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Introduction: The complexity of Magnetic Resonance Imaging (MRI) sequences

requires expert knowledge about the underlying contrast mechanisms to select

from the wide range of available applications and protocols. Automation of

this process using machine learning (ML) can support the radiologists and MR

technicians by complementing their experience and finding the optimal MRI

sequence and protocol for certain applications.

Methods: We define domain-specific languages (DSL) both for describing MRI

sequences and for formulating clinical demands for sequence optimization. By

using various abstraction levels, we allow di�erent key users exact definitions

of MRI sequences and make them more accessible to ML. We use a vendor-

independentMRI framework (gammaSTAR) to build sequences that are formulated

by the DSL and export them using the generic file format introduced by the Pulseq

framework, making it possible to simulate phantom data using the open-source

MR simulation framework JEMRIS to build a training database that relates input

MRI sequences to output sets of metrics. Utilizing ML techniques, we learn this

correspondence to allow e�cient optimization of MRI sequences meeting the

clinical demands formulated as a starting point.

Results: ML methods are capable of capturing the relation of input and simulated

output parameters. Evolutionary algorithms show promising results in finding

optimal MRI sequences with regards to the training data. Simulated and acquired

MRI data show high correspondence to the initial set of requirements.

Discussion: This work has the potential to o�er optimal solutions for di�erent

clinical scenarios, potentially reducing exam times by preventing suboptimal MRI

protocol settings. Future work needs to cover additional DSL layers of higher

flexibility as well as an optimization of the underlying MRI simulation process

together with an extension of the optimization method.

KEYWORDS

domain specific language, magnetic resonance imaging, machine learning, simulation,

optimization, automation, evolutionary algorithms
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1. Introduction

Magnetic Resonance Imaging (MRI) is an indispensable part

of modern medical diagnostics. In contrast to, e.g., Computed

Tomography it features high versatility concerning the generation

of different tissue contrasts using different sequences of RF

and magnetic field gradient events. This high flexibility however

requires excellent knowledge from radiologists andMR technicians

to generate the desired image contrasts, which are needed for a

certain diagnosis. An automated optimization strategy could help

to find the optimal sequence and protocol for a certain application,

reducing the entry hurdle for untrained MR operators. Machine

Learning (ML) strategies can be a strong foundation to achieve this

goal. During the last few years, ML strategies have been applied

to several areas in the MRI toolchain. Most prominently used in

image reconstruction (Pal and Rathi, 2022) and post-processing

(Radke et al., 2021), the image acquisition got increasing attention

in terms of scan acceleration (Bahadir et al., 2020; Sherry et al.,

2020; Zeng et al., 2021) and low-level sequence optimization in

terms of rf and gradient hardware events (Shinnar et al., 1989;

Lustig et al., 2008; Loktyushin et al., 2021) as well as portability

(Greer, 2020). Intelligent protocolling using look-up tables has

also been proposed (Ravi and Geethanath, 2020; Ravi et al., 2022)

in addition to protocol optimization of specific MR sequences

based on eigenimage filtering (Soltanian-Zadeh et al., 1994) and

real-time adaption of MR sequences using operator requests or

automatic feedback (Santos et al., 2004). However, optimization

strategies targeting MR sequences formulated on different levels

of complexity have yet to be proposed. This might be caused by

the fact that the MRI parameter space is not very well-defined

in general.

In this paper, we use Domain Specific Languages (DSL, Mernik

et al., 2005) to help formulating MRI sequences on various

abstraction levels, making it easier to switch between different

layers of complexity. This common language resembles the typical

patterns and regularities of MRI sequences and allows the exact

definition of optimizable parameters, enabling approximation of

the relation between the latter and calculated image metrics. Thus,

the accessibility of MRI sequences is increased to non-experts

as well as machine learning and AI. Eventually, this will allow

the automated generation of MRI sequences for optimized image

quality given specific requirements for the scan.

