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Test-retest reliability of fMRI is often assessed using the intraclass correlation coefficient

(ICC), a numerical representation of reliability. Reports of low reliability at the individual

level may be attributed to analytical approaches and inherent bias/error in the measures

used to calculate ICC. It is unclear whether low reliability at the individual level is related

to methodological decisions or if fMRI is inherently unreliable. The purpose of this

study was to investigate methodological considerations when calculating ICC to improve

understanding of fMRI reliability. fMRI data were collected from adolescent females (N

= 23) at pre- and post-cognitive behavioral therapy. Participants completed an emotion

processing task during fMRI. We calculated ICC values using contrasts and β coefficients

separately from voxelwise and network (ICA) analyses of the task-based fMRI data.

For both voxelwise analysis and ICA, ICC values were higher when calculated using β

coefficients. This work provides support for the use of β coefficients over contrasts when

assessing reliability of fMRI, and the use of contrasts may underlie low reliability estimates

reported in the existing literature. Continued research in this area is warranted to establish

fMRI as a reliable measure to draw conclusions and utilize fMRI in clinical settings.

Keywords: reliability, fMRI, independent component analysis, voxelwise, contrast, intraclass correlation

coefficient

INTRODUCTION

Functional magnetic resonance imaging (fMRI) is commonly utilized to investigate neural activity
related to behavior; therefore, decent reliability of fMRI as a measurement is crucial for drawing
conclusions from imaging research. Reliability is often assessed via test-retest reliability procedures,
wherein data is collected via a particular measurement (i.e., fMRI) at two timepoints to examine the
extent to which results are comparable between time one and time two. Thus, reliability reflects the
degree to which ameasure yields consistent results under similar circumstances (Elliott et al., 2020).
There are numerous ways to measure test-retest reliability such as, but not limited to, Pearson’s
correlation, the Intraclass Correlation Coefficient (ICC), the Kendall coefficient of concordance,
and the Dice coefficient (Noble et al., 2019). The ICC is most commonly used to assess test-retest
reliability (Koo and Li, 2016). ICC is a numerical representation of the degree of correlation and
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agreement between two observations. ICC values are interpreted
on a scale with anchors at poor (<0.4), fair (between 0.4
and 0.59), good (between 0.6 and 0.74), and excellent [>0.75;
(Cicchetti, 1993)].

In order to confidently relate neural activity to psychological
constructs of interest and apply research findings to clinical
settings, such as establishing neural biomarkers of certain
disorders, the observed neural activity from fMRI must be
reliably stable. The overall degree of fMRI test-retest reliability
can vary between task types (Holiga et al., 2018), specific
conditions of a task and the contrasts of interest (Raemaekers
et al., 2007; Fröhner et al., 2019; Heckendorf et al., 2019;
McDermott et al., 2020), as well as the brain region of interest
[ROI; (Plichta et al., 2012; Li et al., 2020; Morales et al., 2020;
Korucuoglu et al., 2021)]. Low reliability in imaging research
limits inferences that relate individual difference measures to
fMRI activation (Zeynep Enkavi et al., 2019). However, common
trends in the literature emerge when considering (1) the
relationship between activation and degree of reliability, and (2)
reliability of group-level activation vs. individual-level activation.

For instance, regions with greater activation or significantly
activated voxels to the task at both time points show greater
test-retest reliability (Brandt et al., 2013; Bossier et al., 2020).
Several studies have found a positive relationship between neural
activation and ICC values during memory (Bennett and Miller,
2013), a response inhibition (Korucuoglu et al., 2021), and risk
taking behavior tasks (Li et al., 2020). Another study found that
voxels with greater activation at the group level had a higher
probability of greater ICC values (Caceres et al., 2009). Relatedly,
given the signal to noise ratio of different brain regions and
structures, ICC values are typically found in cortical compared
to subcortical regions (Korucuoglu et al., 2020). Therefore, signal
strength likely plays a role in varying levels of fMRI reliability.

