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TheComorbidity andCognition inMultiple Sclerosis (CCOMS) study represents

a coordinated e�ort by a team of clinicians, neuropsychologists, and

neuroimaging experts to investigate the neural basis of cognitive changes and

their association with comorbidities among persons with multiple sclerosis

(MS). The objectives are to determine the relationships among psychiatric

(e.g., depression or anxiety) and vascular (e.g., diabetes, hypertension, etc.)

comorbidities, cognitive performance, and MRI measures of brain structure

and function, including changes over time. Because neuroimaging forms

the basis for several investigations of specific neural correlates that will be

reported in future publications, the goal of the current manuscript is to briefly

review the CCOMS study design and baseline characteristics for participants

enrolled in the three study cohorts (MS, psychiatric control, and healthy
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control), and provide a detailed description of theMRI hardware, neuroimaging

acquisition parameters, and image processing pipelines for the volumetric,

microstructural, functional, and perfusion MRI data.

KEYWORDS

brain, cognition, comorbidities, MRI, multiple sclerosis, neuroimaging

Introduction

Although there are a variety of disease-modifying therapies

(Rae-Grant et al., 2018; Gholamzad et al., 2019) available to

reduce relapses and slow disability progression in multiple

sclerosis (MS), the efficacy of these treatments is limited and

there is still no cure for this disease. In addition to the underlying

neuroinflammatory and neurodegenerative disease mechanisms

associated with MS, physical comorbidities such as diabetes

and hyperlipidemia accelerate the overall rate of disability

progression in MS (Zhang et al., 2018) and increase the risk

of relapse in relapsing-remitting MS (Kowalec et al., 2017).

Similarly, elevated cardiovascular risk among persons with

MS is associated with higher relapse rate, increased disability,

and escalation of disease modifying therapies in MS (Petruzzo

et al., 2021), and with poorer cognitive performance (Reia

et al., 2021). Furthermore, common psychiatric comorbidities

including anxiety disorders and depression decrease quality of

life and cognitive performance, and are associated with faster

progression of disability in MS (McKay et al., 2018; Marrie

et al., 2019; Palladino et al., 2021). Therefore, these physical

and psychiatric comorbidities represent potentially modifiable

factors that could be targeted to improve patient outcomes.

However, relatively little is known about the relationships

between these common comorbidities and cross-sectional or

longitudinal differences in brain anatomy and physiology. The

Comorbidity and Cognition in Multiple Sclerosis (CCOMS)

study was designed to examine these issues, with a focus on

cognitive impairment and decline, which affects between 40 and

65% of individuals withMS (Rao et al., 1991a; Rao, 1995) and has

profound impact on their psychological functioning, ability to

maintain employment, and overall wellbeing (Rao et al., 1991b;

Morrow et al., 2010).

The CCOMS study was originally designed as a 2-year

longitudinal neurologic, psychiatric, cognitive, and radiologic

evaluation of a cohort of over 100 persons with MS. These

individuals were recruited from an ongoing longitudinal

comparative study of three immune-mediated inflammatory

diseases (the “IMID” study) (Marrie et al., 2017, 2018a;

Whitehouse et al., 2019). The overarching goal of the CCOMS

sub-study was to evaluate how depression, anxiety, diabetes

and hypertension affect cognitive function in MS (Marrie et al.,

2019), and to examine how brain structure and function are

related to these factors. As the IMID study did not include a

neuroimaging component, we sought to develop and implement

a comprehensive brain MRI protocol to examine different

aspects of brain macrostructure (e.g., regional volumes and

cortical thickness), microstructure (e.g., tissue density, myelin

concentration, and iron accumulation), and function (e.g.,

resting state blood-oxygen fluctuations and cerebral perfusion).

Subsequently, with the availability of additional funding, cross-

sectional evaluations of a cohort of over 50 “psychiatric” control

participants (with depression and/or anxiety) in the IMID study,

and a cohort of 100 “healthy” control participants (with no

physical or psychiatric comorbidities) were also performed using

the same MRI protocol.

The neuroimaging protocol for the CCOMS study, which

includes several advanced structural, functional, and perfusion

MRI measures, was not part of the original IMID study and

has not been previously reported in full (Pirzada et al., 2020;

Marrie et al., 2021a, 2022). Thus, the goal of the current

paper is to provide a detailed overview of the neuroimaging

acquisition parameters and pre-processing methods that have

been employed to serve as a technical reference for subsequent

study papers. In particular, the remainder of this paper provides:

(1) a brief description of the MS and control participants;

(2) a comprehensive outline of the MRI hardware, pulse

sequences, and parameters; (3) a thorough overview of the image

processing pipelines for each data type, including anatomical

imaging, diffusion imaging, myelin water imaging, resting state

fMRI, perfusion imaging, MR relaxometry, and quantitative

susceptibility mapping; and (4) a discussion of the strengths and

weaknesses of our approach.

Overview of study participants

The IMID study recruited cohorts of individuals with MS,

inflammatory bowel disease, rheumatoid arthritis, or a lifetime

history of a psychiatric disorder who did not have an immune-

mediated inflammatory disease, to examine commonalities and

differences across IMIDs regarding the impact of psychiatric

disorders on several outcomes (Marrie et al., 2018a). For

the CCOMS sub-study, a subgroup of participants with MS

from the IMID study was recruited to undergo neuroimaging

and additional cognitive and psychiatric testing. Following the
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procurement of additional funding, a cohort of psychiatric

controls (also drawn from the parent IMID study) and a

cohort of healthy controls were recruited. The University of

Manitoba Health Research Ethics Board approved the IMID

study, and related sub-studies. All participants were ≥18

years of age, had sufficient knowledge of English to complete

study questionnaires, and provided written informed consent

before enrollment.

After verbal screening to exclude participants with

contraindications for MRI, and any history of brain

tumor, neurodegenerative disorder, and/or immune-

mediated inflammatory disease (except for MS in the

case of participants being recruited into that study

cohort), 111 people with MS, 61 psychiatric controls

with a lifetime history of depression and/or anxiety,

and 108 healthy controls initially agreed to participate.

Ultimately, baseline MRI data were acquired from 111

participants in the MS cohort, 52 participants in the

psychiatric control cohort, and 100 participants in the

healthy control cohort.

Multiple sclerosis (MS) cohort

All 111 participants in the MS cohort were recruited from

the IMID study (Marrie et al., 2018a), which employed medical

records review to confirm dates of MS diagnoses based on

prevailing criteria at the time (McDonald et al., 2001; Polman

et al., 2005, 2011; Thompson et al., 2018). Disease activity

was assessed using the annualized relapse rate, and disease

severity was assessed using the Expanded Disability Status

Scale (EDSS) (Kurtzke, 1983) at each study visit. Disease-

modifying therapies used, and categories of concomitant

medications were captured according to the World Health

Organization’s Anatomical Therapeutic Chemical Classification

(WHO-ATC) System at each visit. Since a major aim of the

CCOMS study was to investigate psychiatric comorbidities

in MS, participants with depression and/or anxiety were

not excluded.