A second hurdle when discussing sequence optimization

strategies is the limited accessibility of MRI sequences and

their programming environments. RF and gradient pulses can

be optimized externally and loaded into the sequence with

ease. However, defining the structure and components of the

sequence needs low-level C++ coding in complex, platform-

specific environments requiring long-time experience and expert

knowledge (i.e., IDEA by Siemens Healthineers, MR-Paradise by

Philips Healthcare or EPIC by GE Healthcare). During the last

years, platform-independent alternatives have attracted attention

(Jochimsen and von Mengershausen, 2004; Layton et al., 2016;

Magland et al., 2016; Nielsen and Noll, 2018; Ravi et al., 2019;

Cordes et al., 2020). In this work, we use the gammaSTAR

framework that offers the flexibility to build add-on solutions to

support the user in generating MRI sequences on a modular level

(Cordes et al., 2020). We use it as part of our sequence optimization

strategy for easy conversion between DSL and the technical,

ready-to-use MRI sequence. This approach allows practitioners as

well as researchers to efficiently describe MRI sequences with no

knowledge of programming languages without losing the chance of

defining low-level details.

This work demonstrates (1) the definition and implementation

of a domain-specific language to simplify the specification of MRI

sequences for non-experts, (2) the simulation and acquisition of

these MRI sequences (3), and an ML-based strategy to create the

optimal MRI sequence for a given set of requirements based on

simulated training data.

2. Materials and methods

This section introduces the overall components presented in

this paper which are summarized in Figure 1.

The workflow can be separated into five main components:

First, there is the formulation of the goal and additional

information like goal-specific constraints [see denotation (1) in

the Figure 1]. Typical goals are the maximization of signal-

to-noise ratios (SNR) or specific tissue contrasts. Goal-specific

constraints could, e.g., be the avoidance of ghosting or restrictions

in conventional protocol parameters like matrix size or acquisition

time. This information must be formulated in a way that it can be

interpreted by a program but is still usable for non-programmers.

Section 2.1 explains our approach for this component.

To allow efficient sequence optimization, two further

components deal with the approximation of simulated MRI results,

meaning the correspondence between sequence and resulting

image properties. To that end, training data has been collected

with simulations [see denotation (2) in the Figure 1] and for

every defined image property, an ML-model has been trained [see

denotation (3) in the Figure 1]. Sections 2.2 and 2.3 explain this

process in more detail.

Fourth, the optimization takes the formalized goal and

potential constraints as input andmakes use of the constructedML-

model to find a sequence that produces image properties that are

as close as possible to the desired goal [see denotation (4) in the

Figure 1]. Section 2.4 focuses on this component.

The fifth component is the transformation of a solution of

the optimization algorithm into a sequence formulation that is

understandable for the non-programmer and non-expert. This

aims—similar to the first component—at the definition of a

domain-specific language, however, this time for the sequences

itself [see denotation (5) in the Figure 1]. Section 2.5 focuses on

this component.

2.1. Formulation of requirements for
sequence optimization

This section explains the formalization of optimization goals

as well as additional constraints for this optimization. It has two

important usability features to uphold: First, it needs to be easily

accessible, i.e., to write for clinical personnel, and second, it needs

to be able to be correctly interpreted by the final systems. While

the last usability feature suggests the usage of a programming

language, the first one strongly argues against it. A compromise

is the usage of a domain-specific language. It has precision in
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FIGURE 1

Schematic depiction of the overall flow of the proposed approach.

the interpretation of a programming language, however, when

specified well, it can be very close to natural language and equipped

with assistance for the correct syntax. A domain-specific language

follows predefined grammar, just like a natural language does.

However, it is usually defined more precisely. The definition of

grammar determines what expressiveness the language has and

at the same time ensures an error-free understanding of the

information encoded in the goals or constraints formulated in

this language.

The grammar follows a scheme of substitution rules. For each

grammatical term (non-terminal in DSL terms), it is specified how

it can be substituted. This can either be with other grammatical

terms or with final expressions (terminal in DSL terms). For

example, in our natural language, a sentence (usually) consists of

a subject, a verb, and an object. The subject itself can be a noun

with a determiner, a noun with a determiner and an adjective but

also a pronoun. The verb can also be substituted with complexer

constructions. Additionally, there might be optional expressions of

time or place at the end of the sentence.1 The grammar may then

contain the following rules:

<Sentence> ::= <Subject> <Verb> <Object> [<ExprOfPlace][<ExprOfTime>]

<Subject> ::= <Determiner> [<Adjective>] <Noun> | <Pronoun>

<Verb> ::= make|fly|do|eat|say|speak ..

