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The prevalence of dementia, including Alzheimer’s disease (AD), is on the rise globally

with screening and intervention of particular importance and benefit to those with limited

access to healthcare. Electroencephalogram (EEG) is an inexpensive, scalable, and

portable brain imaging technology that could deliver AD screening to those without local

tertiary healthcare infrastructure. We study EEG recordings of subjects with sporadic

mild cognitive impairment (MCI) and prodromal familial, early-onset, AD for the same

working memory tasks using high- and low-density EEG, respectively. A challenge in

detecting electrophysiological changes from EEG recordings is that noise and volume

conduction effects are common and disruptive. It is known that the imaginary part of

coherency (iCOH) can generate functional connectivity networks that mitigate against

volume conduction, while also erasing true instantaneous activity (zero or π-phase).

We aim to expose topological differences in these iCOH connectivity networks using a

global network measure, eigenvector alignment (EA), shown to be robust to network

alterations that emulate the erasure of connectivities by iCOH. Alignments assessed

by EA capture the relationship between a pair of EEG channels from the similarity of

their connectivity patterns. Significant alignments—from comparison with random null

models—are seen to be consistent across frequency ranges (delta, theta, alpha, and

beta) for the working memory tasks, where consistency of iCOH connectivities is also

noted. For high-density EEG recordings, stark differences in the control and sporadic

MCI results are observed with the control group demonstrating far more consistent

alignments. Differences between the control and pre-dementia groupings are detected

for significant correlation and iCOH connectivities, but only EA suggests a notable

difference in network topology when comparing between subjects with sporadic MCI and
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prodromal familial AD. The consistency of alignments, across frequency ranges, provides

a measure of confidence in EA’s detection of topological structure, an important aspect

that marks this approach as a promising direction for developing a reliable test for early

onset AD.

Keywords: EEG, coherency, connectivity, eigenvector, network topological analysis

1. INTRODUCTION

AD is considered to be a brain disconnection syndrome
(Delbeuck et al., 2003), where earlier studies confirmed that brain
connectivity, as assessed via cerebral coherence, significantly
correlates with the clinical progression of the disease (Calderon
et al., 1997). More recent studies have gone on to confirm
that such a disconnection can be detected in the very early
pre-dementia stages (Parra et al., 2017; Spyrou et al., 2018;
Josefsson et al., 2019). Historically, quantitative analysis of EEG
activity—to aid the diagnosis of AD—has focused on changes
in activity and power across certain frequency ranges, where
(Jeong, 2004) details that an increase in delta and theta alongside
a decrease in alpha and beta is a standard hallmark of AD.
The field is witnessing a rapid development, moving from the
topological characterization of time-frequency variability to the
interdependencies of such variability across densely connected
networks, as in Preti et al. (2017). This development is not
without its challenges, where the detection of interdependencies
is susceptible to noise in EEG signals from a combination
of non-cortical biologic artifacts (e.g., eye movement) and
environmental noise (e.g., electrical interference), see Fitzgibbon
et al. (2007). There have been significant developments in
controlling and rebuilding signals in order to eliminate artifacts,
but the choice of processing techniques can affect the outcome
with Alam et al. (2020) noting how different algorithms produced
different power spectral density for EEG frequency-bands. In
this paper, we present a novel approach for reducing the
impact of signal artifacts when identifying differences in the
electroencephalogram (EEG) activity of those withmild cognitive
impairment (MCI) and Alzheimer’s disease (AD).

Functional connectivity analysis is commonly employed in
neuroimaging to characterize interdependencies, often with
correlation or its alternative in the frequency domain, coherence,
capturing the interaction between channels. Noise and volume
conduction effects can create difficulty in interpreting these
measures of connectivity for EEG data, which has led to a push for
improved harmonization of EEG acquisition and processing with
the recommendation that connectivity measures are unreliable if
considered in isolation (Prado et al., 2022). Volume conduction
is particularly problematic for connectivity analysis, as many
channels can become highly correlated with activity from a

single source propagating through the biological tissue to be

detected instantaneously by multiple channels. The imaginary

part of coherency (iCOH) provides an alternative measure for
connectivity that avoids the signal contamination from volume
conduction, by ignoring signals with zero or π-phase lag (Nolte
et al., 2004). In this way the false instantaneous activity is

removed, with connectivity denoting synchronized signals with
a given time lag. The removal of false connectivity by iCOH does
come at a cost, as true instantaneous activity is likely erased.
In this paper, we consider connectivity analysis that is robust
to such removals of true activity whereby close relationships
between channels can be detected without evidence of direct
iCOH connectivity.