Psychiatric control cohort

All 52 participants in the psychiatric cohort were also

recruited from the IMID study (Marrie et al., 2018a). As

described previously, participants in the psychiatric cohort were

recruited from Winnipeg-based primary and tertiary mental

health care settings, via posters and word of mouth. Diagnoses

of depression or anxiety were confirmed at the first study

visit using the structured clinical interview for DSM-IV-TR

Axis I Disorders (SCID)—Research Version (First et al., 2002).

Current medications used were captured according to the

WHO-ATC system.

Healthy control (HC) cohort

As described previously, healthy control participants were

recruited using posters placed in multiple settings throughout

Winnipeg, direct mail to homes in the city, and word of

mouth (Marrie et al., 2021b). Exclusion criteria specific to

this cohort included any history of traumatic brain injury

associated with loss of consciousness or amnesia; any chronic

medical condition (including self-reported hypertension or

blood pressure > 140/90 identified during the study visit);

known intellectual disability or cognitive impairment; self-

reported psychiatric condition or positive response to the SCID-

IV screening questions for depressive or anxiety disorders; and

chronic medication use other than contraceptives or hormone

replacement therapy.

Brief demographic comparison of MS vs.
control cohorts

Characteristics of the three CCOMS study cohorts, as well

as a breakdown by disease subtype (i.e., RRMS, SPMS, PPMS)

in the MS cohort, are summarized in Table 1. Participants in

all three groups were mostly middle-aged and predominantly

female. However, while the psychiatric cohort was not

statistically different compared to the MS cohort based on sex (p

= 0.49; two-tailed difference of proportions test), age, education

level, or disease duration (all p≥ 0.05; two-tailed t-tests), the HC

cohort had a lower proportion of females than the MS cohort

(two-tailed p < 0.005), was younger, and had a higher level of

education than the MS cohort (both two-tailed p < 0.001).

Non-MRI data acquisition

Sociodemographic information and
clinical characteristics

Sociodemographic and behavioral characteristics were

obtained for all participants at baseline, following the IMID

study protocol (Marrie et al., 2018a). These included gender, date

of birth, race and ethnicity, highest level of education attained

and years of education, annual household income,marital status,

having children, occupation, and smoking status. Participants

reported their comorbidities, including diabetes, hypertension,

and hyperlipidemia using a validated questionnaire (Horton

et al., 2010), and indicated whether they were currently treated.

Participants also underwent assessments of height and weight

for the purposes of calculating body mass index. Blood pressure

was measured while seated using an automated blood pressure

machine, and serumHbA1c was measured using a blood sample

(see Blood sample collection and storage below) at the time of

the study visit. As noted previously, medication use was captured
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TABLE 1 Baseline demographic and clinical data for participants in each study cohort.

Variables Multiple sclerosis cohort [at first MRI] Healthy

control cohort

Psychiatric

cohort

P-values

(MS 6= HC

MS 6= NP)All RRMS SPMS PPMS

Number of participants 111 93 12 6 100 52 N/A

Gender (male/female) 19/92 17/76 2/10 0/6 35/65 12/40 p < 0.005

p= 0.49

Age (years)a [mean± SD] 49.59± 12.71 47.26± 12.15 61.11± 8.09 62.60± 8.54 39.05± 16.24 48.63± 12.64 p < 0.001

p= 0.65

Years of education [mean± SD] 13.99± 2.55 14.18± 2.51 12.42± 2.64 14.17± 2.23 16.76± 2.98 14.88± 2.88 p < 0.001

p= 0.05

Disease typeb 93/12/6 93 12 6 N/A 19/6/27 N/A

N/A

Disease duration (years) c [mean± SD] 20.25± 12.16 18.81± 12.16 27.10± 11.73 18.66± 16.22 N/A N/A N/A

N/A

Baseline EDSS score d [median (IQR)] 3.50 (2.5–4.0) 3.16 (2.5–4.0) 5.04 (4.38–6.5) 4.14 (4.0–6.0) N/A N/A N/A

N/A

Categorical values are reported as the number of participants and all other values are reported as mean± standard deviation. For the MS Cohort, values are reflective of the first (baseline)

MRI visit. EDSS, Expanded Disability Status Scale; IQR, Interquartile Range; N/A, Not Applicable.
aAge Range= 21–80 years; bRRMS/SPMS/PPMS (MS) and Depression Only/Anxiety Only/Both Depression and Anxiety (NP) cDisease Duration Range: 2–52 years (for All MS); dMean

± SD EDSS= 3.50± 1.49 (Total Range= 0–6.5).

Note: All p-values were calculated using two-tailed t-tests, except for gender (which was based on a two-tailed test for equality of proportions with continuity correction, “prop.test”

in the R software package). Statistically significant p-values are indicated in bold. Some characteristics of the MS cohort (Marrie et al., 2019), and 103 healthy controls (Marrie et al.,

2021b)—including three additional participants who were removed from the MRI dataset due to incidental findings—have been previously reported.

according to WHO-ATC class. Finally, lower limb function was

measured using the Timed 25-Foot Walk (Motl et al., 2017), and

upper limb function wasmeasured using the Nine-Hole Peg Test

(Feys et al., 2017).

Cognitive assessments

For the CCOMS study, participants in the MS cohort also

completed cognitive and psychiatric morbidity assessments at

two time points, separated by 2 years. The psychiatric and

healthy control participants completed these assessments at

a single time point. To measure cognitive performance, all

participants completed an expanded version of the IMID study

neuropsychological assessment (Marrie et al., 2018a). This

included all components of the Brief International Cognitive

Assessment for Multiple Sclerosis (BICAMS) (Langdon et al.,

2012) and most components of the Minimal Assessment

of Cognitive Function in MS (MACFIMS) (Benedict et al.,

2002), including: information processing speed, verbal learning

and memory, visual learning and memory, and verbal

fluency/executive ability. The Symbol Digit Modalities Test

(Smith, 1973) measured processing speed, the Wechsler

Memory Scale-III Letter-Number Sequencing sub-test measured

working memory (Wechsler, 2008), the California Verbal

Learning Test II measured verbal learning and memory (Delis

et al., 2000), and the Brief Visuospatial Memory Test-Revised

(BVMT-R) (Benedict and Hopkins, 2001) measured visual

learning and memory. Language and executive abilities were

measured using tests of verbal fluency (letter and animal

categories) (Strauss et al., 2006) as well as the Delis-

Kaplan Executive Function System (D-KEFS) Color-Word

Interference Test (Delis, 2001). The Wechsler Test of Adult

Reading (Wechsler, 2001) was also included as an estimate of

premorbid intelligence.

