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Accurate individual functional mapping of task activations is a potential tool for biomarker

discovery and is critically important for clinical care. While structural imaging does not

directly map task activation, we hypothesized that structural imaging contains information

that can accurately predict variations in task activation between individuals. To this

end, we trained a convolutional neural network to use structural imaging (T1-weighted,

T2-weighted, and diffusion tensor imaging) to predict 47 different functional MRI task

activation volumes across seven task domains. The U-Net model was trained on

591 subjects and then subsequently tested on 122 unrelated subjects. The predicted

activation maps correlated more strongly with their actual maps than with the maps

of the other test subjects. An ablation study revealed that a model using the shape of

the cortex alone or the shape of the subcortical matter alone was sufficient to predict

individual-level differences in task activation maps, but a model using the shape of

the whole brain resulted in markedly decreased performance. The ablation study also

showed that the additional information provided by the T2-weighted and diffusion tensor

imaging strengthened the predictions as compared to using the T1-weighted imaging

alone. These results indicate that structural imaging contains information that is predictive

of inter-subject variability in task activation mapping and that cortical folding patterns, as

well as microstructural features, could be a key component to linking brain structure to

brain function.

Keywords: structural imaging, diffusion tensor imaging, deep learning, functional MRI, individual subject mapping,

convolutional neural network, human connectome project

INTRODUCTION

Functional MRI (fMRI) maps the locations and intensities of brain activations by measuring the
blood-oxygen-level-dependent (BOLD) signal arising from task performance in the scanner. In
a research setting, the correlation between the performed task and subsequent BOLD response
is estimated for the cortex and averaged over a group of subjects. Mapping brain task function
gives researchers insight into regions of interest that activate during task performance for the
group being studied. Non-invasive mapping of task activations in the brain using fMRI has
also been appealing for research and clinical use in individual subjects. Accurate task activation
mapping of individuals is critically important for patient care, such as brain tumor cases requiring
neurosurgical resection. Research has shown, however, that individual task fMRI (tfMRI) activation
maps have both limited reliability and accuracy (Weng et al., 2018; Elliott et al., 2020; Ellis et al.,
2020). Therefore, investigation into alternatives for individual task mapping is warranted.
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One potential alternative to relying solely on tfMRI for
individual subject mapping is to deduce localization and intensity
of task activations from structural imaging, such as anatomical
and diffusion imaging. Unfortunately, there is little evidence
demonstrating that structural imaging features can predict
variations in task activations frommultiple domains in individual
subjects. Tavor et al. demonstrated that while a linear model
using both structural and resting-state fMRI features could
predict individual subject variations in task activation, an
identical model using only structural features could not. The
more complex method of extracting white matter tractography-
based connectivity features from the diffusion signal has shown
promise for predicting individual differences in responses to
visual stimuli and word reading tasks (Saygin et al., 2012, 2016;
Osher et al., 2015; Ekstrand et al., 2020), but the same has not
been reported for a broader range of task domains.

We hypothesize that a trained convolutional neural network
(CNN) will predict task activation maps from diffusion
and anatomical imaging that are sensitive to inter-subject
differences over a wide variety of task domains. This finding
would demonstrate that structural imaging features do contain
variances predictive of functional task differences in individuals.

METHODS

Data Acquisition
Imaging data was obtained from the Human Connectome
Project (HCP) young adults S1200 public data release (https://
www.humanconnectome.org/study/hcp-young-adult) provided
by the WU-Minn HCP consortium. All subjects were 22 to
35 years old and were scanned by the HCP using Washington
University’s 3T Siemens Connectome Scanner (Van Essen et al.,
2012). Preprocessed and aligned anatomical and structural data
was provided by the HCP in the subject T1-weighted (T1w)
imaging space, including T1w and T2-weighted (T2w) with
0.7mm isotropic voxel size, diffusion images with 1.25mm
isotropic voxel size acquired at 3 b-shells (1,000, 2,000, and 3,000
s/mm2) with 90 directions per shell acquired twice with opposite
phase encoding directions (Sotiropoulos et al., 2013), and
MSMSulc and MSMAll (Glasser et al., 2016) registered template
surfaces. The HCP also provided two runs of unprocessed
task fMRI volumes for seven task domains (Barch et al.,
2013): hand, foot, and tongue movements (MOTOR), auditory
language processing (LANGUAGE), n-back working memory
(WM), shape and texture matching (RELATIONAL), emotion-
processing (EMOTION), social interactions (SOCIAL), and
incentive processing (GAMBLING).