<Determiner> ::= the|a|an|some|any|...

The third and fourth rules both contain terminals on their right-

hand-side because they are substituted with "real" words. In the end,

1 Please note that this example is not complete in any way with regard to

the English language. It is only meant to illustrate the substitution structure. A

far more precise context-free grammar can be found in Jurafsky and Martin

(2008).

a sentencemust only contain terminals and each terminal must have

been reached through a series of substitutions. For programming

languages, there is the concept of keywords. They help the reader

(i.e., the parser) in understanding what comes next. Examples are

the keywords if—starting an if-clause, and for—starting a loop in

most standard programming languages. To define a DSL, it is first

important to get an overview of the sentences that are required

to be expressed. Step-by-step, they can be formalized through the

above-described substitutions.

Some exemplary goals for an MRI sequence accompanied by

constraints given by domain experts are given below:

• Maximize contrast between gray and white matter. Avoid

ghosting artifacts. Allow some distortion and motion. Aim for

an overall high SNR with a special focus on gray matter.

• Maximize SNR in CSF. Only allow sharp images. Avoid all

types of artifacts and aim for high contrast between CSF and

gray/white matter.

Looking at these formulations, a division between optimization

terms (minimize/maximize), strict constraints (avoid ghosting

artifacts, only allow sharp images) and vague constraints (allow

some distortion, aim for high contrast) seems logical. This already

provides the building blocks for the DSL: A text in this DSL consists

of three blocks (where the latter two are optional): Optimization

goal, strict constraints, and vague constraints. The optimization

goals consist of the acquisition metric (for a list, see the next
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Section 2.2) and the optimization direction, i.e., minimization or

maximization. The strict constraints block starts with obey the

following constraints: and allows inequalities and equalities on

acquisition metrics or sequence parameters. The vague constraints’

block starts with aim for the following: and may contain allowance,

avoidance, and ordinal statements with categories from very low to

very high that describe an acquisition metric. Furthermore, a basic

sequence can be given that the optimization algorithm is supposed

to uphold.

An informal description of the DSL to describe MRI sequence

demands is given below. The DSL describing the actual MRI

sequence (startingSequence) is explained in Section 2.5). Brackets

denote optional parts of the rules, the pipe denotes the logical “or”.

If a part is printed bold, this means that it can be replaced with a

special set of values, e.g., AcquisitionMetric can be replaced by all

image metrics and the acquisition time.

<Requirement> ::= <OptimizationGoal> [<StrictConstraint>]

[<VagueConstraint>] [<startingSequence>]

<OptimizationGoal> ::= <OptimizationDirection> AcquisitionMetric

<OptimizationDirection> ::= "Minimize" | "Maximize"

<StrictConstraint> ::= (AcquisitionMetric|SequenceParam)

<RelationIdentifier>

((AcquisitionMetric|SequenceParam)|Numerical)

<RelationIdentifier> ::= "is smaller than"|"equals"|"is greater than"

<VagueConstraint> ::= <Avoidance>| <Allowance> | <Aim>

<Allowance> ::= "Allow" AcquisitionMetric

<Avoidance> ::= "Avoid" AcquisitionMetric

<Aim> ::= "Have" <Quantifier> AcquisitionMetric

<Quantifier> ::= "very low" | "low" | "decent" |

"high" | "very high"

The above-mentioned exemplary goals can then be expressed

as follows:

d e f i n e o p t im i z a t i o n r equ i r emen t :

maximize "GWC" .

obey th e f o l l ow i n g c o n s t r a i n t s :

"SNR_GM" i s h i g h e r than 3 0 .

"SNR_WM" i s h i g h e r than 3 0 .

"SNR_GM" i s h i g h e r than "SNR_WM" .

aim f o r th e f o l l ow i n g :

a vo id " g h o s t i n g " .