Across various tasks, measures of reliability, such as ICC,
are greater at the group level than the individual level. This
finding has been demonstrated during memory encoding tasks
(Brandt et al., 2013; Holiga et al., 2018; Bossier et al., 2020),
an intertemporal choice task (Fröhner et al., 2019), emotional
face tasks (Plichta et al., 2012; Holiga et al., 2018; McDermott
et al., 2020), an antisaccade paradigm (Raemaekers et al., 2007),
reward-related tasks (Plichta et al., 2012; Holiga et al., 2018), N-
back working memory tasks (Plichta et al., 2012; Holiga et al.,
2018), a theory of mind task, and a response inhibition task
(Holiga et al., 2018). It is currently unclear whether low reliability
at the individual level is related to methodologies (e.g., measure
of neural activation, imaging analysis) being used to calculate
reliability or if fMRI is an inherently unreliable measure of neural
activity. Therefore, the aim of this study is to investigate analytical
approaches and methodological considerations when calculating
reliability of fMRI using ICC. We focused on examining the
value used to quantify neural activation and the type of imaging
analysis (e.g., voxel-wise vs. network level).

Most of the current work concerning reliability of fMRI
calculates reliability measures using difference scores (i.e.,
contrasts) reflecting changes in neural activation between two
task conditions rather than a direct measure of functional
activation [e.g., β coefficient from first-level general linear model

(GLM)], which is likely to underestimate the true reliability of
task-based fMRI. That is, the statistical literature has reported
for some time that difference scores are inherently biased and
unreliable, which is evident by their lack of use in clinical research
and the transition to regression based analyses (Cronbach and
Furby, 1970; Vickers, 2001). For instance, in an assessment of
task and survey reliability, Zeynep Enkavi et al. (2019) found
that task reliability was poor at the individual level, potentially
attributable to the use of difference scores which have low
between-subject variance.

High between-subject variance of a dependent measure
contributes to greater reliability because the measure better
reflects differences between subjects in a sample. Difference
scores, however, have low between subject variance (Zeynep
Enkavi et al., 2019), which, when used in reliability calculations,
results in low reliability estimates. Therefore, a single measure,
rather than a difference score such as a contrast, is better suited
for assessing individual level reliability. Furthermore, as a result
of being collected at the same time, the two measures subtracted
in a difference score are highly correlated (Cronbach and Furby,
1970). A correlation between two variables subtracted from one
another results in a high degree of error (Cronbach and Furby,
1970), and ultimately, lower reliability estimates. This concept
has been exemplified in imaging literature in which a study found
that amygdala activation during different conditions (faces vs.
shapes in a matching task) was highly correlated (Infantolino
et al., 2018). Therefore, we posit that low levels of individual
level reliability can be explained by the use of contrasts in ICC
calculations. We argue that ICC calculation should use a direct
measure of functional activation (i.e., β coefficients derived from
the general linear model). One prior investigation has shown
improved test-retest reliability using beta coefficients, although
this was done with data collected during a Balloon Analog
Risk Taking Task (Korucuoglu et al., 2020), which highlights
the need for investigations that assess other outcomes (e.g.,
emotion processing).

There are several advantages and disadvantages to voxel-
wise vs. network level analysis of brain data. The current fMRI
test-retest reliability research has primarily employed voxel-wise
analyses. With a whole brain approach or ROI approach, which
makes a priori assumptions about brain activation to a particular
task or task condition, voxel-wise analyses characterize how
specific regions respond under certain conditions (Cole et al.,
2010). Additionally, a voxel-wise approach conducts a statistical
test at each voxel at the whole brain level or at each ROI, which
results in relatively low statistical power due to the high number
of statistical tests run. On the other hand, network analyses,
such as through independent component analysis (ICA), identify
distinct networks of brain regions that are co-actively engaged
throughout a task. Investigations of reliability using various
network analyses, such as ICA (Guo et al., 2012; Blautzik et al.,
2013) and connectivity network mapping (Chou et al., 2012)
have found most large-scale networks to be highly reliable (see
Noble et al., 2019) for a comprehensive review of test-retest
reliability of functional connectivity). As a data-driven approach,
network analyses can account for signals unknown a priori and,
ICA specifically serves to isolate neural networks at rest or while
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engaged in a task (Ross and Cisler, 2020). Therefore, we chose to
further assess whether either method, voxelwise analysis or ICA,
yields higher ICC values.

