamus volume. Even if the best model

was obtained with thalamus volume, brain volume, sex and

sex interaction between brain volume and sex, normalizing

SC CSA without thalamus volume could still reduce CSA

variability. The normalization feature can be used by adding

the option -normalize followed by the predictors and their

corresponding values. For more information on usage, refer

to: https://spinalcordtoolbox.com/user_section/command-line.

html#sct-process-segmentation.

Conclusions

This study features an analysis of factors contributing to

SC CSA variability at a larger scale than what was done

previously to our best knowledge using an automatic processing

pipeline. We introduced a new reference in the context of

CSA measurements based on a neurological reference (PMJ)

to overcome vertebral reference limitations (neck flexion

and extension) which sets ground for further investigation

regarding the prediction of spinal segments and cervical CSA

studies. We computed over a large cohort of participants

SC CSA at 64mm from the PMJ on T1w scans from the

UK Biobank database. The pipeline is based on regular brain

MRI scans, making it of interest for a broad range of study

types, including clinical studies. No significant age trend was

found while SC CSA was significantly different for males

and females. We present an effective normalization model

including thalamus volume, brain volume, sex and sex/brain

volume interaction readily usable in SCT. The most relevant
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factors to explain SC CSA variability are related to the

brain; these findings show the importance of having a brain

MRI acquisition in SC studies/research. Reducing inter-subject

variability could improve comparison between CSAmeasures to

increase its sensitivity and specificity to better assess pathology-

related changes.
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