Psychiatric assessments

To evaluate psychiatric comorbidity, participants in all

cohorts completed the Patient Health Questionnaire (PHQ-

9) (Kroenke et al., 2003), Hospital Anxiety and Depression

Scale (HADS) (Snaith, 2003), Kessler-6 Distress Scale (Kessler

et al., 2003), PROMIS Emotional Distress Depression Short-

Form 8a (PROMIS Depression) and Anxiety Short-Form 8a

(PROMIS Anxiety) (Pilkonis et al., 2011), Generalized Anxiety

Disorder 7-item Scale (GAD-7) (Spitzer et al., 2006), the Overall

Anxiety and Severity Impairment Scale (OASIS) (Norman

et al., 2006), and completed a structured clinical interview

for DSM-IV-TR Axis I Disorders (SCID-IV) (First et al.,

2002), as described previously (Marrie et al., 2018a,b). All

participants in the MS and psychiatric cohorts, who were
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recruited through the IMID study, were administered an

updated SCID for depression and anxiety disorders, which

allowed us to confirm continuing diagnoses and identify any

new diagnoses that may have emerged since enrollment in the

IMID study.

Blood sample collection and storage

As reported for the larger IMID study (Marrie et al.,

2018a), consenting participants in all cohorts provided

blood samples in EDTA and Paxgene (Qiagen) DNA

sample tubes. After centrifuging, the plasma layer from

the EDTA sample tubes was placed in vials for storage at

−80◦C; and DNA sample tubes were processed according to

manufacturer instructions.

MRI data acquisition

Participants in the MS cohort underwent two MRI

scanning sessions 2 years apart, each within 4 weeks of

the corresponding cognitive and psychiatric assessments.

Participants in the psychiatric and HC cohorts completed

a single MRI scanning session, within 4 weeks of the

cognitive and psychiatric study visit. For all participants, T1-

weighted and T2-weighted fluid attenuated inversion recovery

MRI scans (details below) were reviewed by an experienced

neuroradiologist (MRE) to screen for clinically relevant

incidental findings.

All brain imaging data were acquired using the same

3T Siemens TIM Trio MRI system (software version VB17a)

equipped with a Siemens TQ-Engine gradient set (maximum

gradient strengths of 40 mT/m in the X and Y directions and

45 mT/m in the Z direction, with a slew rate of 200 T/m/s)

and a Siemens 32-channel receive-only head coil (Siemens

Healthcare, Erlangen, Germany). Each MRI session included:

(1) T1-weighted, (2) dual-echo PD-weighted and T2-weighted,

(3) T2-weighted with fluid attenuated inversion recovery (T2-

FLAIR), (4) high angular resolution diffusion imaging (HARDI),

(5) resting state fMRI (rs-fMRI), and (6) pseudo-continuous

arterial spin labeling (pCASL) perfusion scans. Additional

multi-component T2-relaxation myelin water imaging (MWI)

andmulti-echo gradient echo (MEGE) scans were acquired from

participants in the MS cohort if they were able to tolerate a

full 60-min MRI protocol, but these sequences were deemed

to be a lower priority. Since participants in the control cohorts

were unaccustomed to MRI, overall scan times were limited to

45-min and neither MWI nor MEGE data were acquired for

these participants.

Initial pilot testing and pulse sequence
acquisition order

Since this was the first study at our site to implement multi-

band pulse sequences (i.e., for HARDI, rs-fMRI, and pCASL),

initial pilot testing was performed using a separate group of

healthy volunteers who were not enrolled in the CCOMS study

to establish the pulse sequence parameters that could be achieved

on our 3T Siemens TIM Trio system within a single 1-h

MRI session.

From this, we determined that a combination of hardware

(primarily gradient strength) and overall scan-time limitations

precluded the acquisition of multi-shell diffusion imaging

data, which would have increased the echo-time (i.e., further

decreasing image signal-to-noise ratio) and overall scan time,

which would have negatively impacted our ability to include

other pulse sequences of interest in the MRI protocol. We also

experimented using different multi-band factors for the rs-fMRI

sequence, since higher values are beneficial for increasing the

sampling rate and improving statistical power, but can also

cause more severe image distortions and spatially heterogeneous

noise amplification (Risk et al., 2021). We ultimately chose

to use a multi-band factor of 8, which is consistent with

the Human Connectome Project (HCP) fMRI protocol (Van

Essen et al., 2012; Smith et al., 2013) and has been empirically

demonstrated to be within acceptable limits for studies done at

3T (or higher), using a 32-channel (or higher) head coil, and

avoiding additional in-plane SENSE or GRAPPA accelerations

(Xu et al., 2013). We complied with these caveats, visually

inspected the pilot data (e.g., for excessive distortions), and

included distortion correction (i.e., HySCO; described later)

in the rs-fMRI preprocessing pipeline to mitigate distortion-

related effects.

Finally, given the comparatively limited computational

power of the Trio MRI console (single quad-core 2.67 GHz

Intel R© Xeon R© CPU with 6 GB RAM and a single NVIDIA R©

Quadro R© FX 3800 GPUs with 1 GB VRAM), pilot testing

revealed long image reconstruction backlogs when trying

to perform sequential acquisitions of large 4D images with

the multi-band pulse sequences (i.e., HARDI, rs-fMRI, and

pCASL). Therefore, the image acquisition order was optimized

so that multi-band sequences were interleaved with more

conventional and less reconstruction-intensive pulse sequences

(i.e., T2-FLAIR, dual-echo PD/T2w turbo spin-echo, and fMRI

field maps) so that the multi-band images could be fully

reconstructed without exceeding the maximum image buffer

permitted by the MRI console. Thus, the pulse sequences were

acquired in the following order: three-plane localizer, T1w

MPRAGE, anterior-posterior (blip-up) multi-band diffusion

(HARDI), fMRI right-left field map, fMRI left-right field

map, right-left multi-band rs-fMRI, axial T2-FLAIR, dual-echo
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PD/T2w turbo spin-echo, posterior-anterior (blip-down) multi-

band diffusion (HARDI), multi-echo GRASE for myelin water

imaging (MWI), multi-band perfusion (pCASL), MEGE for

quantitative susceptibility mapping (QSM) and R∗2 (i.e., 1/T∗2)

mapping. The main acquisition parameters for each pulse

sequence are summarized in Table 2, and these and other details

for each pulse sequence are provided below.

T1-weighted anatomical scans

Whole-brain T1-weighted (T1w) images were acquired

using a 3D magnetization prepared rapid acquisition gradient-

echo (MPRAGE) sequence with the following scan parameters:

repetition time [TR] = 1,900ms, echo time [TE] = 2.47ms,

inversion time [TI] = 900ms, flip angle = 9◦, GRAPPA = 2,

matrix size= 256× 256, field of view [FOV]= 250× 250 mm2,

number of slices = 176, slice thickness = 1.00mm, number

of averages = 1, bandwidth [BW] = 170 Hz/Px, echo spacing

[ESP] = 7.3ms, spatial resolution = 0.98 × 0.98 × 1.00 mm3,

acquisition time [TA]= 4:26 min.

The T1w MPRAGE data for participants in the MS cohort

enrolled at the beginning of the study were acquired axially,

but post hoc quality assurance evaluations revealed that images

from a sub-set of participants contained relatively minor

image artifacts. We therefore switched one of the 3D phase-

encoding directions to acquire sagittal images, which eliminated

the artifact in all subsequent study participants, including all

controls and all of the 2-year follow-up scans for the MS

cohort. We collected axial and sagittal oriented images from 32

controls to enable more detailed comparisons of the resulting

brain volume estimates, which were in good agreement (see

Supplementary material).