Listing 1 DSL formulation of the first above mentioned goal.

d e f i n e o p t im i z a t i o n r equ i r emen t :

maximize " SNR_CSF " .

obey th e f o l l ow i n g c o n s t r a i n t s :

" Sh a rpne s s " i s h i g h e r than 0 . 8 5 .

aim f o r th e f o l l ow i n g :

a vo id " g h o s t i n g " .

a vo id " motion " .

a vo id " d i s t o r t i o n " .

have h igh "CGC" .

have h igh "CWC" .

Listing 2 DSL formulation of the second above mentioned goal.

Of course, these formulations look less verbose than the above-

mentioned examples. However, they capture many of the above-

mentioned formulations and requirements and are—at the same

time—parsable by a program and thus a practicable input to an

automated optimization flow.

2.2. Generation of training data for
ML-based optimization of MRI sequences

The previous section already introduced various image

metrics such as tissue contrast, SNR or robustness against

the subject motion, ghosting and geometric distortion which

are typical parameters guiding the selection of a specific MRI

sequence in clinical practice. Concerning these demands, automatic

optimization of MRI sequences would require time-consuming

MRI simulation and metric calculation routines (see Figure 2A).

In the case of complex MRI sequences, such optimization can

take several hours which is unsuitable for clinical practice.

Therefore, an obvious approach is to approximate the relation

between MRI sequences and chosen image quality metrics by

machine learning techniques. This overcomes the need for the

time-consuming parts in the optimization routine (see Figure 2B)

but requires a sufficient amount of training data. In this work,

those data are generated using two digital phantoms. These

phantoms are described in the following section and illustrated

in Figure 3.

2.2.1. MRI phantom design for training data
generation

The first design (see Figure 3A) uses a squared geometry

where tissue parameters of the different sub-regions are chosen

to correspond to those of cerebrospinal fluid (CSF), white

matter (WM) and gray matter (GM) as typically encountered in

brain imaging (Bojorquez et al., 2017). In addition, a structural

CSF section is added for evaluating structures after image

reconstruction. Overall dimensions of the phantom are 100 ×

100 mm2 with a simulated spin density of 4/mm2. It allows the

calculation of contrasts between the three types of simulated tissue,

SNR, levels of ghosting artifacts, the sharpness of reconstructed

images as well as the homogeneity of signal in reconstructed

images, as shown in the top row of Figure 4. The different tissue

contrasts (CGC, GWC, CWC) are calculated by dividing the mean
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FIGURE 2

Comparison of conventional and machine learning-based metric optimization. (A) Iterative optimization of MRI sequences using MRI simulations;

and (B) Iterative optimization using machine learning algorithms which learned the relation between DSL and image quality parameters.

signal intensity in tissue areas as defined in the square phantom.

Tissue-specific SNR levels (GNR, CNR, WNR) are calculated by

adding additional Gaussian noise to the simulated complex MRI

raw data, followed by the usual approach for SNR calculation in

the context of MRI images (Dietrich et al., 2007). The ghosting

level (GL) is calculated by dividing the target signal in the defined

phantom region by the ghosting signal in the defined ghosting

regions. Image sharpness (IS) is assessed by calculating the Pearson

Correlation Coefficient (PCC) between the reconstructed structure

area and the simulated target structure. A similar approach is taken

to calculate a homogeneity measure (HOM) in the filled CSF area.

This yields a general statement about the quality of the image itself

which cannot be derived by contrast and/or SNR measures alone.

A second phantom geometry is used to assess the sensitivity to

motion and geometric distortions (see Figure 3B). A small circular

structure is designed to reduce the number of spins and thus

speed up the simulation. Dimensions of the given area are 100 ×

100 mm2 with a simulated spin density of 2/mm2. In contrast to

the squared phantom, a non-zero off-resonance value is chosen.

A repeating motion pattern can be simulated, corresponding to

linear translational shifts in the phase-encoding direction during

the simulation process (see bottom right). Motion sensitivity can be

assessed by applying a series of linearly increasing one-dimensional

shifts in the phase-encoding direction to the reconstructed motion

image (see Figure 4, bottom row). For each shift the Pearson

Correlation Coefficient (PCC) is estimated in the indicated area.