The purpose of this study was to investigate methodological
considerations when assessing test-retest reliability of fMRI
using ICC. Using data from a sample of adolescent girls with
Posttraumatic Stress Disorder (PTSD) prior to and following
trauma-focused cognitive behavior therapy, we calculated ICC
values using β coefficients and contrasts separately taken from a
whole-brain voxel-wise analysis and network level analysis using
ICA. We predict that, (1) given the high degree of error that
results from ICC calculations using contrasts, ICC values will
be higher using β coefficients for both the voxel-wise analysis
and ICA; (2) ICC values will be higher for the ICA analysis
compared to the voxelwise analysis; (3) there will be a positive
relationship between ICC values and neural activation; and
4) higher ICC values will be concentrated in cortical, rather
than subcortical, regions. It should be noted that using data at
pre- and post-treatment is likely to provide more conservative
tests of reliability, due to treatment-inducing changes in the
neurocircuitry being measured. Therefore, it might be expected
that we find lower absolute values of reliability (i.e., an overly
conservative test of reliability); however, the within subject
comparisons of β coefficients vs. contrasts and voxelwise vs.
network should nonetheless be valid and informative regarding
the impact of analytical approaches andmethodological decisions
on reliability estimates.

MATERIALS AND METHODS

The work described in this manuscript has been carried
out in accordance with The Code of the Ethics of the
World Medical Associations (Declaration of Helsinski) for
experiments involving humans, and all subjects completed
informed consent. The analyses included in the current
manuscript are independent of previously reported findings, in
which experience of assault was associated with greater reactivity
of the salience network during the facial emotion processing task
(Cisler et al., 2015, 2019).

Subjects
Recruitment of participants and data collection took place at
the University of Arkansas in Little Rock, AR. Participants
consisted of 23 adolescents assigned female at birth, aged
11–17, undergoing trauma-focused cognitive behavior therapy
for trauma-related symptoms following assaultive violence
exposure. Assaultive violence exposure was operationalized
as a direct experience of physical or sexual assault that
the girl could remember. All participants met DSM-IV
criteria for a PTSD diagnosis. Exclusion criteria included
any histories of psychotic symptoms, neurocognitive disorders,
presence of a developmental disorder, major medical disorders,
MRI contradictions (e.g., non-removable metal), pregnancy,
and history of traumatic brain injury. All study procedures
were approved by the Institutional Review Board at the
University of Arkansas for Medical Sciences (UAMS), and
all methods were carried out in accordance with relevant

guidelines and regulations. Twenty-two participants had pre-
and post-treatment scans; one participant only had pre-
treatment scans.

Assessments
PTSD symptoms were assessed by a trained research staff using
the UCLA PTSD Reaction Index (Steinber et al., 2004). The
presence of mental health disorders was either assessed using
the Mini-International Interview for Children and Adolescents
(MINI-Kid; Sheehan et al., 2010) or Kiddie Schedule for
Affective Disorders and Schizophrenia (K-SADS, Kaufman
et al., 1997). Trained research staff administered the National
Survey of Adolescents (NSA; Kilpatrick et al., 2000) trauma
section, in order to assess trauma histories. The NSA is a
structured interview that includes questions regarding exposure
to physical abuse, sexual assault, witness domestic violence,
witnessed community violence, and a various other stressors
and traumatic events. Participants were also asked to complete
several self-report measures containing questions regarding
childhood maltreatment, depression symptoms, emotion
regulation abilities, and PTSD symptoms. The self-report
measures included the Childhood Trauma Questionnaire (CTQ;
Bernstein et al., 1994), the Difficulties in Emotion Regulation
Scale (DERS; Gratz and Roemer, 2004), the UCLA-PTSD
Reaction Index (Steinberg et al., 2013), and the Short Mood and
Feelings Questionnaire (SMFQ; Sharp et al., 2006).