We introduce a robust methodology of EEG assessment
that leverages the noise-reducing benefits of iCOH connectivity
and the global analysis of eigenvector alignment (EA) to
provide new perspectives on functional connectivity in working
memory networks. EA was introduced by Clark et al. (2020)
to study connectivity networks, from functional magnetic
resonance imaging (fMRI), of patients with Alzheimer’s disease.
The methodology is similar to that of cosine similarity,
which is applied as a data clustering metric for machine
learning among other applications (Huang, 2008). For EA,
the nodes—representing EEG sensors—are embedded in a
Euclidean space defined by the connectivity network’s dominant
eigenvectors. Employing a selection of only the most dominant
eigenvectors ensures that the nodes are aligned according to
the network’s most prominent pathways (Clark et al., 2019).
Each node’s placement, in this Euclidean space, depends upon
every connection in the network. In this manner, eigenvector
alignment is a global network assessment as a change in a single
connection will affect the pattern of connectivities and so have an
impact, however small, upon the alignment between all nodes.

Functional connectivity networks for memory tasks in AD
have been the subject of multiple studies (Pijnenburg et al.,
2004; Sperling et al., 2010). Despite this, there remains limited
understanding of how AD affects the topology of working
memory networks in order to impair visual short-term memory
binding (VSTMB). We study VSTMB for both sporadic MCI and
prodromal familial AD—caused by the single mutation E280A
of PSEN1 gene (Lopera et al., 1997)—to identify the changes in
network topology due to the disconnecting pathology of AD,
while also considering the age-related factors that distinguish
the familial and sporadic forms of AD. This work expands upon
recent brain connectivity studies looking at VSTMB in AD (Parra
et al., 2017; Smith et al., 2017) to build a deeper understanding of
this hallmark clinical symptom of AD.

By applying EA in the study of working memory networks,
we aim to improve the reliability of EEG as an assessment
tool for AD with EEG, while providing a different perspective
on functional connectivity networks by highlighting network
structure through channel/sensor alignments. The relationship
between a pair of EEG channels is usually considered by assessing
the direct connectivity value, which is susceptible to noise
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related artifacts. In contrast, EA considers all connections and
therefore—assuming the majority of connections are an accurate
reflection of brain activity—a pairwise alignment should be
minimally affected by a single noise artifact. There is also no
need for a high direct connectivity to consider two sensors to be
closely aligned according to EA. This is useful when considering
connectivities derived from the imaginary part of coherency
(iCOH), where instantaneous activity is erased. For example,
the channels of neighboring sensors can still be closely aligned
according to EA, despite a low iCOH connectivity, as the close
alignment is due to similar patterns of connectivity with all other
sensors.

In this paper, we shall introduce the EA methodology,
including the assessment of significant alignments using random
null models, before contrasting the results with established
connectivity measures and providing insights on functional
connectivity in working memory networks with MCI and
prodromal familial AD. The main contribution of EA is
that it can leverage the noise-reducing benefits of iCOH
connectivity, while still identifying the network topology
including relationship that are hidden by iCOH’s erasure of
instantaneous activity.

2. MATERIALS AND METHODS

2.1. Participants and Data
In this study we investigate the “pre-dementia” phase of the
disease, to consider whether the identification of brain functional
abnormalities—as previously reported using connectivity
analyses (Parra et al., 2017; Smith et al., 2017)—could be
enhanced via the assessment of connectivity using eigenvector
alignment. The mild cognitive impairment (MCI) participants
are divided between familial and sporadic AD groups. The
familial AD participants had developed symptoms of AD at
the time of testing, but did not yet meet criteria for dementia
(Acosta-Baena et al., 2011). However, dementia in these
subjects will inevitably develop in due course. The sporadic
AD participants hold an unknown risk for the development of
dementia, but represents the most common variant. Each MCI
group is compared against control participants who did not carry
gene mutations and were free from psychiatric or neurological
disorders.

All participants provided written informed consent in
agreement with the Helsinki declaration. The Ethics Committees
of the Institute of Cognitive Neurology (INECO) and University
of Antioquia approved this study. Informed consent was
obtained from all subjects.

2.1.1. Sporadic Mild Cognitive Impairment
The subjects are 13 patients diagnosed with MCI—age 73.08 ±

9.01, education 14.08 ± 4.44, MMSE scores 26.46 ± 2.47—and
19 healthy controls—age 67.21 ± 10.14, education 16.50 ± 1.99,
MMSE scores 29.50 ± 0.52—recruited from the INECO, Buenos
Aires, Argentina. Criteria implemented for diagnosis derived
from Petersen (2004); Winblad et al. (2004). For the sake of
brevity, we only report on the MMSE. A wider clinical and
neuropsychological characterization of these samples is available

at Pietto et al. (2016). In summary, patients presented with
a multiple-domain amnestic MCI (Acosta-Baena et al., 2011;
Albert et al., 2011) as informed by Rey Auditory Verbal Learning
Test (sporadic), Verbal Fluency (familial), Trail-Making Test A
and B (both), and Rey Figure Copy and Recall (both). However,
given the well-known limitations of MMSE for tackling subtle
cognitive domains, and for generalization to cross-cultural and
low-socioeconomic settings, future replication should include
more extended cognitive assessments. Nine of the patients were at
particularly high risk from AD conversion having been classified
as single or multi-domain amnestic MCI while three classified
as non-amnestic MCI multi-domain. The data consist of 128-
channel EEG activity recorded with a Biosemi Active 128-channel
Two system at 512Hz and bandpass filtered from 1 to 100Hz.
This was then down-sampled to 256Hz.