Subject Selection
Of the 1206 HCP subjects, 591 were selected for the training
group, 133 for the validation group, and 122 unrelated subjects
for the test group. The remaining 360 subjects were excluded for
having incomplete data, failing data processing, or being related
to the test group. In order to prevent information from one of the
groups from biasing the results of another group, all groups were
selected so that no subjects from one group were related to any
of the subjects in another group. Additionally, 39 subjects that

were scanned twice by the HCP with a mean interval of 140 days
were used to evaluate the test-retest reliability of the predicted
and actual maps. These test-retest subjects were either a part of
the test group or related to someone in the test group, and none
of them were a part of the training or validation groups.

MRI Processing
The fMRI volume preprocessing was performed according to
the HCP processing pipelines, including gradient distortion
correction (Glasser et al., 2013), with the exception that the one-
step resampling linearly transformed the volumes into the native
T1w space rather than the MNI space. Individual-level fMRI z-
score activation volumes were then computed across both runs
for each task domain using the HCP pipelines in the subject’s
native volume space with high-pass bandwidth filtering and
minimal 2mm full-width at half maximum (FWHM) smoothing
(Woolrich et al., 2001). All 47 unique task activation volumes
across the seven task domains were used for model training
and testing (Supplementary Table S1). The preprocessed T1w,
T2w, and diffusion data were used as distributed by the HCP.
Diffusion tensor image (DTI) modeling was performed using
dipy (Garyfallidis et al., 2014) on the preprocessed diffusion data
resulting in mean diffusivity (MD) and 3-directional fractional
anisotropy (FA) feature maps computed for each b value
separately (1,000, 2,000, and 3,000 s/mm²) in the subject’s native
space similar to Ganepola (Ganepola et al., 2018).

Model Architecture
For predicting task activation from structural imaging, a U-
Net-style CNN was used (Figure 1) (Ronneberger et al., 2015;
Myronenko, 2018; Ellis and Aizenberg, 2020, 2021). The model
architecture was inspired by Myronenko (2018) and has been
utilized on other projects (Ellis and Aizenberg, 2020, 2021).
This model architecture combines learned convolutional layers
at multiple resolutions. The initial input images consisted of the
aligned and skull-stripped T1w, T2w, and DTI volumes cropped
to remove background slices and resampled to a size of 144× 160
× 144. Each layer consisted of two residual blocks (He et al., 2016)
performing group normalization (Wu and He, 2018), rectified
linear activation, a 3 × 3 × 3 convolution (Myronenko, 2018).
The first encoding layer consisted of 32 channels and contained
a 20% channel dropout between the two residual blocks. After
each consecutive encoding layer, the images were downsampled
by a factor of two using a strided convolution. As is common
in U-Net architectures, the following layer doubled the number
of channels. The encoder consisted of five layers. Each layer of
the decoder mirrored the encoder with two residual blocks per
layer. The decoder layers took as inputs the upsampled output of
the previous decoder layer concatenated with the output of the
encoder layer of the same depth and resolution. A final 1× 1× 1
convolution linearly resampled the outputs from 32 channels of
the last decoding layer to predict the output volumes for each of
the 47 task activation maps. The predicted output volumes were
then resampled back into the original T1w space.
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FIGURE 1 | Model architecture. A U-Net architecture was used with two residual blocks for each encoding and decoding layer. The inputs for each consecutive

encoding layer are downsampled using a strided convolution. The decoding layer takes as inputs the outputs from the last encoding layer. Each consecutive decoding

layer concatenates the outputs from the encoding layer at the same resolution as well as upsampled outputs from the previous decoding layer. A 1 × 1 × 1

convolution linearly resamples the 32 channel outputs from final decoding layer into 47 volumes, one for each task activation map (Reproduced with permission from

Ellis and Aizenberg, 2020).