Treatment
Treatment was administered by a graduate or post-doctoral
level therapist using a standardized protocol, and consisted of
12 trauma-focused cognitive behavioral therapy sessions (Cisler
et al., 2016). Thirty-one participants were recruited, 22 of which
had at least one usable scan for imaging analyses and 21 of which
were used in reliability analyses.

Face Emotion Processing Task
The emotion processing task is widely used in psychopathology
research (Rauch et al., 2000; Williams et al., 2006; Brunetti
et al., 2010) and data from this sample has previously been
published by our group (Cisler et al., 2015, 2018). While in
the MRI, participants viewed facial stimuli and made button
presses indicating decisions concerning the sex of the face. The
faces either exhibited a neutral or fearful expression (valence),
presented overtly or covertly (duration) in alternating blocks.
Overtly presented faces were presented for 500ms; covertly
presented faces were presented for 33ms immediately followed
by a neutral facial expression mask of the same actor in the covert
image. Participants completed two runs of the task (roughly
8min each), in which each block was presented 5 times. Contrasts
of interest included covert fear vs. covert neutral, overt fear
vs. overt neutral, covert fear vs. overt neutral, overt fear vs.
overt neutral, and all fear vs. all neutral blocks. The task was
administered before and after treatment with an approximate
test-retest interval of 12-weeks (i.e., time to complete 12-week
treatment). For additional information on task design see our
groups previous work (Cisler et al., 2015).
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MRI Data Acquisition and Pre-processing
fMRI data were acquired on a Philips Achieva 3T X-series
scanner using a 32-channel headcoil. T1-weighted anatomic
images were acquired with a MP-RAGE sequence (matrix = 192
× 192, 160 sagittal slices, TR/TE/FA = 7.5/3.7/9◦, FOV = 256,
256, 160, final resolution = 1 × 1 × 1mm resolution). Echo
planar imaging sequences were used to collect the functional
images using the following sequence parameters: TR/TE/FA =

2,000 ms/30 ms/90◦, FOV = 240 × 240mm, matrix = 80 × 80,
37 axial slices (parallel to AC–PC plane to minimize OFC signal
artifact), slice thickness = 2.5mm, and final resolution of 3 × 3
× 3 mm.

Image preprocessing was completed using AFNI software
and followed standard steps. In the following order, images
underwent despiking, slice timing correction, deobliquing,
motion correction using rigid body alignment, alignment to
participant’s normalized anatomical images, spatial smoothing
using a 8mm FWHM Gaussian filter (AFNIs 3dBlurToFWHM
that estimates the amount of smoothing to add to each dataset
to result in the desired level of final smoothing), detrending,
high frequency (128 s) bandpass filtering, and rescaling into
percent signal change. Images were normalized using the MNI
152 template brain. Following recommendations (Power et al.,
2014; Siegel et al., 2014), we corrected for head motion related
signal artifacts by using motion regressors derived from Volterra
expansion, consisting of [R(t) R(t)2 R(t−1) R(t−1)2], where R
refers to each of the 6 motion parameters, and separate regressors
for mean signal in the CSF and WM. This step was implemented
directly after motion correction and normalization of the EPI
images in the image preprocessing stream. Additionally, we
censored TRs from the first-level GLMs based on threshold of
framewise displacement (FD) > 0.4. FD refers to the sum of
the absolute value of temporal differences across the 6 motion
parameters; thus, a cut-off of 0.4 results in censoring TRs
where the participant moved, in total across the 6 parameters,
more than ∼0.4mm plus the immediately following TR (to
account for delayed effects of motion artifact). Additionally, we
censored isolated TRs where the preceding and following TRs
were censored, and we censored entire runs if more than 50%
of TRs within that run were censored. The mean percent of TRs
at time one was 83% (SD = 0.2) and at time two was 76% (SD =

0.2). Participants withmore than one run removed were removed
from analyses. This led to the removal of 2 participants.