Finally, the maximum PCC is calculated and subtracted from 1 to

define the motion sensitivity measure. This procedure is chosen

because a general shift of the object would be unproblematic as

long as the quality of the reconstructed image is not affected.

Off-resonance sensitivity is calculated in a quite similar way.

However, in contrast to motion sensitivity, image distortion is

directly linked to the shift of the object in image space. Therefore,

the shifted position of the maximum PCC value is assessed and

divided by the overall size of the interpolated image matrix in the

phase-encoding direction which yields the off-resonance sensitivity

measure.

2.2.2. Data generation workflow
Using both digital phantoms, training data are finally

generated in a process as shown in Figure 5. The initial

input are several sequence configuration files with given MRI

sequence representations as they can be formulated by the DSL.

Corresponding radio frequency (RF), gradient and ADC events are

generated using the gammaSTAR framework (Cordes et al., 2020)

subsequently. The integration of gammaSTAR has several benefits.

First, the actual MR logic, which translates the DSL sequence into

hardware events is separated from the DSL formulation, reducing

the latter to its core functionality. Second, gammaSTAR also allows

the execution of generated MR sequences on MR systems of

different vendors, making generated sequences widely available.

A validity check is performed for each configured gammaSTAR

sequence to ensure the physical plausibility of generated hardware

events. Afterwards, valid MRI sequences are exported into the

Pulseq format (Layton et al., 2016) because a direct JEMRIS export

is not available to date. Exported sequences are subsequently

processed by the py2Jemris toolbox (Tong et al., 2021) to generate

JEMRIS sequence files. Raw MRI signal is then simulated in

JEMRIS (Stocker et al., 2010) in combination with one of the

predesigned digital phantoms. In total, four simulations are carried

out for each generated sequence:

1. Square phantom

2. Circular phantom, without off-resonance, without motion

3. Circular phantom, with off-resonance, without motion

4. Circular phantom, without off-resonance, with motion.

Generated raw data are then reconstructed using sequence-

specific image reconstruction routines implemented in Python.

Here, the absolute value of the complex MRI signal is calculated

and images are interpolated to a pixel size of 1 × 1 mm2.

Note that a homogeneous coil sensitivity is assumed during the

simulation procedure. Afterwards, image quality parameters are

calculated and stored for further processing. The interested reader

is referred to the Supplementary material for further insights into

the implemented reconstruction routines.
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FIGURE 3

Two di�erent digital phantoms used for evaluation of the image metrics. (A) Parameters of the digital phantom used for evaluation of contrast, SNR,

ghosting, image sharpness as well as homogeneity metrics. Red squares indicate masks which were used to identify respective tissue regions in

reconstructed MRI images; and (B) Parameters of the digital phantom used for evaluation of the motion and distortion sensitivity of MRI sequences. A

continuous translational pattern in the phase-encoding direction is applied to assess the sensitivity to motion of the MRI sequence.

2.3. Training the ML-model

Training the actual ML-model is an important step

toward the usability of our approach. Without a correct

approximation of the simulation, the optimization process

can not evaluate possible solutions from the search space and

is therefore incapable of comparing different solutions with

respect to the specified goal. The data used for training the

ML model are the sequence configuration files (see Figure 5,

green) and the calculated acquisition metrics (see Figure 5,

blue).

The function to be trained has a twelve-dimensional input space

(see Table 1) and a 12-dimensional output space(see Section 2.2.1

for output variables). Some variables in the configuration files

are categorical (e.g., ReadoutType and EchoType) and not

numerical, which makes their usage challenging for standard

machine-learning techniques. However, the information in these

variables can also be found by using or combining other input

variables (the information for the readout type is already in

the refocussing angle, for example), therefore, they can be left

out of the construction of the model (see Table 2) leaving only

numerical variables.

Frontiers inNeuroimaging 06 frontiersin.org

https://doi.org/10.3389/fnimg.2023.1090054
https://www.frontiersin.org/journals/neuroimaging
https://www.frontiersin.org


Hoinkiss et al. 10.3389/fnimg.2023.1090054

FIGURE 4

Calculation of image metrics. PCC refers to the Pearson Correlation Coe�cient.