Proton density and T2-weighted scans

Dual-echo proton density/T2-weighted (PD/T2w) images

were obtained using a 2D turbo spin-echo sequence with the

following scan parameters: TR = 4,500ms, TE1/TE2 (PD/T2w)

= 11/101ms, flip angle = 90◦, refocusing angle = 150◦, matrix

size = 256 × 192, FOV = 250 × 187.5 mm2, number of slices

= 54; slice thickness = 3.00mm, BW= 250 Hz/Px, turbo factor

= 6, number of averages= 1, spatial resolution= 0.98× 0.98×

3.00 mm3, TA= 3:45 min.

T2-weighted fluid attenuated inversion
recovery (FLAIR) scans

T2-weighted images with water suppression were acquired

using an axial 2D Fluid Attenuated Inversion Recovery (T2-

FLAIR) turbo spin-echo sequence with the following scan T
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parameters: TR = 9,000ms, TE = 100ms, TI = 2,499ms, flip

angle = 90◦, refocusing angle = 130◦, matrix size = 256 × 256,

FOV = 240 × 240 mm2, number of slices = 32, slice thickness

= 4.00mm, BW= 287 Hz/Px, ESP= 7.17ms, turbo factor= 16,

number of averages= 1, spatial resolution= 0.94× 0.94× 4.00

mm3, TA= 5:06 min.

High angular resolution di�usion imaging
(HARDI) scans

Fifty non-collinear diffusion-encoded (b = 1,500 s/mm2)

and five uniformly-interleaved non-diffusion-weighted (b =

0 s/mm2) images were acquired using an optimized q-

space sampling scheme (Caruyer et al., 2013 http://www.

emmanuelcaruyer.com/q-space-sampling.php) and the Human

Connectome Project spin echo multi-band echo planar imaging

(MB-EPI) “cmrr_mbep2d_diff” sequence (Sotiropoulos et al.,

2013; Ugurbil et al., 2013) developed at the Center for Magnetic

Resonance Research (Release R016 for VB17A, University of

Minnesota, Minneapolis–Saint Paul, MN, USA; https://www.

cmrr.umn.edu/multiband). The imaging parameters for this

spin-echo MB-EPI sequence were as follows: TR = 3,284ms,

TE = 89.4ms, flip angle = 90◦, refocusing angle = 177◦,

matrix size = 106 × 102, FOV = 212 × 204 mm2, number

of slices = 80, slice thickness = 2.00mm, MB factor = 4,

number of averages = 1, BW = 1,814 Hz/Px, ESP = 0.69ms,

phase partial Fourier = 6/8, spatial resolution = 2.00 × 2.00

× 2.00 mm3, TA = 3:17min. However, this sequence was

acquired twice, with opposite phase encoding directions—i.e.,

anterior-posterior (AP) and then posterior-anterior (PA)—for a

total of 100 diffusion-weighted images (b = 1,500 s/mm2), 10

non-diffusion-weighted images (b = 0 s/mm2), and an overall

TA= 6:34 min.

Resting state functional MRI (rs-fMRI)
scans

Resting state fMRI data were acquired using the HCP MB-

EPI “cmrr_mbep2d_bold” sequence (Feinberg and Setsompop,

2013; Smith et al., 2013; Ugurbil et al., 2013) developed

at the Center for Magnetic Resonance Research (Release

R016 for VB17A, University of Minnesota, Minneapolis–Saint

Paul, MN, USA; https://www.cmrr.umn.edu/multiband). The

imaging parameters for this gradient-echo MB-EPI sequence

were: TR = 1,000ms, TE = 38.6ms, flip angle = 61◦, matrix

size = 100 × 78; FOV = 220 × 171.6 mm2, number of slices

= 80, slice thickness = 2.20mm, MB factor = 8, number

of volumes = 420, BW = 2,272 Hz/Px, ESP = 0.78ms, EPI

factor = 78, spatial resolution = 2.20 × 2.20 × 2.20 mm3,

TA= 7:12 min.

To enable post-hoc EPI distortion correction of the fMRI

images, two pseudo field maps with opposite phase encoding

directions—i.e., left-right (LR) and right-left (RL)—were also

collected with the following parameters: TR = 10,170ms, TE =

86.6ms, flip angle = 90◦, refocusing angle = 180◦, matrix size

= 104 × 90, FOV = 208 × 180 mm2, number of slices = 72,

slice thickness = 2.00mm, MB factor = 1, number of volumes

= 3, BW= 2,290 Hz/Px, ESP= 0.69ms, EPI factor= 90, spatial

resolution= 2.00 × 2.00 × 2.00 mm3, TA = 0.41min each (i.e.,

1:22min to collect both).

Pseudo-continuous arterial spin labeling
(pCASL) perfusion scans

Perfusion imaging data were acquired using a MB-EPI

pseudo-Continuous Arterial Spin Labeling (pCASL) sequence

(Li et al., 2015a) developed at the Center for Magnetic

Resonance Research (Release 1.0 for VB17A, University of

Minnesota, Minneapolis–Saint Paul, MN, USA; https://www.

cmrr.umn.edu/downloads/pcasl/). The scan parameters were:

TR = 3,500ms, TE = 17ms, flip angle = 90◦, matrix size =

64 × 64, FOV = 220 × 220 mm2, number of slices = 30, slice

thickness = 4.50mm (distance factor = 10%), MB factor = 6,

number of control-tag pairs= 27, labeling duration= 1,500ms,

post-labeling delay = 1,600ms, labeling plane offset = 88mm

from the center of the imaging slab, BW = 2,790 Hz/Px, ESP

= 0.50ms, EPI factor = 64, phase partial Fourier = 7/8, spatial

resolution= 3.44× 3.44× 4.50 mm3, TA= 4:47 min.

There was a delay obtaining and installing the MB pCASL

sequence on our MRI system. Therefore, because the CCOMS

timeline was tied to the ongoing IMID parent study, the first

32 participants in the MS cohort were unable to receive a

pCASL scan during the first of their two CCOMS MRI study

visits (see Table 3).

Myelin water imaging (MWI) scans

For each participant in the MS cohort, myelin water imaging

(MWI) was performed using a 3D multi-echo gradient and

spin echo (mGRASE) sequence (Prasloski et al., 2012a) that has

been adapted and cross-validated for Siemens 3T MRI systems

(Lee et al., 2018) with the nominal following parameters: TR =

1,500ms, number of echoes= 32, first echo time= 10ms, ESP=

10ms, last echo time= 320ms, flip angle= 90◦, refocusing angle

= 180◦, matrix size = 128 × 96, FOV = 224 × 168, number of

slices = 22, slice thickness = 5.00mm, BW = 1,260 Hz/Px, EPI

factor = 3, slice partial Fourier = 6/8, spatial resolution = 1.75

× 1.75× 5.00 mm3, TA= 16:53min. Due to specific absorption

rate (SAR) limits for MRI radio-frequency energy deposition

(whole body < 4 W/kg and Head < 3.2 W/kg in Canada), the
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TABLE 3 Number of participants in each cohort who passed initial

quality assurance check for each scan type.