Data Analysis
Voxel-Wise Analysis
First-level analyses consisted of standard voxel-wise GLMs, in
which a design matrix consisted of predictors for each task block
type (overt fear, overt neutral, cover fear, covert neutral; see Cisler
et al. (2015)). This resulted in four β coefficients, corresponding
to the task design, for each voxel for each participant at pre-
and post-treatment. Second-level analyses consisted of voxelwise
linear mixed effects models (LMEMs), implemented in Matlab
using custom scripts. One participant only had a pre-treatment
scan and was thus excluded from the voxelwise analyses (N =

22). The task was modeled with a factorial design and included
additional covariates nested within subjects as a random effect:

activity ∼ valence (neutral vs. fear) × duration (overt vs. covert)
+ age+ IQ+ head motion+ (1|sub). Cluster-level thresholding
(Eklund et al., 2016) controlled for voxel-wise comparisons using
an uncorrected p< 0.001 and cluster size k≥ 17.We used cluster-
level thresholding as implemented in AFNI software. First, we
estimated the actual amount of smoothing in the data using
3dFWHMx with the ACF option to account for non-Gaussian
shaped smoothing functions. Second, using the actual amount
of smoothing in the data, we used 3dClustSim to calculate the
minimum cluster-size needed for a corrected p < 0.05 given a
voxelwise p < 0.001 threshold, the actual smoothing of the data,
and the gray matter mask created for these data. This analysis
identified a cluster size of 17 voxels. Voxelwise analyses were
constrained within a sample-specific gray matter mask consisting
of 46,976 voxels. Voxelwise activation results are reported for
mean activation across the emotion task and the valence effect
of the LMEM.

Independent Components Analysis
We used GIFT in Matlab to implement spatial ICA to identify
large-scale networks comprised of temporally coactive voxels,
with a model order of 50 components (Calhoun et al., 2002).
Task data from all task runs, from both pre- and post-treatment
were combined for one ICA analysis. To improve precision of
the ICA we used all available data (i.e., using all 23 participants’
data regardless of whether only pre-treatment data was available).
Of the 50 networks, we identified nine networks that were
either canonical networks (Menon, 2011), responsive to the task
(significant main effect of valence or duration, or significant
valence by duration interaction at p < 0.05) or theoretically
related to emotion processing and PTSD [i.e., excluding 41
networks that represented cerebral spinal fluid (CSF), artifact
due to head motion, or networks that were non-responsive to
the task or were of non-interest, such as motor or visual cortex;
see Figure 1]. First-level analyses of the ICA timecourses used
identical design matrices as the voxelwise analyses described
above, resulting in β coefficients for all 11 components for each
condition, per participant. Second-level analyses consisted of
identical LMEMs as described for the voxelwise analyses. The
LMEMs were conducted on each of the 11 components. We only
considered components that were significantly engaged in the
task (i.e., significant main or interacting effects of the task) after
controlling for multiple comparisons with Bonferroni correction.
We also included networks that were clearly theoretically related
to the task and population. This resulted in 9 components that
were carried forward to reliability analyses.

Intraclass Correlation Coefficient Analysis
To investigate test-retest reliability we calculated ICC (two-
way mixed effects, single measurement, absolute agreement;
ICC(A,1) inMcGaw andWong convention) usingmeasurements
of task-based functional brain activity collected at pre- and
post-treatment for 22 participants. In order to investigate
methodological considerations when assessing reliability with
ICC, ICC values were calculated using (1) β coefficients from the
voxel-wise analysis, (2) contrasts from the voxel-wise analysis,
(3) β coefficients from the ICA, and (4) contrasts from the ICA.
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FIGURE 1 | Results of the ICA analysis. Nine components of interest were chosen for reliability analyses.

All ICC calculations were completed in MATLAB R2019a using
the “ICC” function (McGraw and Wong, 1996; Salarian, 2016)
and type “1–1” or “ICC_case_1_1.” Voxel-wise ICC calculations
generated an ICC value at every voxel for either each β coefficient
or each contrast. ICA ICC calculations generated an ICC value
for each component for either each β coefficient or each contrast.

To test whether there was a relationship between degree of
activation and ICC value, we conducted a Pearson correlation
between ICC values and voxelwise activity. For this analysis,
voxelwise activity was characterized in two ways: (1) the mean
activation of that voxel (i.e., y-intercept of the LME), and (2) the
LME effect of valence.