2.1.2. Familial Alzheimer’s Disease Dataset
The subjects are 10 patients—44.4 ± 3.2 years old (mean ± SD),
years of education 7.3± 4.1, MMSE scores 25.20± 4.50—and 10
healthy controls—44.3±5.6 years old, years of education 6.8±2.9,
MMSE scores 29.10± 1.10—from Antioquia, Colombia. Further
information on these samples is available at Pietto et al. (2016),
as discussed previously. Each patient carried mutation E280A of
the presenilin-1 gene which guarantees early-onset familial AD.
The data consist of 60-channel EEG activity recorded with a 64-
channel EEG cap using SynAmps 2.5 in Neuroscan at 500Hz and
bandpass filtered from 1 to 100Hz with impedances below 10 k�.
Four ocular channels were discarded after being used to factor out
oculomotor artifacts.

2.1.2.1. Artificial dataset expansion
Establishing the similarity between the control groups from the
sporadic and familial datasets is useful, given the differences in
age and EEG density. The familial dataset contains a smaller
sample size of 10 healthy controls, compared to the 19 recorded
in the sporadic study. In the Section 3 section, these two datasets
are compared directly but there is an additional comparison
with an artificially expanded familial dataset. For this artificial
expansion, the number of healthy controls is extended from 10
to 20 by including subject connectivity matrices twice before
identifying significant differences. Such an approach is used to
artificially inflate the significance of the results, and therefore is
merely illustrative; used to support the direct comparison and
highlight the benefit of expanding the study.

2.2. Visual Short-Term Memory Binding
Task
EEG data was recorded while participants performed visual
short-term memory binding tasks. These assess memory
binding in visual short-term memory (VSTM) by contrasting
performance during the recognition of colored shapes, which
requires binding of shape and color in memory retention
(binding), and the recognition of single shapes which only
requires the retention of a constituent feature (see Parra et al.,
2017 for an illustration of the task). In the shape task, where
change detection assesses VSTM for shape alone, the arrays
consist of three different black shapes. In the binding task, the
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arrays consist of three different shapes each with a different
color. Each task trial consists of an encoding period (500 ms),
during which a study array is displayed on screen, followed by an
unfilled short delay (900 ms) and test period with a test array.
During the test period, participants are prompted to respond
whether or not the objects in the two arrays are identical. The
positions of the objects are randomized between arrays to avoid
use of location as a memory cue. Both shapes and colors are
chosen randomly for each trial from sets of eight shapes and eight
colors. A randomly chosen 50 percent of the trials have the same
objects in both arrays. In the other 50 percent, two shapes seen
during the encoding periods are replaced with two new shapes
selected from the set. While in the binding task, the color of two
of the shapes is changed in addition to the shape changes. All
participants start with a brief practice session before undergoing
one hundred trials per task. Binding and shape tasks are delivered
in a counterbalanced order across participants.

2.3. Imaginary Part of Coherency
The functional connectivity between each pair of EEG channels
is assessed from the preprocessed time series data. The coherency
captures functional connectivity as it is a measure of the linear
relation between two EEG channels (sensors) at a specific
frequency (Khadem and Hossein-Zadeh, 2013). For channels i
and j, the coherency at each frequency f is as follows:

COHij(f ) =
Sij(f )

√

Sii(f )Sjj(f )
, (1)

where Sij(f ) is the cross spectrum of the signals acquired from the
channel i and j, and the respective autospectra are Sii(f ) and Sjj(f ).
The imaginary part of coherency (iCOH) is the absolute value of
the imaginary part, i.e., iCOHij(f ) = Im(COHij(f )). The iCOH
connectivities are calculated for four independent EEG frequency
bands; delta (0.1 − 4Hz), theta (4 − 7Hz), alpha (7 − 13Hz),
and beta (13 − 30Hz). The iCOH is computed using FieldTrip
(Oostenveld et al., 2011)—with the multi-taper method fast
Fourier transform (mtmfft) and padding equal to the trial time—
to provide a 0.5Hz resolution that is average over frequency

bands. One weighted adjacency matrix was then processed for
each participant undergoing each task by averaging across trials
of the tasks. The use of a global network assessment for the
adjacency matrix means that every connection is accounted for
when determining the relationship between sensors. There is,
therefore, no need to filter the adjacency matrix either through
removing connections by applying a threshold or using spanning
trees to construct a network topology.