Image type Multiple

sclerosis

cohort

Healthy

control

cohort

Psychiatric

cohort

T1w 111 100 52

T2-FLAIR 111 100 52

PD/T2w 110 98 52

HARDI 104 100 52

rs-fMRI 109 100 50

pCASL 76 98 51

MWI 108 N/A N/A

R*
2/QSM 48 N/A N/A

These are the numbers of MRI scans included in the baseline CCOMS dataset, but

numbers could be reduced if additional problems or artifacts are noticed during more

rigorous quality checks in future analyses.

TR (and therefore overall scan time) for this sequence needed to

be increased for some participants.

Multi-echo gradient echo (MEGE)
imaging scans

When possible in the MS cohort (i.e., remaining MRI

time and participant willingness), 3D multi-echo gradient

echo (MEGE) imaging was performed to facilitate QSM and

R∗2 mapping. Magnitude and phase images were collected

using monopolar frequency-encoding gradients without flow

compensation, and the following parameters: TR = 53ms,

number of echoes= 5, TE1= 6ms, ESP= 10ms, TE5= 46ms,

flip angle = 10◦, matrix size = 192 × 144, FOV = 256 × 192

mm2, number of slices = 96, slice thickness = 1.33mm, BW

= 190 Hz/Px, spatial resolution = 1.33 × 1.33 × 1.33 mm3,

TA= 9:34 min.

MRI data analysis

Image analyses were performed on Macintosh workstations

running macOS 10.11 “El Capitan” or newer operating systems

or Hewlett-Packard workstations running the Windows 10

Enterprise operating system, and using a combination of

software packages, including: MATLAB (versions R2016a and

newer; The MathWorks Inc., Natick, MA, USA), SPM12

(versions 6906 and newer; Wellcome Centre for Human

Neuroimaging, University College London, London, UK; http://

www.fil.ion.ucl.ac.uk/spm/software/spm12/), and FSL (versions

5.0 and newer; Wellcome Centre for Integrative Neuroimaging,

University of Oxford, Oxford, UK; https://fsl.fmrib.ox.ac.uk/fsl/

fslwiki/).

DICOM to NIFTI file conversion

T1w, T2w, PD, T2-FLAIR, rs-fMRI, and pCASL images were

initially converted from DICOM to NIFTI format (Li et al.,

2016) using eitherMRIcroGL-embedded or standalone versions

of dcm2niix tool (McCausland Center for Brain Imaging,

University of South Carolina, Columbia, SC, USA; https://

github.com/rordenlab/dcm2niix/releases), while HARDI, MWI,

and MEGE images were converted using the dicm2niiMATLAB

function (Center for Cognitive and Behavioral Brain Imaging,

Ohio State University, Columbus, OH, USA; https://github.

com/xiangruili/dicm2nii). After each scan, a brief quality

assurance check was performed to confirm that all image files

were correctly converted, that all of the expected volumes

were reconstructed for the 4D images, and to identify any

participants with severe artifacts (e.g., obvious participant

motion, excessive signal dropout or gross geometric distortions

from dental implants).

Bias-correction, cropping, and
skull-stripping of T1w, T2w, PD, and
T2-FLAIR images (prior to lesion and
tissue segmentation)

As reported previously (Marrie et al., 2021a), all T1w,

T2w, PD, and T2-FLAIR images were initially warped to

the MNI152_T1_1mm template using FSL’s Linear Image

Registration Tool (FLIRT; https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/

FLIRT) and then “defaced” to remove physically identifying

features (e.g., nose, cheekbones, mouth, jaw, ears) by applying

a generic image mask. After visually inspecting for accuracy,

the defaced T1w images were cropped to remove excess neck

tissue below the cerebellum by applying the bounding-box

of the MNI152_T1_1mm template. The defaced and neck-

cropped T1w images were then bias-corrected (inhomogeneity-

corrected) by registering the MNI152_T1_1mm_brain to the

T1w image [first with FLIRT, followed by FSL’s Nonlinear Image

Registration Tool (FNIRT; https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/

FNIRT)], using FSL’s Automated Segmentation Tool (FAST;

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FAST) to estimate the bias-

field, and then using fslmaths (https://fsl.fmrib.ox.ac.uk/fsl/

fslwiki/Fslutils) to apply it. The defaced and neck-cropped T1w

images were then skull-stripped using the recon-all function in

FreeSurfer (https://surfer.nmr.mgh.harvard.edu/) to produce a

brain mask for each participant that could be used to remove

non-brain tissue from other imaging modalities following co-

registration to the corresponding T1w image (Ségonne et al.,

2004). The T1w whole-head and T1w brain images were ACPC-

aligned and centered in MNI152 template space using a rigid-

body linear registration (with 6 degrees of freedom; DOF) to

theMNI152_T1_1mm template space and spline-interpolated to

1.00 mm3 isotropic resolution (FLIRT).
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The T2w, PD and T2-FLAIR images for each participant

were co-registered to the neck-cropped, bias-corrected,

ACPC-aligned T1w image using a 6-DOF rigid-body linear

registration and resampled to 1mm isotropic resolution with

spline-interpolation (FLIRT), skull-stripped by multiplying

the co-registered T1w brain mask (fslmaths), and then

bias-corrected (FAST).

Lesion segmentation and filling

For participants in all three cohorts, T2-hyperintense lesions

were initially segmented using the neck-cropped, bias-corrected,

ACPC-aligned T1-MPRAGE and T2-FLAIR images as inputs

to the Lesion Segmentation Tool (LST; http://www.applied-

statistics.de/lst.html) in SPM12. This was achieved using the

lesion growth algorithm (LGA), which first segments the

T1w image into gray matter (GM), white matter (WM),

and cerebrospinal fluid (CSF) tissue masks, calculates rough

lesion probability maps based on signal intensities in the

corresponding FLAIR images, thresholds these maps to create

an initial (binary) lesion map (kappa initially set to 0.2 to

reliably detect small lesions compared to visual inspection), and

then refines these initial maps using a region-growing approach

to determine the boundaries of the FLAIR hyperintensities

(Schmidt et al., 2012).

Lesion masks were also created using FSL’s automated Brain

Intensity AbNormality Classification Algorithm (BIANCA;

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/BIANCA), which is a

supervised tool for white matter detection using a k-nearest

neighbor algorithm (Griffanti et al., 2016). To train BIANCA,

lesions were manually traced for a sub-sample of nine MS

participants who had particularly large numbers of WM lesions.

BIANCA lesion masks were then thresholded at 0.9999 and

binarized before coregistering them (using FSL FLIRT) to each

participant’s ACPC space. Final lesion maps for each participant

were then created as a binary cluster overlap of both the LST

and BIANCA lesion maps to effectively eliminate spurious small

clusters unique to only one lesion-detection technique, thereby

reducing false-positives (FSL: cluster, fslmaths).

The final participant-specific WM masks and lesion maps

were used to perform lesion filling on each participant’s T1w

image, which has been shown to improve spatial normalization,

as well as GM and WM volume estimates among persons with

MS (Popescu et al., 2014). This was achieved by using the lesion

filling command in FSL (Battaglini et al., 2012).