RESULTS

Demographic Characteristics
See Table 1 for clinical and demographic characteristics of
this sample.

Regional Activation During Emotion
Processing Task
Thirty Significant Clusters (t = 3.35, Corrected p < 0.05) Were
Identified for the Mean Activation Throughout all Conditions of
the Task, Including Bilateral Amygdala, Bilateral FusiformGyrus,
and Bilateral Dorsal Anterior Cingulate. Six Significant Clusters
Were Identified for the Valence Effect of the LMEM, Including
the Right Amygdala, Left Caudate, and Right Temporal Pole.
See Supplementary Tables 1, 2 for a Full List of the Significant
Clusters; see Figure 2B for Activation Maps.

TABLE 1 | Participant demographic characteristics.

Variable Mean (SD)

Sample N = 23

Age (yrs) 13.78 (1.76)

Verbal IQ 92.48 (13.16)

Ethnicity 35% Caucasian

57% African American

9% Biracial

0% Hispanic

PTSD 36.26 (19.04)

Assault type Physical assault 35%

Physical abuse 91%

Sexual abuse 86%

# comorbid diangoses 2.83 (2.19)

Current depressive disorder 55%

Current anxiety disorder 73%

Child behavioral checklist Anxious depressed 9.35 (5.78)

Withdrawn depressed 6.00 (2.78)

Somatic complaints 6.09 (5.29)

Social problems 5.96 (4.92)

Thought problems 6.22 (5.03)

Attention problems 9.35 (5.39)

Rule breaking problems 6.65 (6.87)

Aggressive behavior 10.39 (6.55)

PTSD symptom severity refers to baseline UCLA PTSD scores. Assault type was assessed

using the NSA.
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FIGURE 2 | Results of the voxel-wise analysis and ICC calculation. (A) Left—ICC values using the mean β coefficient from the voxel-wise analysis. Right—ICC values

using the mean valence contrast (fear vs. neutral) from the voxel-wise analysis. (B) Activation maps from the LMEMs. Left—mean activation (i.e., the Y-intercept).

Right—activation for the valence contrast (fear vs. neutral). (C) Pearson correlation of the relationship between mean activation and ICC value using β coefficients from

the voxel-wise analysis. (D) Pearson correlation of the relationship between the valence effect of the LMEMs and ICC values using the valence contrast (far vs. neutral)

from the voxel-wise analysis.

Voxelwise ICC Values
ICC values calculated with voxelwise mean β coefficients and the
fear vs. neutral (valence) contrast are displayed in Figure 2A. As
can be seen, different regions had varying degrees of reliability
from poor to excellent.

Degree of Activation and ICC Values
As can be seen in Figure 2C, we found a significant, small positive
relationship between mean activation and ICC values calculated
using β coefficients (r = 0.106, p < 0.001). There was also a
significant, small positive relationship between the valence effect
of the LMEM and ICC values calculated using contrasts (r =

0.138, p < 0.001 see Figure 2D).

Network Activation During Emotion
Processing Task
Seven of the nine components were significantly related to the
task (i.e., main effect of valence, main effect of duration, valence
× duration interaction). See Supplementary Table 3 for results
of the LMEM.

Network ICC Values
ICC values from the ICA analysis were calculated using β

coefficients and contrasts separately (see Figure 3). Two of the
nine components reached a fair to good level of reliability when
ICC values were calculated using β coefficients. One component
with dominant loadings in the posterior insula reached a fair
level of reliability for the overt fear (ICC = 0.579) and covert
neutral (ICC = 0.561) conditions, as well as a good reliability

for mean activation across the task (ICC = 0.632). The other
component, with dominant loadings in the right temperoparietal
region, reached a fair level of reliability for the overt neutral (ICC
= 0.509), covert fear (ICC = 0.413), and mean activation (ICC
= 0.434). Another component with dominant loadings in the
dorsomedial PFC reached above poor reliability for the covert
fear vs. covert neutral contrast (ICC = 0.490) when ICC values
were calculated using contrasts.