Model Training
We trained a single model to predict the fMRI task activation
volumes across all seven task domains using T1w, T2w, and DTI
data from the training set of subjects (Figure 2A). The mean
squared error loss between the predicted and actual activation
volumes was used to iteratively train the model along with Adam
optimization (Kingma and Ba, 2014). The loss function was
weighted so that each of the seven domains, rather than the 47
activation volumes, had an equal influence on the model training.
In order to augment the training data, the scale of the input and
output images was randomly altered, and random white noise
was added to the input images. The learning rate was decayed
after the validation loss had not improved for 20 epochs, and
model training was stopped after the validation loss did not
improve for 50 epochs.

Model Testing and Statistical Analysis
After the completion of model training, the model was used
to predict the activation maps of 47 different tfMRI maps
from seven different task domains. In order to validate the
model’s ability to detect individual differences in task maps,
we imitated the analysis done by Tavor et al. (2016) and
compared the correlations between the predicted and actual
maps (Figure 2B). To allow for the comparison between subjects,
both the actual and predicted task activation volumes were
sampled onto the cortical template surfaces in T1w space
using the connectome workbench (https://humanconnectome.
org/software/connectome-workbench) under a cortical ribbon
constrained sampling method. The cortical template surfaces

are distributed by the HCP with indices that have been
aligned between subjects according to sulcal patterns (MSMSulc)
using surface matching registration (Coalson et al., 2018). The
predicted task activation maps of a given subject were then
compared to the actual activation maps for that subject as well
as to the activation maps for all of the other test subjects,
and a correlation matrix was constructed. A Kolmogorov-
Smirnov test between the distribution of the diagonal elements
of the correlation matrix and the extra-diagonal elements was
performed with the threshold for significance set at α = 0.05.

In order to determine if the inter-subject variation predicted
by themodel could be accounted for via alignment with structural
and functional features beyond that of the sulcal patterns alone,
the predicted and actual activation volumes were sampled onto
another set of surface templates whose indices had been aligned
by the HCP using the MSMAll surface matching technique
(Glasser et al., 2016; Coalson et al., 2018). Correlations between
the predicted and actual activations as sampled onto the MSMAll
surface templates were computed, and a correlation matrix was
constructed. A Kolmogorov-Smirnov test was again conducted
to test for a difference between the distributions of the diagonal
and extra-diagonal elements.

The difference in the distributions was also tested for each of
the 47 task activations with the threshold corrected for multiple
comparisons: α =

0.05
47 = 0.001. The lateralization indices

(the difference in activation between the left hemisphere and
right hemisphere averaged from the surface vertices within a
10mm radius of the peak location for the predicted map) as
described by Tavor et al. (2016) for the predicted maps were also
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FIGURE 2 | (A) Training of the convolutional neural network. The model takes as inputs the structural imaging for a given subject which includes the T1w and T2w

weighted imaging as well as mean diffusivity (MD) and fractional anisotropy (FA) for b-values 1,000, 2,000, and 3,000 s/mm2. The model is trained to predict the task

activation volumes for 47 different task maps across 7 different task domains (visualized on the cortical surface in the figure). The mean squared error loss (LMSE)

between the predicted and actual activations is used to iteratively train the model. (B) In order to validate the model’s ability to predict individual activation maps, the

predicted maps of a given subject m are compared to the actual activation maps for that subject as well as the activation maps for all of the 122 subjects. From these

comparisons, the correlation matrix shown on the right is constructed.

compared to the lateralization indices for the actual maps and
tested for the contrasts from the LANGUAGE, SOCIAL, andWM
task domains with a correlation analysis corrected for multiple
comparisons (α =

0.05
20 = 0.002).

An ablation study was performed to assess the amount of
information gained by the selected input features. In this study,

in addition to the CNNmodel trained as described previously, six
additional models were trained in an identical fashion but with
different sets of input feature maps: (1) DTI features along with
the T1w and T2w imaging, (2) T1w and T2w imaging alone, (3)
T1w imaging alone, (4) a binary mask of the cortex, (5) a binary
mask of the subcortical matter, and (6) a binarymask of the whole
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brain. In order to observe the effects of alignment techniques, the
ablation study was evaluated using the MSMSulc and MSMAll
template surfaces, as well as with the predicted and activation
volumes aligned via non-linear warping into MNI space.