2.4. Eigenvector Alignment
The alignment between sensors is evaluated, as described in Clark
et al. (2020), by embedding the sensor nodes in a Euclidean
space—defined by three of the system’s dominant eigenvectors—
and assessing the dot product of their position vectors with
respect to the origin of this coordinate frame. This comparison
can yield the alignment angle θ between the two vectors using
the well-known relation,

θ = cos−1

(

r · s

|r||s|

)

(2)

where r and s are the position vectors for different sensor nodes
in the eigenvector-defined space. Sensors are closely aligned
when they have a small angle between their position vectors. In
this paper, eigenvector alignment is based on the 2nd, 3rd, and
4th eigenvectors of the connectivity matrix as demonstrated in
Figure 1C. The first eigenvector (Perron-Frobenius eigenvector)
is not included as it is exclusively composed of non-negative
entries, and therefore unable to identify network division.

Figure 1 presents an example of a subject’s (Figure 1A) iCOH
connectivity matrix, (Figure 1B) eigenvector alignment matrix,
and (Figure 1C) sensor node embedding in an eigenvector-based
Euclidean space. This figure demonstrates how the iCOH and
eigenvector alignment matrices relate, which reveals that low
iCOH connectivity values (e.g., between sensors 88 to 96) can
still achieve small alignment angles (i.e., close alignment). Close
alignment is a result of similar patterns of connectivity, as can be
seen in Figure 1 for each of the highlighted sensor groupings. The
three sensor groupings (marked in Figures 1A–C) demonstrate
close in-group alignments, while between group alignment angles

FIGURE 1 | The (A) iCOH connectivity matrix, (B) eigenvector alignment matrix, and (C) sensor node embedding, in an eigenvector defined Euclidean space, are

presented for a 128-channel EEG recording of a control subject. Color denotes node groupings in (C) with the related sensor IDs highlighted in (A,B), where v2 & v3
are the 2nd and 3rd eigenvectors, respectively.
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are large. This is visualized in Figure 1C, where each grouping
forms a separate cluster with clear separation between groups.

2.4.1. Significance Tests
Significant alignments are determined for sets of healthy control,
prodromal familial AD, and sporadic MCI subjects through
comparison with alignments generated by random null models.
Clark et al. (2020) demonstrated that consistent alignments can
be achieved when comparing against 1,000 random models, with
over 90% of the same alignments recurring with separate sets
of 1,000 random models. In this paper, the random models
are generated by rearranging subject iCOH matrices to form
randomized iCOHmatrices while ensuring the same distribution
of connectivity values. Each randomized iCOHmatrix then being
used to calculate an EA matrix.

Significance is evaluated assuming unequal variance with a
t-test (Behrens-Fisher problem). Given that we are performing
multiple hypothesis testing (e.g., comparison of 8128 sensor
ID pairs in 128-channel EEG iCOH matrix) the p values are
converted to q values by adjusting for the false discovery rate
(FDR), as described by Benjamini and Hochberg (1995). A
threshold of q < 0.05 yielding an FDR of 5% among all significant
alignments.

Significant correlation and iCOH connectivities can also be
evaluated in the same manner, where the randomized matrices
are compared directly with the subject connectivity matrices.

2.4.2. Visualizing Connections
We use a visualization of network connections throughout
this paper to aid interpretation of the results. Alignments and
connectivities are visualized from the top view throughout
this paper with the frontal left/right and posterior left/right
marked in the figures. The visualization includes a filter on
the connections displayed to restrict those between both distant
and neighboring sensors. This filter is particularly useful for
visualizing the EA results; in general, neighboring sensors
share similar connectivities to other sensors and therefore have
increased alignment relative to random null models. Hence,
it is more informative to look beyond these neighboring
connections to reveal regions of close alignment between non-
neighboring sensors. The maximum distance between sensors is
also constrained as decreased alignment, with respect to random
null models, is likely to occur between distant sensors. This
maximum distance constraint highlights decreased alignments
that occur despite the relative proximity of sensors.

It is worth noting that increased alignments are also filtered
out by the maximum distance constraint. These alignments
obfuscate the patterns of increased alignment, when presented
in two-dimensions, so their removal is valuable when presenting
results. However, these are potentially informative alignments
and future work should consider what these alignments between
distant sensors reveal about brain activity.

The maximum distance threshold for including connections
is taken as 65% of the maximum y-axis sensor distance; 117 mm
for the 128-channel coordinate positions and 104 mm for the
60-channel positions. While the minimum distance threshold is
taken as 250% of the smallest distance between sensors; 50 mm

for the 128-channel positions and 42 mm for the 60-channel
positions. The coordinate mappings for the Biosemi Active 128-
channel and 64-channel positions are given in Biosemi (2022).

2.4.3. Consistent Alignments
For a given subject, there are variations in iCOH connectivities
across the frequency ranges but there is also consistency
especially between the delta, theta, and alpha frequency ranges.
For example, Figure 2A reports consistent, significantly low,
iCOH connectivities for the control subjects in the sporadic
dataset. The significantly high iCOH connectivities also display
similar consistency, see Supplementary Material for further
detail. This consistency translates into consistent EAs when
derived from iCOH, as seen in Figure 2B, where the pattern
of alignments is also similar in the Beta range. Note that both
correlation connectivities, generated using Pearson’s correlation
coefficient, and EA derived from correlation matrices differ
notably between frequency ranges, for the same set of subjects
performing either of the working memory tasks.