DISCUSSION

Establishing good test-retest reliability of fMRI is crucial for
drawing inferences about individual differences in neural
activation, and is thus crucial for utilizing fMRI to neurologically
characterize cognition and support research in clinical
populations. The aim of the study was to methodologically
assess analytical approaches and calculation of test-retest
reliability of fMRI using ICC. Increased reliability has been
found using predictive modeling on resting state data (Taxali
et al., 2021), and through our work has been shown to apply
to task-based fMRI as well. Furthermore, the importance of
methodological decisions in reliability evaluation has been
proven in clinical settings (Compère et al., 2020) and extended
through this work. Overall, the present data shows that (1) for
both the voxelwise analysis and ICA, use of β coefficients in ICC
calculation, compared to contrasts, yielded greater ICC values,
(2) there is a positive relationship between ICC values and degree
of neural activation, and (3) fair to excellent ICC values are
concentrated in cortical, rather than subcortical, regions.

Frontiers in Neuroimaging | www.frontiersin.org 6 May 2022 | Volume 1 | Article 859792

https://www.frontiersin.org/journals/neuroimaging
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroimaging#articles


Heilicher et al. fMRI Reliability & Approaches to ICC Calculation

FIGURE 3 | Intraclass correlation coefficient (ICC) values using β coefficients and contrasts from the independent components analysis (ICA) analysis. (A) Range of

ICC values using betas for the nine ICA components (i.e., networks). (B) Range of ICC values using contrasts for the nine ICA components (i.e., networks).

Our finding of higher ICC values when using β coefficients
compared to contrasts is unsurprising given the amounting
literature concerning the unreliable and error-prone nature
of difference scores (i.e., contrasts). First, two measurements
observed at the same time point are not independent and highly
correlated (Cronbach and Furby, 1970). Therefore, utilizing a
change score results in a high degree of error. Second, difference
scores have low between subject variability, and greater reliability
is achieved with increased between subject variability (Zeynep
Enkavi et al., 2019). As such, the use of a difference score
in individual difference analyses, such as test-retest reliability,
will likely lead to lower estimates of reliability. For some time,
researchers have acknowledged these challenges with change
scores. For example, within clinical research the majority of
treatment studies do not assess effects of treatment based on
changes between baseline and post-treatment, largely because
the difference between pre- and post-treatment is sensitive
to changes in variance (Vickers, 2001). To circumvent the
use of differences scores in imaging research, approaches that
directly analyze the β coefficients, such as ANOVAs or LMEMs,
are preferable. Unlike a contrast score, which represents the
difference in neural activation between two similar conditions,
β coefficients directly characterize percent signal change in the
blood-oxygen-level-dependent (BOLD) timecourses, which is a
more direct measure of functional activation.

Our investigation found a small but positive relationship
between ICC values and neural activation. This relationship
suggests the impact of task activation magnitude on reliability
of task activation is of only small effect. However, our finding is
consistent with the existing reliability literature (Caceres et al.,
2009; Bennett and Miller, 2013; Brandt et al., 2013; Holiga
et al., 2018; Heckendorf et al., 2019; Bossier et al., 2020; Li
et al., 2020; Korucuoglu et al., 2021). With task-based fMRI,
certain regions are expected to be active depending on the task
employed (e.g., amygdala activation during threat processing).
By default, regions that are consistently activated in response
to specific task paradigms should exhibit greater reliability. Our
results also showed that higher ICC values were concentrated
in cortical regions (see Figure 2A), which is consistent with
a prior report of fMRI reliability (Korucuoglu et al., 2020).
During a risk taking behavior task in a sample of monozygotic
twins, cortical regions tended to have greater ICC values
than subcortical regions (Korucuoglu et al., 2020). Similarly,
our finding of higher ICC in the cortical regions compared
to subcortical is expected given that the neural signal from
cortical regions tends to be stronger than subcortical regions
(Ojemann et al., 1997; Seitzman et al., 2020).