In order to compare performance of the CNN to other
techniques, two linear models were trained using least squares
multiple linear regression on the feature data sampled to
the MSMSulc and MSMAll template surfaces respectively. In
addition to the imaging data, the feature data for the linear
models also incorporated curvature, myelination, sulcus, and
cortical thickness data. The linear models were trained such
that each of the 59,412 cortical vertices were fitted to their
own regression model weights for each of the 47 output
task activation maps. Additionally, a CNN model trained on
permuted inputs and output pairings was trained as a metric for
baseline performance.

To ascertain if the microstructural features from the diffusion
imaging were capable of predicting individual subject differences
in task activation beyond that accounted for by anatomical
differences, a partial correlation was computed with the
predictions from the T1w+T2w model used as the covariate.

Additionally, a test-retest reliability analysis was performed
on the actual maps and predictions by calculating the intraclass
correlation (ICC) using the ICC (3,1) mixed-effects model
(Shrout and Fleiss, 1979).

RESULTS

The CNN was able to use structural imaging to predict activation
patterns of individual subjects that matched the group average
as well as activations that deviated from the group average
(Figure 3). The predicted maps matched their actual maps
better than the maps of other subjects, as seen by the diagonal
dominance correlation matrix (Figure 4A). Row and column
normalization to remove the mean and to account for the higher
variability in the actual mapsmade the diagonal of the correlation
even more pronounced (Figure 4B). A Kolmogorov-Smirnov
test between the distribution of the diagonal elements of the
correlation matrix and the extra-diagonal elements (Figure 4C)
resulted in a highly significant difference (p < 0.001), indicating
that the predicted task maps are significantly more correlated to
their actual maps than to the maps of other subjects. Likewise,
the distributions of all of the individual task maps passed the test
score corrected for multiple comparisons of (p < 0.001) except
for the GAMBLING Punish-Reward task map (p = 0.23) and
the MOTOR LF-AVG (left foot minus average, p = 0.009) task
map (Supplementary Figures S1–S3). For all task maps, the
average correlation to its actual map was greater than the average
correlation to the actual maps of the other subjects, showing
that, on average, the predicted maps matched their actual
maps more than those of others (Supplementary Figure S4).
Further, when the predictions from the T1+T2 model were
used as covariates for the partial correlations, the diagonal
elements were still more correlated than the extra-diagonal
elements (p < 0.001) (Supplementary Figure S5). Even
with using the MSMAll registered template surfaces, the

Kolmogorov-Smirnov test between the distribution of the
diagonal elements of the correlation matrix and the extra-
diagonal elements resulted in a highly significant difference (p <

0.001) (Supplementary Figure S6).
The model was also able to predict the individual differences

in lateralization of task function. The predicted lateralization
indices were significantly correlated (p < 0.008) with the actual
lateralization indices for 20 out of the 25 LANGUAGE, SOCIAL,
and WM contrasts examined with the WM 0BK_BODY,
WM 2BK-0BK, WM BODY-AVG, WM PLACE-AVG,
and SOCIAL RANDOM-TOM task being the exceptions
(Supplementary Table S2). The linear regression of the
lateralization indices between the predicted and actual maps for
the exemplary tasks is shown in Figure 5.

The ablation study shows the correlation of the model using
all of the proposed structural data plotted against models trained
using T1w with T2w data and T1w data only, as well as models
trained on binary mask images of either the cortex, subcortical
matter, or the whole brain (Figure 6). Notably, all models were
able to predict individual subject variation. This indicates that
the information contained in the additional imaging features
improved the model’s prediction. The model trained on the mask
of the brain resulted in the least increase in correlation over
the average.

The test-retest reliability of the predicted maps as measured
by ICC was greater for all domains than the actual maps
(Supplementary Figure S7), and the ICC of all predicted maps
on average was 0.95 compared to 0.61 for the actual maps.