Consistency of EA between frequency ranges is not
unexpected, as sensors displaying little activity at a given
frequency range can still achieve close alignment if their patterns
of activity are similar. Therefore EA consistency enables results
to be filtered, such that only alignments appearing consistently
across frequency ranges are displayed. In this paper, alignments
that appear in at least three of the four frequency bands (delta,
theta, alpha, and beta) are considered consistent alignments.
Such an approach is useful for ensuring that reported alignments
are not the product of an artifact at affecting a single frequency
range.

2.4.4. Glossary of EA Terminology
EA is introduced here for use in EEG functional connectivity
analysis, therefore it is considered beneficial to the reader to
include a glossary of the key terms.
Alignment The pairwise similarity of channel

connectivities, assessed using the
alignment angle.

Alignment
angle

The angle between two position vectors in
a Euclidean space defined by a selection of
the network’s dominant eigenvectors.

Increased
alignment

The alignment angle between a pair of
sensors is significantly smaller than
alignment angles reported for the random
null models.

Decreased
alignment

The alignment angle between a pair of
sensors is significantly larger than
alignment angles reported for the random
null models.

Close
alignment

The alignment angle between a pair of
sensors is relatively small.

Consistent
alignment

A significant alignment that is reported in
at least 3 of the 4 frequency bands
considered (delta, theta, alpha, and beta).

Dominant
eigenvector

An eigenvector associated with the largest
eigenvalue of the connectivity matrix.
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FIGURE 2 | A top view of (A) significantly lower iCOH connectivities and (B) significantly decreased eigenvector alignments (EA), with respect to random null models;

displayed for the delta, theta, alpha, and beta frequency ranges (left to right). Significant connections (q < 0.05) are identified for the set of 19 control subjects from the

sporadic dataset performing the shape memory task. Only iCOH and EA connections within a defined sensor distance bound are displayed, see Section 2.4.2. The

frontal left (FL), frontal right (FR), posterior left (PL), and posterior right (PR) are marked to indicate orientation.

3. RESULTS

Results shall be presented for 128-channel EEG recordings of
healthy control (CON) and sporadic mild cognitive impairment
(MCI) subjects, alongside 60-channel EEG recordings of healthy
control (CON) and early-onset familial Alzheimer’s disease (AD)
subjects. Both the sporadic and familial datasets include the same
working memory tasks (Shape & Bind) recorded across four
frequency ranges (delta, theta, alpha, and beta).

For correlation functional connectivity matrices, generated
with Pearson’s correlation coefficient, there are few significant
connectivities detected for the delta, alpha, and beta frequency
ranges in the control, sporadic MCI, or prodromal familial
AD groupings. The exception is the theta frequency range
where Figure 3 demonstrates clear patterns of significant
connectivities that are consistent between the two datasets.
In both Figures 3A,B, the control subjects display with fewer
significantly higher correlation connectivities (green) and more
significantly lower connectivities (blue) than the MCI and
prodromal familial AD subjects for the memory binding task. A
similar contrast is also observed for the shape memory task.

For iCOH functional connectivity, consistent and significant

higher and lower connectivities are detected as discussed in

the Section 2.4.3. These consistent connectivities are reported

in Figure 4 where they indicate greater activity (higher iCOH

connectivities) in the frontal regions of all subject groupings as
well as lower iCOH connectivities between posterior sensors in
the control groups. The control subjects present with a greater
number of consistent connectivities and there are no significantly
lower iCOH connectivities in either the MCI or prodromal
familial AD groups.

For EA assessment of functional connectivity networks, it is
envisioned that EA’s reliance on the pattern of connectivities,
when determining the relationship between a pair of EEG
channels, will provide greater robustness to the erasure of
connections than an assessment of the direct relationship. This
claim is supported by Figure 5, where the effect of erasing
correlation connections on EA is demonstrated for a control
subject’s delta and theta recordings. In both Figures 5C,F, the
pattern of EA is recognizably similar to Figures 5B,E despite
the removal of 250 connections (500 directional edges, just over
3% of all edges). However, it is also evident that EA is more
similar for the theta recording with the mean absolute difference
1EA = 0.16 when comparing Figure 5E and Figure 5F, while
more variation is seen with the delta range, 1EA = 0.61 when
comparing Figure 5B and Figure 5C.