FIGURE 5

Workflow of MRI simulations. Note that simulations using the circular phantom are performed with and without adding o�-resonance or motion

e�ects.

Generated data is divided into training, testing and validation

datasets, making up 60%, 20%, 20% of the training data

respectively. This principle is based on the three-way-holdout

principles to avoid selection and estimation biases that may occur

when results on testing data are used for estimating error measures

of the ML-model (Vabalas et al., 2019). Figure 6 depicts this

schematically. The training data is used for identifying the best set

of hyperparameters for each ML-model used. The evaluation for

this tuning process is done via a 10-fold cross-validation (Hastie

et al., 2009). The resulting best hyperparameter sets are tested

with their respective model on the testing dataset. Based on these

results, the best model is chosen and finally evaluated on the

validation data set. This process is repeated for every output

variable.
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TABLE 1 DSL parameters used for generation of training data.

Sequence name EPI SE EPI bSSFP RARE

Echo type Gradient echo Spin echo Gradient echo Spin echo

Readout type EPI EPI Line readout Line readout

Matrix 32, 64 32, 64 32, 64 32, 64

TE (ms) 10, 60, 110 10, 60, 110 2, 5, 8, 11, 14, 17 10, 60, 110, 160

TR (ms) 100, 1,500, 6,000 100, 1,500, 6,000 4, 12, 20, 28, 36 100, 1,500, 6,000

ETL - - - 16, 32, 64

EPI factor 16, 32, 64 16, 32, 64 - -

Readout duration (ms) 0.4, 0.5 0.4, 0.5 2 1, 1.1

Excitation angle (◦) 90 90 90 90

Refocussing angle (◦) - 180 - 180

Measurements 1, 10 1, 10 1, 2 1, 10

Number prescans - - 8 -

Underlined parameters are used for generation of sequence diagrams in Figure 7.

To reduce dimensionality and derive an independent search

space, we performed a Principal-Component-Analysis (PCA,

Pearson, 1901) on the input and output data. We show the results

in Section 4.

Most ML-models need tuned hyperparameters to work

effectively. We chose three different machine-learning techniques,

namely support vector regression (Scholkopf and Smola, 2018), k-

nearest neighbor (Fix and Hodges, 1989), and random forests (Ho,

1995) and performed a hyper tuning on their respective

hyperparameters using a three-way-holdout principle. The best

setting for each model was then tested on a new data set and based

on this, we chose the best model for each output variable.

2.4. Optimization strategies for finding
optimized MRI sequences

One specific goal of this contribution is the possibility for

practitioners and MRI experts to optimize MRI sequences to

their specified set of requirements at their level of expertise and

abstraction. Additionally, the optimization process is supposed to

be able to start with no sequence specified as well as an underlying

sequence that specifies the general direction of the search. In

Section 2.1, the formulation of optimization requirements has

already been discussed. For an optimization, several aspects

have to be considered to decide which general technique to be

used: When dealing with well-defined, differentiable optimization

functions, it is generally sensible to use gradient-based techniques

to profit from the knowledge (there are, of course, exceptions,

e.g., when the computation or evaluation of the derivatives

is cost-intensive). When dealing with an optimization function

that is not well-defined or not even continuous or when the

search space has its atrocities, then the default are stochastic

population-based approaches, e.g., evolutionary algorithms or

particle swarm optimization. These approaches allow proceeding

to a global optimum as they do not stop at a local optimum and,

through their population-based approach, can obtain several local

optima simultaneously.

In this work, we deal with two challenges simultaneously:

The first one is the estimated optimization function through the

ML-based approach. Usually, these functions are not differentiable,

or—if they are—only in certain areas. The second one is the

complex search space. There are several restrictions based on the

search space to receive a valid sequence in the end. Additionally,

there are different types of optimization requirements. Some of

them are strict, others are weak to guide the search. Therefore, we

decided to make use of evolutionary algorithms and extend them

by gradient-based methods if the local search space area allows it.

In the context of evolutionary algorithms, several techniques

have been developed to deal with approximate optimization

functions (for a survey, see Jin, 2005) and also to include

knowledge about the training data (see Plump et al., 2021b, 2022b).