DISCUSSION

We demonstrated that structural imaging contains information
that is predictive of inter-subject variations in task activations
using a CNN. By contrast, Tavor et al. did not find structural
imaging features to be predictive of variations in task activations
when using a simple linear regression model (Tavor et al.,
2016). CNNs, however, are able to extract rich and complex
features that give them an immense advantage, with enough
data, over linear regression. Therefore, the CNN was able to
extract features from the imaging that predicted task activations
over a wide array of domains that correlated well to the actual
tfMRI activations. Previous research has not reported such a
broad correlation between structural imaging and individual-
level variations in functional activation, although some research
has reported the connectivity of reconstructed white matter
tracts to be predictive of visual tasks (Saygin et al., 2016).
In contrast, our model was able to predict variations in task
activation in 47 different activation maps across seven different
task domains (motor, language, working memory, relational,
emotion, social, and gambling). We demonstrated that our
model was able to predict deviations from the group average
activation (Figure 3) as well as variations in lateralization
(Figure 5). Even when using the T1+T2 predictions as
covariates, the model could predict differences in task activation
between subjects. This indicates that the microstructural
diffusion features themselves are predictive of variations
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FIGURE 3 | Example comparisons between group average, actual, and predicted maps for illustrative subjects with task maps across several domains. The actual

and predicted Subject A maps demonstrate the model’s ability to predict accurate activation maps that resemble the group average while the Subject B maps

demonstrate the model’s ability to predict deviations from the group average. Thresholds for the maps were determined using the medians of the positive and

negative gamma distributions from a Gaussian and 2-gamma mixture model. The black circles highlight variations from the group average that the model was able to

predict correctly. Subjects A and B are different subjects for each of the various task maps.

FIGURE 4 | (A) Overall correlation matrix for all tasks. The predicted maps (y-axis) were compared to the actual maps (x-axis) for all of the subjects. The visible

diagonal indicates that the predicted maps were more correlated with their own actual maps than the maps of other subjects. (B) Row and column normalized

correlation matrix to remove mean correlation. (C) Distribution of the diagonal elements of the (un-normalized) correlation matrix in orange and the extra-diagonal

elements in blue visualized using a kernel density estimation and overlapping normalized histogram. A Kolmogorov-Smirnov test between the two distributions gives a

highly significant difference, p < 0.001, indicating that the predicted task maps are more correlated to their actual maps than the maps of other subjects.
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FIGURE 5 | Linear regression fit with 95% confidence intervals between the predicted and actual lateralization indices for (A) the LANGUAGE MATH, (B) SOCIAL

RANDOM, and (C) WM FACE activation maps. The lateralization index is defined as the difference between the left hemisphere and right hemisphere at the peak

location for the predicted map. All three plots show that the predicted lateralization indices are positively correlated with the with the actual lateralization indices

indicating that the predicted maps are able to capture some of the variation of lateralization seen in the actual maps.

in individual task activation beyond that predicted by the
anatomical imaging (Supplementary Figure S5). Furthermore,
when alignment between subjects was performed using MSMAll,
which takes into account functional mapping features, our model
was still able to predict variation in the task activation of
individual subjects (Supplementary Figure S6). Therefore, it is
not likely that the variation captured by the predictions is solely
the result of the functional misalignment between subjects.

The ablation study showed that adding DTI along with T1w
and T2w anatomical imaging resulted in better predictions than
that of any other model (Figure 6). Surprisingly, the ablation
study also showed that the shape of either the sub-cortex alone
or the cortex alone was sufficient to predict individual-level
variation using a CNN. However, when the model was only
able to see the shape of the brain mask, the model was not
as accurate. The information present in the shape of the sub-
cortex but not in the shape of the brain is the structure and
location of the gyri and sulci, also known as the cortical folding
patterns. The model was able to use the shape of the sub-cortex to
infer the cortical folding patterns and then use this information
to predict the task activation patterns throughout the cortex.
Without these patterns, the model is unable to predict variations
between individual subjects to the same extent as delineated
by the poorer performance of the model using only the brain
mask. This finding, along with previous research showing that
cortical folding patterns are unique to the individual (Duan et al.,
2020), influenced by the tension from brain connections (Van
Essen, 2020), and correlated to behavior (Whittle et al., 2009)
as well as neuropsychological impairments (Shaw et al., 2012),
indicates that folding patterns may be an integral part to how
brain function is derived from brain structure.