A clear distinction between delta and theta recordings in
Figure 6, for the correlation matrices, confirms the observation
in Figure 5 that—following connection erasure—EA is prone to
greater variation with delta correlation matrices than theta. The
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FIGURE 3 | A top view of significantly higher and lower correlation (Pearson’s coefficient) connectivities, with respect to random null models, for the theta frequency

range. Significant correlation connections (q < 0.05) are identified in (A) for the CON and MCI subjects and in (B) for the CON and prodromal familial AD subjects

performing the memory binding task. Only connections within a defined sensor distance bound are displayed, see Section 2.4.2. The frontal left (FL), frontal right (FR),

posterior left (PL), and posterior right (PR) are marked to indicate orientation.

clear pattern of correlations for theta (Figure 5D) is similar for
most subjects and contributes to the presence of many significant
alignments in Figure 3.

Connection erasure from correlation matrices, as in Figure 5,
and connection creation in iCOH matrices are considered in
Figure 6. In both cases the lowest iCOH values are altered, with
correlation entries set to zero and iCOH entries replaced with
the largest magnitude iCOH entry. A similar pattern is found
for both the 128-channel recordings of control subjects in the
sporadic dataset (Figure 6A), and the 60-channel recordings
of control subjects in the familial dataset (Figure 6B). Fewer
channels means fewer sensor connections, and Figure 6 shows
that this results in less robustness of EA with greater variation
from the 60-channel data for the same percentage of erased
connections. In general, the theta iCOHmatrices produce less EA
variation after alteration but the difference is far less notable than
it is for the correlation matrices. Note that the robustness of EA
to alterations in connectivity, for the alpha and beta frequency
ranges, are similar to those reported for delta.

The consistent alignments detected across frequency ranges
(see Consistent Alignments) are displayed in Figure 7 for the
control subjects in both the sporadic and familial datasets.

In Figures 7A, 19 control subjects are recorded with 128-
channel EEG while in Figure 7B only 10 control subjects are
recorded with 60-channel EEG. Figure 7B displays far fewer
consistent alignments than Figure 7A, which highlights the
impact of using both a smaller dataset and a lower density

recording. It is possible to gain an insight on the influence of
fewer channels on the alignments detect by analyzing only a
subset of the available channels. Reducing the sporadic dataset
(high-density, 128 channel, recordings) down to a 32 channel
setup (as defined in Biosemi, 2022) produces more alignments
than the 60 channel results in Figure 7B but far fewer than in
the original analysis. Therefore, it is not density alone that is
at fault for the loss of significant alignments in the familial AD
dataset. However, taking a smaller subset of 16 sensors for the
sporadic dataset does highlight that EA is sensitive to density as
only a few alignments are detected for the control subjects and
none recorded for the MCI subjects. For more details see the
Supplementary Material.

The comparison between the alignments detected for both
control groups in Figure 7 can be aided by artificially extending
the dataset through subject duplication, see Section 2.1.2.1.
Figure 7C, therefore, considers an artificially expanded dataset
of 20 low-density recordings with the artificial inflation of
significance resulting in more evident patterns of alignment. The
artificial extension of the familial dataset reduces the reliability
of the results in Figure 7C, but it is useful in highlighting
commonality between the sporadic and familial control groups.
The control groups are separated by both EEG density and
age, where the sporadic are 67.21 ± 10.14 years old and the
familial are 44.3 ± 5.6 years old. Despite these differences, the
pattern of decreased alignments for the shape memory task
(CON, Shape) in Figures 7A,C are very similar. There are also
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FIGURE 4 | A top view of significantly higher and lower iCOH connectivities, with respect to random null models, that were consistent across at least three of the four

frequency ranges investigated (delta, theta, alpha, and beta). Consistent and significant iCOH connections (q < 0.05) are identified in (A) for the CON and MCI

subjects and in (B) for the CON and prodromal familial AD subjects performing the shape memory task. Only connections within a defined sensor distance bound are

displayed, see Section 2.4.2. The frontal left (FL), frontal right (FR), posterior left (PL), and posterior right (PR) are marked to indicate orientation.

FIGURE 5 | The impact of erasing correlation connections on eigenvector alignments (EA) is displayed for a control subject in the sporadic dataset. The correlation

matrices, with erased connections corresponding to the 250 lowest iCOH connections (∼ 3%) for the respective frequencies, are shown for (A) delta and (D) theta

frequency ranges. The EA matrices assessed from the original (unaltered) correlation matrices are shown for (B) delta and (E) theta. The EA matrices assessed from

correlation matrices, with erased connections, are shown for (C) delta and (F) theta.
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FIGURE 6 | The absolute difference between EA values calculated from correlation and iCOH matrices with and without altered connections (1EA), against the

percentage of altered connections, is presented for (A) high-density and (B) low-density EEG control recordings. Connections are altered by either erasing

connections, for the correlation matrices, or creating connections, for the iCOH matrices by setting entries equal to the maximum iCOH entry. In both cases the

altered connections correspond to the lowest iCOH connections for the respective frequencies. The mean 1EA is reported for control subjects in both the familial and

sporadic datasets, using the delta and theta frequency ranges recorded during the shape memory task. The standard deviation of 1EA is denoted with error bars.

notable similarities in the increased alignments observed in
the memory binding task (CON, Bind) where the increased
alignments are more concentrated between the frontal sensors.
The similarities are not as obvious with either the increased
alignments in the shapememory task or the decreased alignments
in thememory binding task. Given the polarity of the relationship
between increased and decreased alignments, similarity in one
between control groups suggests that the other is unlikely to be
contradictory.