Automatic tissue classification and ROI
segmentations

Automatic tissue classification — producing GM,

WM, and CSF masks — was completed using FSL’s FAST

(Zhang et al., 2001) based on the lesion-filled T1w brain

images and masks were created with the partial volume

maps. Subcortical segmentation was performed using FSL’s

Integrated Registration and Segmentation Tool (FIRST;

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FIRST), a model-based

segmentation tool using manually labeled anatomical

segmentations that are fitted to each participant’s anatomy

using deformable meshes (Patenaude et al., 2011). Each

participant’s lesion mask was also input as control points

in the registration to avoid unintentional over-weighting in

lesion locations.

Cortical thickness and volumetric
analysis

Cortical thickness was measured using the recon-all

function in FreeSurfer (http://surfer.nmr.mgh.harvard.edu/)

while volumetric estimates (whole brain, gray matter, and

white matter volumes) were performed using FSL SIENAX

(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/SIENA). Separate volumes

of the basal ganglia structures (caudate, putamen, globus

pallidus, and thalamus) were obtained using FSL FIRST

(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FIRST). In addition to each

participant’s raw volumetric estimates, normalized volumetric

estimates were also calculated using volume scaling within

FSL SIENAX, which multiplies each of the raw volumes

for a given participant by the scalar value of the ratio

between the subject-space skull and brain volume and the

MNI152_T1_2mm template skull and brain volume (Smith

et al., 2001, 2002).

Creation of calibrated T1w/T2w ratio
maps

Voxel-wise T1w/T2w maps were calculated for all

participants using T1w MPRAGE and T2w turbo spin-

echo (TSE) images. This was achieved by first co-registering

the T2w TSE with the T1w MPRAGE and then bias correcting

and calibrating all of the images using the publicly-available

MRTool toolbox for SPM12 (Ganzetti et al., 2014). Bias

correction was performed on the T1w and T2w images using

the intensity inhomogeneity correction tool in SPM12, with

the bias smoothing and bias regularization parameters set at

their default values (i.e., 60mm and ×10−4, respectively).

The bias-corrected T1w and T2w images were then intensity

scaled relative to the magnitude of external landmarks

using the default nonlinear histogram matching approach

(i.e., based on CSF, bones, and soft tissues) to standardize

their intensities before calculating the voxel-wise T1w/

T2w ratio.
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Creation of myelin water fraction (MWF),
intra/extracellular water fraction (IEWF)
and geometric mean T2 (gT2) maps

Voxel-wise MWI maps were computed using custom

MATLAB scripts to apply a regularized non-negative least

squares algorithm with stimulated echo correction, as

previously reported (Prasloski et al., 2012b). Thus, MWF

and IEWF were calculated as the ratio of the T2 distribution

between 15 and 40ms (i.e., myelin water) or 40–200ms (i.e.,

intra/extracellular water) divided by the total T2-distribution

(i.e., 15–2,000ms). The geometric mean T2 for each voxel

was calculated by arithmetic mean in log-space formula of the

total T2-distribution.

Creation of quantitative susceptibility
mapping (QSM) and transverse
relaxometry (R∗

2
) maps

QSM and R∗2 maps were generated from the MEGE

images where available. QSM maps were computed using

the Quantitative Susceptibility Mapping Artifact Reduction

Technique (QSMART; https://github.com/MBCIU/QSMART),

using the magnitude and phase MEGE images as inputs

(Yaghmaie et al., 2021). First, the binary brain volume mask

and brain extraction were performed using the FSL Brain

Extraction Tool (BET) (Smith, 2002) and a vascular mask was

created using a Frangi filter (Frangi et al., 1998). Second, an

indentation mask around the cortical surfaces was generated

using a Gaussian curvature method (Meyer et al., 2003; Dastan,

2020) to reduce background field removal artifacts followed by

integrated Laplacian-based phase unwrapping (Li et al., 2011,

2014). Third, the background field was removed using spatially

dependent filtering (Ng et al., 2011). The final QSM image

was created by an offset adjustment (Sun and Wilman, 2014)

of two parallel inversion steps (one with vasculature removed)

done by an iterative least-squares regression (iLSQR) method to

minimize streaking artifacts (Li et al., 2015b).

Voxel-wise R∗2 maps were computed using in-house

MATLAB software to perform a mono-exponential fitting of

the magnitudeMEGE images after sinc-correction of intra-voxel

linear susceptibility-induced magnetic fields (Du et al., 2009).

Spatial normalization of T1w, T2w, PD,
T2-FLAIR, T1w/T2w ratio, MWF, IEWF, gT2,
QSM, and R∗

2
maps

First, each participant’s T2w, PD, T2-FLAIR, T1w/T2w

ratio, and MWF, IEWF, gT2, QSM, and R∗2 images were co-

registered to the corresponding lesion-filled T1-weighted image

based on the conventional mutual information approach with

default parameters in SPM12. Either the lesion-filled MPRAGE

images (for participants with MS) or the raw MPRAGE images

(for control participants) were then spatially normalized to

the MNI template using the Computational Anatomy Toolbox

for SPM12 (CAT12 version r1318; http://www.neuro.uni-jena.

de/cat/). Briefly, the CAT12 Toolbox uses a combination

of advanced denoising approaches (Rajapakse et al., 1997;

Manjón et al., 2010), and then implements an initial affine

registration (to linearly transform each participant’s image to

the template), followed by a two-stage non-linear normalization

approach—based on Diffeomorphic Anatomical Registration

Through Exponentiated Lie algebra (DARTEL) and Geodesic

Shooting algorithms (Ashburner, 2007; Ashburner and Friston,

2011)—to accurately deform cortical and subcortical brain

structures. As previously reported, this combination of lesion-

filling and CAT12 spatial normalization yielded more consistent

inter-participant agreement and lesion scaling compared to

other tested spatial normalization algorithms/pipelines for

participants with MS (Pirzada et al., 2020).

The CAT12 deformation field based on each participant’s

T1w image was then applied to their coregistered T2w, PD, T2-

FLAIR, T1w/T2w ratio images, and (if applicable) MWF, IEWF,

gT2, QSM, and R∗2 maps.

HARDI data processing

All diffusion-weighted data were preprocessed using the

Artifact Correction in DiffusionMRI (ACID) Toolbox in SPM12

(version beta 02; http://www.diffusiontools.com). This included

simultaneous motion and eddy current correction (i.e., for each

of the 110 volumes) based on whole-brain affine registrations

(Mohammadi et al., 2010), and EPI distortion correction based

on the oppositely phase-encoded (blip-up/blip-down) diffusion

images using the Hyperelastic Susceptibility artifact Correction

(HySCo) algorithm (Ruthotto et al., 2012, 2013). Whole-

brain fractional anisotropy (FA), mean diffusivity (MD), axial

diffusivity (AD), and radial diffusivity (RD) maps were then

generated using the Fit Diffusion Tensor module and the robust

weighted least-squares fitting algorithm to automatically down-

weight potential remaining outliers in the diffusion signal (e.g.,

due to physiological noise, etc.) (Mohammadi et al., 2013).