Structural imaging is immune to some of the sources
of noise that make tfMRI mapping less reliable, such as
neurovascular uncoupling, poor task performance, and cardiac
rhythm. Therefore, it is not surprising that the predictions were
more reliable than the actual tfMRI maps when evaluated in
subjects that were scanned twice (Supplementary Figure S7).
However, it should be noted thatmore thorough processing of the
fMRI to remove structured noise components could also improve

the reliability of the fMRI signal (Glasser et al., 2018; Parkes
et al., 2018). More dependable functional activation maps would
greatly assist clinicians in cases where task activation mapping
is critical for patient care, including neurosurgical operative
planning. Accurate task mapping predictions could give
neurosurgeons the ability to visualize eloquent areas and avoid
potential surgically induced deficits, even without collecting any
fMRI data. This would be particularly advantageous in situations
where collecting fMRI data is infeasible due to limitations in
patient performance or insufficient resources.

While this study demonstrated that deep learning and
structural imaging has some predictive power relating to task
activations, much more work is needed to create models and
methodologies that could provide insight into clinical cases.
Any models or methodologies aiming at clinical use need to
be thoroughly tested on subjects and data that closely resemble
those seen in a clinical setting. For the HCP Young Adult dataset
used in the current study, all subjects were scanned on a single
scanner, were close to the same age (22–35 years old) and
were free from significant psychiatric or neurological illnesses
(Van Essen et al., 2012). In contrast, clinical patients have or
are suspected of having some neurological or psychiatric illness
and are of varied ages. For example, brain tumors can create
anatomical distortions that make identifying key functional areas
extremely difficult. Furthermore, older patients may have age-
related neurodegeneration distorting anatomy.

Significant differences also exist in clinical imaging acquisition
compared to research imaging acquisition. Many of the tasks and
contrasts acquired as a part of the HCP dataset are of little or no
interest to clinicians (e.g., GAMBLING REWARD, LANGUAGE
MATH-STORY, etc.). Conversely, some tasks often used by
clinicians were not acquired, such as an object naming task where
subjects are asked to think of the name for certain objects. The
diffusion imaging from the HCP dataset was acquired at a higher
resolution, with more directions, and at more b-shells than what
time allows for a typical clinical diffusion scanning sequence.
These differences between the HCP vs. clinical realm for imaging
and subjects, as well as other limitations, must first be overcome
before clinical use becomes feasible.
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FIGURE 6 | Ablation study. Self (matrix diagonal) vs. other (extra-diagonal elements) correlation in predictions shows the difference between average correlation of the

predictions to the actual maps and the average correlation of the predictions to the actual maps of all the other subjects. Ablation study results are shown for the CNN

models using the proposed combination of the anatomical imaging and DTI data for each of the 3 b-values (T1+T2+DTI12), the anatomical imaging alone (T1+T2),

and the T1w imaging alone (T1) as well as masked images of the cortex (Cortex Mask), subcortical areas (Subcortical Mask), and the whole brain (Brain Mask).

Examples of the masked images for a single subject are shown on the right. Results were compared using the MSMSulc and the MSMAll registered template surfaces

as well as non-linear registration into MNI volume space. Additionally, results are displayed for linear models trained on the MSMSulc and MSMAll surface-level

features (linear) as well as a CNN model trained on permuted input and output pairings (permutation). Compared to the MSMSulc registered template surfaces, the

MSMAll registered templates did account for some of the predicted variation, but the predicted maps were still more correlated with their own actual maps than all

other actual maps on average for all of the input types and methods. Comparing the predictions to the actual maps non-linearly warped into MNI volume space

resulted in a much higher increase correlation between the predictions and actual maps than comparing the maps using the surface templates. The models trained on

the masked images were able to predict individual subject variation, but the model using the masked brain images exhibited a marked decrease in performance.

CONCLUSION

Structural imaging, when paired with a CNN, was
predictive of inter-subject variations in 47 different
task activation maps across seven task domains. These
findings suggest that anatomical and microstructural
features contain information that is predictive of
unique functional brain activations in individuals.
Future work could focus on utilizing structural
imaging information to predict or enhance functional
activation mapping for individuals in a clinical
setting and this study represents a first step toward
this goal.
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