In Figure 8, consistent alignments are compared between
control and sporadic MCI subjects. Unlike Figure 7 only a subset
of 13 control subjects—to match the number of MCI subjects—
are used to identify consistent alignments. Figure 8 still presents
a stark contrast between the alignments detected for control
and MCI subjects, where MCI subjects display fewer consistent
alignments but similar patterns of alignment with the main
distinction being the location of posterior left and right increased
alignments in the shape test (MCI, Shape).

Figure 9 reports on control and prodromal familial AD

subjects, where only a few consistent alignments are detected.

The location of consistent alignments, reported in Figure 9B

for the familial AD subjects, differ from both sets of control

subjects in the sporadic and familial datasets. In particular,

for the familial AD, shape memory task (Fam. AD, Shape)

there is a greater concentration of increased alignments in

the frontal region (+x location) and a decreased alignment
along the right side (-y location) of the brain (from channels
CP6 to F4, i.e., centroparietal to frontal). These differences in
alignment locations are highlighted clearly when reviewing the
significant alignments for each frequency range, included in
Supplementary Material. There are no consistent alignments for

the familial AD, memory binding task (Fam. AD, Bind), but
increased alignments in Figure 9A for control subjects (CON,
Bind).

4. DISCUSSION

By introducing a methodology, combining eigenvector
alignment and iCOH connectivity, for the study of EEG
functional connectivity networks, we have sought to provide
a different perspective on sensor connectivity networks with
a robust analysis that can lead to improved detection and
intervention for AD.

Both correlation and iCOH connectivity results report
differences between control and MCI/prodromal familial AD
subjects. In both Figure 3 (theta frequency range correlations)
and Figure 4 (consistent iCOH connectivities across frequency
ranges) the location of connectivities remains similar for each
subject group with the main difference being the density of
significant connectivities. A similar result is observed for the
consistent alignments of sporadic MCI subjects, where fewer
alignments are found but they present in similar locations to their
healthy control counterparts. In contrast, eigenvector alignment
(EA) derived from iCOH matrices indicates a different network
topology for prodromal familial AD subjects performing the
shape memory task (Figure 9) than is seen with either control
group or the sporadic MCI subjects.

A strength of our sample design is the availability of
prodromal familial AD participants who had not yet developed
symptoms of AD at the time of testing, but will inevitably do
so in due course. The opportunity to contrast such data with
that obtained from equivalent sporadic AD participants is unique
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FIGURE 7 | A top view of significantly increased and decreased eigenvector alignments, with respect to random null models, are displayed if an alignment is

consistent across at least three of the four frequency ranges investigated (delta, theta, alpha, and beta). These consistent and significant (q < 0.05) EAs are shown for

the set of control subjects in (A) the sporadic (128-channel) and (B), (C) the familial (60-channel) datasets for both the shape memory (shape) and memory binding

(bind) tasks. In (C) the set of control subjects is artificially expanded by duplicating each subjects scan results. Only EA connections within a defined distance bound

are displayed, see Section 2.4.2. The frontal left (FL), frontal right (FR), posterior left (PL), and posterior right (PR) are marked to indicate orientation.

as the latter group holds unknown risk for the development
of dementia and yet represents the most common variant. The
difference in alignments for prodromal familial AD subjects
is seen primarily for the shape memory task, as there are no
consistent alignments reported for the memory binding task. The
sparse presentation of alignments, highlights that confidence in
the results would be improved by expanding the sample size,
to include more subjects, or by increasing recording density.
However, the breakdown of significant alignments across the
separate frequency ranges, included in Supplementary Material,
reveals that the decreased alignment reported in Figure 9B is not
a lone artifact but rather part of a pattern of decreased alignments
on the right side (-y location) for the Familial AD, shape
test, results. These decreased alignments report disconnection
between the right centroparietal (CP)/temporal (T) channel

locations with the right anterior frontal (AF)/frontal (F) locations
(channels CP6 to F4 in Figure 9B). This is in contrast to the
patterns reported in Figures 7–9A where decreased alignments
in the shape test are seen between the occipital (O) locations
and bilateral centroparietal electrodes, as well as between the
left frontocentral (FC) and middle (y = 0) frontal/frontocentral
electrodes (see Biosemi, 2022 for EEG channel layouts).