Finally, these maps were spatially normalized to the MNI

template by first co-registering them to the T1w MPRAGE

image and then applying the overall deformation field previously

generated using the CAT12 Toolbox (as described Spatial

normalization of T1w, T2w, PD, T2-FLAIR, T1w/T2w ratio,

MWF, IEWF, gT2, QSM, and R∗2 maps).

rs-fMRI data processing

All rs-fMRI data were initially spatially preprocessed using

SPM12 (Version 7771), and then smoothed, temporally
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preprocessed and analyzed using the CONN Toolbox

(Whitfield-Gabrieli and Nieto-Castanon, 2012) for functional

connectivity analysis (Version 18b; Massachusetts Institute

of Technology, Cambridge, MA, USA; http://www.nitrc.org/

projects/conn). Spatial preprocessing of the rs-fMRI data

included removing the first 10 s (i.e., first 10 brain volumes)

to eliminate volumes that may not have reached a magnetic

steady-state, motion correction (by realigning each volume

to the mean T∗2-weighted image), EPI distortion correction

based on the oppositely phase-encoded (blip-up/blip-down)

and the Hyperelastic Susceptibility artifact Correction (HySCo)

algorithm (Ruthotto et al., 2012, 2013), coregistration of the T1w

MPRAGE image (and the forward deformation field previously

generated using the CAT12 Toolbox, as described above in

Spatial normalization of T1w, T2w, PD, T2-FLAIR, T1w/T2w

Ratio, MWF, IEWF, gT2, QSM, and R∗2 Maps to the mean T∗2-

weighted image, and spatial normalization of the coregistered

MPRAGE and all of the motion- and HySCo-corrected fMRI

volumes to the MNI template (by applying the coregistered

forward CAT12 deformation). The rs-fMRI images were then

smoothed with a 4.0mm full-width half-maximum (FWHM)

3D Gaussian kernel.

The spatially preprocessed rs-fMRI images were then

brought into the CONN toolbox, where the Artifact

Detection Tool (http://www.nitrc.org/projects/artifact_

detect/, Massachusetts Institute of Technology, Cambridge,

MA) was used to identify and regress out specific time points

with scan-to-scan intensity changes of z > 3.0, translational

motion > 0.50mm in any direction, and/or rotational motion

>0.05 degrees in any plane. However, given that numerous

functional connectivity studies have highlighted the importance

of correcting for even small amounts of participant motion

(Power et al., 2012; Satterthwaite et al., 2012; Van Dijk et al.,

2012) and physiological noise (Shmueli et al., 2007; Chang

and Glover, 2009), additional temporal preprocessing was

performed to regress out the effects of participant motion

(i.e., the time-courses of all 6 realignment parameters) and

physiological noise [i.e., the time-courses of eroded white matter

and cerebrospinal fluid masks using the aCompCor method

(Behzadi et al., 2007)]. Finally, the rs-fMRI data were temporally

band-pass filtered (0.008–0.09Hz) to isolate low frequency

fluctuations of interest (Biswal et al., 1995).

pCASL data processing

All pCASL data was initially split into two 4D images (i.e., a

pCASL image from volumes 1–53, andM0 reference image from

volumes 54–55). Both images were spatially cropped to remove

the five most inferior slices, which were contaminated with

signal from labeling RF modulation. The pCASL volumes were

motion-corrected using FSL’s MCFLIRT (https://fsl.fmrib.ox.ac.

uk/fsl/fslwiki/MCFLIRT). The M0 reference image was linearly

coregistered (6-DOF) to the anatomical T1w image with the

boundary-based registration (BBR) option using FSL’s FLIRT.

This registration was subsequently applied to the cerebral blood

flow images.

The pCASL data were subsequently processed using the

ASLtbx2 toolbox (Wang et al., 2008; Wang, 2012) in SPM12

(https://cfn.upenn.edu/zewang/ASLtbx.php). Motion correction

(spm_realign_asl tool) was performed after removing apparent

motion caused by signal fluctuations related to the control-

tag pattern from the estimated motion parameters. The

images were realigned to the mean image using a two-pass

procedure. High-pass temporal filtering was performed with

a first order Butterworth filter with a cutoff frequency of

0.0057Hz (ASLtbx_asltemporalfiltering tool). The data were

spatially smoothed with a 5mm FWHM Gaussian kernel.

Surround subtraction was then used to generate a perfusion-

weighted time series. Cerebral blood flow (in units of ml/100 g

tissue/min) was then estimated, assuming a label efficiency of

0.85 and approximating the longitudinal magnetization M0

from the control images (asl_perf_subtract tool, edited to allow

for multi-band slice timing).

Future statistical analyses and
sample sizes

Future reports will describe the cognitive, psychiatric,

and vascular risk characteristics of the study cohorts using

means (standard deviations), median (interquartile range)

and frequency (percent). Bivariate analyses will use ANOVA,

Kruskal-Wallis tests, chi-square tests, Fisher’s exact tests

and correlations as appropriate. We will examine the cross-

sectional and longitudinal associations between vascular

and psychiatric comorbidity and imaging measures using

multivariate regression approaches including multivariate

analysis of covariance, canonical correlation analysis and

quantile regression analysis. We will conduct mediation

analyses to determine if the effects of psychiatric and vascular

comorbidity on cognition are mediated by imaging measures.

Potential covariates in these analyses will include age, gender,

cohort, and medication use.

Table 3 suggests that the current dataset will be suitably

powered to detect various differences and correlations with

small-to-medium effect sizes (Cohen, 1988). For example, using

the “pwr” package in R (R: A Language and Environment

for Statistical Computing; https://www.R-project.org), the

minimum sample sizes for one-tailed and two-tailed tests using

one-sample (paired) t-tests, two-sample (unpaired) t-tests, and

correlations with a statistical power of 0.8 and a significance

level of 0.05 are as follows:

• One-Sample T-Test with a small effect size (Cohen’s d ≥

0.3): Minimum sample size is N < 70 at both time points
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for one-tailed tests, and N < 89 at both time points for

two-tailed tests.

• Two-Sample T-Test with a medium effect size (Cohen’s d

≥ 0.5): Minimum sample size is N < 50 per group for

one-tailed tests, and N < 63 per group for two-tailed tests.

• Correlations with a medium effect size (r = 0.3): The

minimum sample size is N < 66 for one-tailed tests, and

N < 84 for two-tailed tests.

Discussion

The onset, time course, and severity of MS-related cognitive

impairments are heterogeneous, and physical and psychiatric

comorbidities may account for clinically meaningful portions

of these observed differences. However, previous studies

examining the association between comorbidities and cognition

in MS have been largely cross-sectional, while longitudinal

studies have been limited (Ruano et al., 2017; Marrie et al.,

2018a, 2021a,c). Moreover, most MS neuroimaging studies

have included only persons with MS and perhaps healthy

controls, often explicitly excluding participants with psychiatric

conditions from these groups. Inclusion of intermediate control

groups, such as persons with diagnosed psychiatric disorders or

chronic health conditions other than neurological disease, allows

for the contributions of comorbidities inMS to be fully explored.