Additionally, for search spaces with dependencies, there are also

techniques to adapt the recombination and mutation operators to

include this (see Plump et al., 2021a). Furthermore, there is a wide

variety of techniques available to deal with constraints (Mezura-

Montes and Coello, 2006). Two techniques are to be pointed

out here, as they will be applied: First, constraint violations can

influence the fitness function as penalties. Thus, the evolutionary

algorithm will exclude invalid solutions from the population due to

their bad fitness. Second, there is the technique of repairing which

is often done when data come from different scales (cardinal vs.

categorical). Then, a proposed solution that may itself not be valid

gets repaired toward one or two solutions that are valid and in

a defined ǫ-neighborhood. For example, if three different options

are encoded as cardinal values 1, 2, and 3, the result yields 2.7.

This number can not be transferred back to a categorical value.

However, rounding this up to 3 allows a retranslation to the third

considered value.

As this is a potentially multi-objective optimization problem, it

is necessary to keep the technique adaptable to a changing number

of optimization goals. Please keep in mind that only goals specified

as optimization goals in terms of the introduced domain-specific

language are considered the optimization goal. The rest is taken
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care of via constraints. In Plump et al. (2022a), a technique is

presented to equip constraints with different levels of strictness. In

this work, we adopt this technique for the acquisition metrics.

2.5. Generating a domain-specific language
to describe MRI sequences

A substantial part of this work is defining a domain-specific

language that allows practitioners as well as experts to define MRI

sequences at their level of abstraction. In this work, this is limited

to two main levels, but can quickly be expanded to lower levels that

allow the definition of MRI sequences at the most specific detail.

The upper level is defined as the most simplified expression

of an MRI sequence, namely through its echo statement and its

readout statement. The medium level, on the other hand, has (in

this setup) the requirement of specifying all elements that were

necessary to generate the described training data. However, it is

not assumed that both languages are strictly separated. On the

contrary, through the addition of specifications and additions an

originally upper-level specification can progress toward a medium-

level specification.

<Sequence> ::= <upperSpec> [<Additions>] [<Specifications>]

<upperSpec> ::= "define" name <Echo> <Readout>

<Addition> ::= "Add" (<Spoiling> | <Prescans> )

<Specification> ::= "Specify" (<EchoSpec>|<ReadoutSpec>|

<TimingSpec>| <TrajectorySpec> |

<Measurements> )

<EchoSpec> ::= "echo" <ExcitationSpec> (<RefocussingSpec>)

<ExcitationSpec> ::= "excitation" pulseType angle

<RefocussingSpec> ::= "refocussing" pulseType angle

<ReadoutSpec> ::= "readout" duration number-of-columns

<TimingSpec> ::= "timing parameters" TE TR

<TrajectorySpec> ::= "trajectory" Epi-Factor ETL number-of-rows

<Measurements> ::= "measurements" count

The rules illustrate the main principle of the DSL. The first

sentence is necessary for the upper level, i.e., the upperSpec. This

first sentence defines the name, echo and refocussing of the MRI

sequence [see lines (1) and (2) in the Listings 3–6]. This constitutes

the upper level. After that, several specifications can be made.

First of all, the echo can have its excitation and refocussing pulse

types and angles specified, whereas the refocussing specification is

optional. Second, the readout can have the readout duration and the

number of columns specified. Third, timing parameters like TE and

TR can be specified. Fourth, the trajectory can be refined with the

specification of the EPI-factor, the echo train length ETL, and the

number of rows. Finally, the number of measurements/repetitions

can be given. The original upper-level sentence together with

these specifications then constitutes the medium level. Missing

specifications are substituted with default values depending on echo

type and refocussing type. Complementary to specifications, so-

called additions can be made. These can define some spoiling or

several prescans, for example. To enable the default values for the

sequences that are defined on the upper level, the following four

d e f i n e MRI sequence "RARE−d e f a u l t "

u s i n g a " SpinEcho " wi th " L ineReadout " .

Add g r a d i e n t s p o i l i n g around r e f o c u s s i n g

o f t yp e b a l an c ed .

Add g r a d i e n t s p o i l i n g a f t e r e c h o t r a i n .