Some demographic and clinical features of our samples are
worth considering as they can aid the interpretation of our
results. The age discrepancies should be noted. Groups entering
analysis of sporadic MCI were over 65 years of age while
those entering analysis of familial MCI were in their 40’s. Age
has proved a confound when it comes to early detection of
sporadic later-onset AD (Parra, 2022). Most neurocognitive
changes associated to MCI linked to Alzheimer’s disease are
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FIGURE 8 | For (A) the CON and (B) the MCI groups in the sporadic dataset, a top view of consistent alignments, both increased and decreased alignments with

respect to random null models, are displayed. These consistent alignments (q < 0.05) are shown for both the shape memory (shape) and memory binding (bind)

tasks. Only EA connections within a defined sensor distance bound are displayed, see Section 2.4.2. The frontal left (FL), frontal right (FR), posterior left (PL), and

posterior right (PR) are marked to indicate orientation.

also present in normal aging though to a lesser extent. Accrued
wisdom suggests that these early changes are linked to increased
activity (i.e., functional reorganization) aimed at compensating
for the impact of the underlying neuropathology. Parra et al.
(2011) compared samples of sporadic and familiar AD (the latter
from the same cohort as considered herein) and have shown that
behaviorally these are indistinguishable. Pietto et al. (2016) later
explored similar hypothesis using EEG and behavioral measures
in MCI subjects reporting very similar findings (i.e., shared
neurocognitive phenotypes across disease variants). Such shared
features across clinical samples of different ages can reflect age-
related compensatory changes which have been well-documented
by other studies (Parra et al., 2013; Reuter-Lorenz and Park, 2014;
Cabeza et al., 2018). We therefore feel compelled to suggests
that our findings from familial AD cohorts can inform on
neurocognitive changes linked to the disease mechanisms which
are unaccounted for by aging (see also Pietto et al., 2016). Future
studies will be needed to replicate these across larger samples of
cases from populations affected by different diseases variants and
mutations.

By assessing pairwise relationships with EA, it is envisioned
that the impact of noise in the recording and the erasure of true
instantaneous activity (zero or π-phase) by iCOH processing will
be reduced. Figure 1 demonstrated how close alignments (i.e.,
small alignment angles) can be associated with the lowest iCOH
connectivities. This confirms that the erasure of connectivity

between a pair of channels does not prevent the detection of close
alignments, as long as the pattern of connectivity elsewhere is
similar for both channels. The extent to which EA is robust to
connectivity removal is explored in Figures 5, 6 by monitoring
the change in the EA values after removal or creation of
connectivity connections. The altered connectivities were those
with the lowest iCOH values, for a given frequency range, and
are therefore likely to include erased true connectivities. EA is
found to bemost robust when considering theta range correlation
matrices, especially for alterations to correlation matrices. In
comparison to other frequency ranges, theta correlations display
clearer delineation between high and low connectivities that
creates distinctive patterns of connectivity for each channel. This
clear structure enables the derived EAs to remain similar even
after the removal of hundreds of connectivities, as evidenced
by low variation in EA values in Figure 5. EA is effective
when combined with iCOH, which is known to mitigate against
volume conduction, as it can still identify the topological
structure of EEG functional connectivity networks despite
connectivity erasure.

The study of EA robustness to connectivity removal also
highlights that high-density, 128-channel, recordings are more
robust than low-density, 60-channel, recordings for the same
percentage of erased connections. This contributes to the lack
of detected alignments (consistent and significant) from low-
density recordings, where using a subset of 32 and 16 channels
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FIGURE 9 | For (A) the CON and (B) the prodromal familial AD (Fam. AD) groups in the familial dataset, a top view of consistent alignments, both increased and

decreased alignments with respect to random null models, are displayed. These consistent alignments (q < 0.05) EAs are shown for both the shape memory (shape)

and memory binding (bind) tasks. Only EA connections within a defined sensor distance bound are displayed, see Section 2.4.2. The frontal left (FL), frontal right (FR),

posterior left (PL), and posterior right (PR) are marked to indicate orientation.

from the 128-channel recording dataset was found to produce
notably fewer consistent alignments. Results with few consistent
alignments indicating that either no common connectivity
patterns were present or too few subjects were considered
to produce significant findings. The low-density dataset is
artificially extended by duplicating subject data, in order to
form a viable comparison with the high-density recordings.
This limits the reliability of detected alignments, but more
similarities can now be seen in the consistent and significant
alignments detected for low- and high-density control groups.
This supports the reliability of EA analysis across differing
EEG setups, but an expanded dataset is required to validate
this finding.

The results from the 128-channel EEG recordings in Figure 8

present a case for the use of EA with iCOH to identify clear
differences in brain activity between healthy controls and subjects
with MCI, at high-risk of developing sporadic AD. The differing
numbers of CON and MCI subjects were confirmed in Figure 8

to have only a marginal effect on the difference in significant
alignments. Therefore, it can be concluded that the patterns
of EEG activity are more consistent for CON subjects than
MCI. A similar finding has been reported in Clark et al.
(2020) where notably fewer alignments were found for AD
subjects than health controls from functional magnetic resonance
imaging scans.
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