Therefore, the longitudinal design and subsequent inclusion of

healthy and psychiatric control groups are important and unique

aspects of this study.

Another important component of this study is the breadth

of MRI sequences that were acquired. This will enable

many different aspects of brain macrostructure, microstructure,

functional connectivity, and perfusion to be investigated relative

to the clinical, cognitive, and psychiatric measures obtained.

Common macroscopic morphological measures include voxel-

wise or regional estimates of brain volume or cortical

thickness (Ashburner and Friston, 2000; Fischl and Dale,

2000; Whitwell, 2009), as well as estimates of more global

volumetric measures (e.g., deep gray matter, cortical gray matter,

normal appearing white matter, and/or lesion volumes). The

myriad of quantitative imaging measures will also facilitate

local estimates of microstructural characteristics such as tissue

density, iron concentration, and myelin density. Indeed, the

microstructural MRI sequences included in this protocol were

chosen because they have different sensitivity vs. specificity

tradeoffs, and are known to probe different microstructural

characteristics. Some of these metrics, such as T1w/T2w ratio

and the diffusion tensor imaging measures, are thought to be

sensitive to disease-related microstructural alterations but lack

pathophysiological specificity (Uddin et al., 2018, 2019), while

other metrics, such as myelin water fraction and quantitative

susceptibility, may have lower sensitivity but are able to provide

specific information about local myelin and iron concentrations,

respectively (Laule et al., 2006; Langkammer et al., 2012). In

addition, given the prevalence of perivascular inflammation

and perivenular lesions in MS, the availability of perfusion

MRI data will allow for examination of relatively under-studied

topics such as potential differences, or longitudinal changes,

in cerebral perfusion in relation to specific cognitive and

psychiatric measures (Lapointe et al., 2018). The resting-state

fMRI data permit a wide variety of analysis methods including

seed-based, network-based, independent component analysis-

based, and graph-based approaches to characterize alterations

in brain connectivity (Lee et al., 2013). With such a variety

of complimentary MRI measures available to shed light on

various aspects of brain structure and function, along with the

fact that there are longitudinal data from the MS cohort and

cross-sectional data from both healthy and psychiatric control

groups, future CCOMS studies will seek to investigate specific

neural correlates of MS-related psychiatric comorbidities and

cognitive changes.

The CCOMS study design and methodology are consistent

with addressing several of the “key priorities” for understanding

cognitive deficits in MS previously outlined by Sumowski and

colleagues (Sumowski et al., 2018), including:

1. Aiming to distinguish between “neuroimaging correlates”

and the “neural bases” of cognitive deficits: The current

study addressed this by including certain imaging methods

(e.g., myelin water imaging, arterial spin labeling, etc.),

which can be used—in combination with the longitudinal

design—to ascribe specific anatomical and physiological

underpinnings (i.e., regional myelin concentration and blood

perfusion, respectively) to cognitive decline.

2. Investigation of “isolated cognitive constructs (e.g.,

memory)”, rather than “heterogeneous composites of

multiple cognitive domains”: The cognitive tests included in

the current study were selected to assess different cognitive

domains commonly affected by MS (Sumowski et al., 2018),

including memory, processing speed, and executive function;

and the psychiatric evaluations were conducted to assess

severity of depression and anxiety symptoms in addition to

presence or absence of disorders.

3. “Development of multivariate models (incorporating

demographic, neuroimaging and clinical variables) to

better predict decline”: The demographic and clinical

histories obtained from each participant, the availability

of multiple structural and functional MRI measures, as

well as the longitudinal neuroimaging component and

extensive psychiatric and cognitive evaluations will enable

multivariable analyses; and the inclusion of comorbid

conditions in these models will also play a central role.

4. The development and use of “clinically feasible tools

for the quantification of disease burden from MRIs”:

All of the neuroimaging methods used in the current
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study were implemented using a clinical 3T MRI system

with conventional hardware (described in the “MRI data

acquisition” section). Therefore, similar neuroimaging

protocols (including the advanced MRI sequences) should be

feasible at most major hospitals and MRI research centers.

5. Addressing data reproducibility issues by “promoting (or at

least enabling) multicenter collaborations with comparable

methods”: By presenting the CCOMS MRI data acquisition,

and image processing pipelines in greater detail than is

typically possible in manuscripts presenting study-specific

findings, we hope to facilitate future studies with similar

study designs and methods—which would enable direct

comparisons and meta-analyses.

Despite careful study planning, obtaining a wide variety

of structural and functional MRI data, and using advanced

works-in-progress (WIP) and customer-to-customer (C2P)MRI

pulse sequences whenever possible, there are limitations of

this study. First, because the control groups were added later,

only when additional funding became available, longitudinal

data collection from these groups was not possible, and there

were also some small but statistically significant differences

in the proportion of female participants, age, and education

level between the MS and HC cohorts. Second, due to the

reasonably long scan time, complete imaging datasets were not

acquired for all participants (Table 3). Participants without T1w,

T2w-FLAIR, PD/T2w, HARDI or rs-fMRI data were almost

exclusively due to failed post hoc quality assurance checks for

subject motion or other artifacts. However, there were also

systematic differences for the pCASL and R∗2 sequences. As

noted earlier, there was a problem with the multi-band pCASL

license file that could not be resolved before nearly one-third

of participants in the MS cohort had already been scheduled

for their first MRI study visit, as this schedule was determined

by the IMID study protocol. There was also a lower number

of R∗2 scans among MS participants due to time constraints.

This reflected a number of factors such as participants arriving

late for their study; any issues with the MRI system, the need

to increase the length of the MWI scan to lower SAR among

participants with elevated body mass index, or if one or more

of the earlier scans needed to be repeated due to motion- or

other artifacts that were noted during the scan time. Finally,

there were some irregularly occurring image artifacts observed

in the earliest axial T1w MPRAGE images. However, these

artifacts would not have materially affected the image processing

pipelines for the various microstructural and functional imaging

methods included in the study, and we confirmed that there

was no significant effect on total intracranial volume estimates

(see Supplementary material), and this artifact was eliminated

by switching one of the 3D phase-encoding directions to acquire

sagittal images for all subsequent study participants (including

all of the control participants, as well as all 2-year follow-up

scans among participants in the MS cohort).

Conclusions

The Comorbidity and Cognition in Multiple Sclerosis

(CCOMS) study is a longitudinal MRI study of the

association between comorbidity and cognition in MS

which includes healthy and psychiatric control groups,

detailed psychiatric and cognitive evaluations, and a variety

of advanced macrostructural, microstructural, functional, and

perfusion MRI methods. By providing a detailed description

of the CCOMS MRI hardware, pulse sequences, acquisition

parameters, and image processing pipelines, this protocol should

serve as a reference for subsequent CCOMS papers examining

MRI-based neural correlates of clinical, cognitive, and

neuropsychiatric characteristics, as well as providing technical

guidance for studies from other labs to facilitate reproducibility.
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