Additionally, we anticipated that there would be differences in
reliability depending on the analysis used to characterize neural
activation, specifically in favor of the network-level analysis.
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However, the data revealed an unexpected finding of higher
max ICC values for the voxelwise analysis. Both the voxelwise
analysis and ICA yielded a range of ICC values. The finding
that more ICC values from the voxelwise analysis had excellent
reliability compared to ICA could be explained by the fact that the
voxelwise analysis likely reflects the mass univariate search across
all voxels, thereby separately characterizing areas with high and
low ICC. Reliability assessed from a voxelwise analysis results in
an ICC value at each voxel independently. Alternatively, ICA by
definition considers all voxels within a network that coactivate.
As such, ICA reflects reliability of an entire network collapsed
across many voxels, some of which may have high or low ICC.
The observed differences in ICC values for the ICA and voxelwise
analyses could also stem from one analysis being more or less
sensitive to neural changes over time. In other words, voxelwise
analyses may be less sensitive to neural changes associated with
treatment, which could explain higher voxelwise ICC values
compared to ICA ICC values. Additional research is needed to
further examine the implications of voxelwise vs. network-level
analyses when examining test-retest reliability.

Collectively, based on our findings that discrepancies in ICC
values may depend on analytical approaches, we recommend
that researchers must critically consider the objectives of their
investigation to determine whether a voxelwise or network level
analysis is warranted. For instance, given that cortical regions and
active regions have higher ICC values, an ROI analysis will likely
result in higher estimations of reliability. On the other hand, the
maximum ICC values from a network level analysis will likely be
lower because the analysis is not tuned to a specific set of voxels
or single anatomical region.

The present study is not without limitations. First, with
23 participants, the sample size is relatively small. A larger
sample size would lend to a more comprehensive assessment
of methodological considerations when calculating test-retest
reliability and greater statistical power (Bossier et al., 2020).
Second, the data was taken from an adolescent treatment sample.
One limitation of this sample is that adolescent movement in the
scanner could have influenced the results (i.e., the mean number
of TRs was 83 and 76% at time one and time two, respectively).
Second of all, neural activity was expected to change from pre- to
post-treatment; therefore, reliability estimates were conservative.
Similarly, habituation of neural activity to task stimuli (e.g., faces)
is expected to occur in a healthy population (Breiter et al., 1996;
Fischer et al., 2003; Plichta et al., 2014) but was not accounted
for in the present study. In future studies, this limitation could
be remedied by including a control group that would serve as
a comparison, which could account for habituation to the task
and provide a more accurate estimate of reliability across the
timeframe. Interpretation of the results may be skewed due to the
lack of a healthy control group. Alternatively, the investigation
into ICC calculation using β coefficients vs. contrasts should be
reexamined in a non-treatment sample. Additionally, the sample
consisted of adolescent females still going through development,
which could result in lower reliability estimates. However,
previous work has investigated reliability in children and found
neural activity to be reliable (Song et al., 2012; Somandepalli et al.,
2015). Despite these limitations, this investigation was still able

to compare different analytical approaches to brain data analyses
and ICC calculation. Third, although commonly administered,
the emotion processing task employed is a passive, rather than
active task, which does not necessitate strong neural engagement
outside of visual and motor cortex. A task that is substantially
cognitively demanding would enhance the neural signal and
activation of regions involved in higher order cognition. Given
the relationship between ICC values and degree of activation
present in the literature and found here, an active task would
likely yield higher reliability estimates.

To our knowledge, this is the first study to investigate the
use of β coefficients vs. contrasts and voxelwise vs. network-
level analyses in the assessment of fMRI test-retest reliability.
When assessing reliability of fMRI, our results support the use
of β coefficients rather than contrasts when calculating ICC.
Specifically, we found that ICC calculation using β coefficients
from the voxelwise analysis and ICA yielded higher ICC
values compared to contrasts across the brain. Previous reports
of low test-retest reliability of fMRI may be attributable to
methodological considerations when analyzing brain data and
calculating reliability estimates. The findings presented here
enhance our understanding of test-retest reliability and support
the fact that methodological considerations (e.g., data analysis
procedure, measure of neural activity) have a profound influence
on reliability estimates.
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