S p e c i f y echo

a s e x c i t a t i o n

wi th t yp e s i n c p u l s e and ang l e 90 ,

and r e f o c u s s i n g

wi th t yp e s i n c p u l s e and ang l e 1 8 0 .

S p e c i f y r e adou t

wi th du r a t i on 2000

and number−of−columns 6 4 .

S p e c i f y t im ing pa r ame t e r s

w i th TE 44

and TR 500 .

S p e c i f y t r a j e c t o r y

wi th Epi−F a c t o r 1

and ETL 8

and number−of−rows 6 4 .

S p e c i f y measurements

w i th count 1 .

Listing 3 DSL formulation of a default RARE sequence.

d e f i n e MRI sequence " SE−EPI−d e f a u l t "

u s i n g a " SpinEcho " wi th " EPIReadout " .

S p e c i f y echo

a s e x c i t a t i o n

wi th t yp e s i n c p u l s e and ang l e 90 ,

and r e f o c u s s i n g

wi th t yp e s i n c p u l s e and ang l e 1 8 0 .

S p e c i f y r e adou t

wi th du r a t i on 500

and number−of−columns 6 4 .

Add g r a d i e n t s p o i l i n g around r e f o c u s s i n g

o f t yp e b a l an c ed .

Add g r a d i e n t s p o i l i n g a f t e r segment .

S p e c i f y t im ing pa r ame t e r s

w i th TE 50

and TR 1000 .

S p e c i f y t r a j e c t o r y

wi th Epi−F a c t o r 64

and ETL 1

and number−of−rows 6 4 .

S p e c i f y measurements

w i th count 1 0 .

Listing 4 DSL formulation of a default SE-EPI sequence.
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Def ine MRI sequence " EPI−d e f a u l t "

u s i n g a " Grad ien tEcho " wi th " EPIReadout " .

S p e c i f y echo

a s e x c i t a t i o n

wi th t yp e s i n c p u l s e and ang l e 9 0 .

S p e c i f y r e adou t

wi th du r a t i on 500

and number−of−columns 6 4 .

Add g r a d i e n t s p o i l i n g a f t e r segment .

S p e c i f y t im ing pa r ame t e r s

w i th TE 35

and TR 1000 .

S p e c i f y t r a j e c t o r y

wi th Epi−F a c t o r 64

and ETL 1

and number−of−rows 6 4 .

S p e c i f y measurements

w i th count 1 0 .

Listing 5 DSL formulation of a default EPI sequence.

Def ine MRI sequence " bSSFP "

u s i ng a " Grad ien tEcho " wi th " L ineReadout " .

Add p r e s c a n s

wi th count 8 and t yp e l i n e a r .

S p e c i f y echo

a s e x c i t a t i o n

wi th t yp e s i n c p u l s e and ang l e 9 0 .

S p e c i f y r e adou t

wi th du r a t i on 2000

and number−of−columns 6 4 .

Add g r a d i e n t s p o i l i n g around r e adou t

o f t yp e b a l an c ed .

S p e c i f y t im ing pa r ame t e r s

w i th TE 4

and TR 8 .

S p e c i f y t r a j e c t o r y

wi th Epi−F a c t o r 1

and ETL 1

and number−of−rows 6 4 .

S p e c i f y measurements

w i th count 1 .

Listing 6 DSL formulation of a default bSSFP sequence.

examples (see Listings 3–6) give the default values that will be used

for the four types of sequences that were used for the setup of the

training data.

3. Experimental setup

This section presents the actual experiments we performed. It

concentrates on the presentation of the training data as well as the

presentation of four representative cases for optimization.

3.1. Generated training data and its
properties

For the generation of training data, various sequence

configurations are used according to Table 1. Spin echo as well as

gradient echo sequences are simulated in combination with echo-

planar imaging (EPI) readouts and line readouts. The different

combinations of echo and readout type result in four types of

MRI sequences, known as gradient and spin-echo echo-planar

imaging (EPI, SE EPI; Mansfield, 1977), balanced steady-state free

precession (bSSFP, Carr, 1958) and rapid imaging with refocused

echoes (RARE, Hennig et al., 1986). Variation of the matrix size

yields changes in the expected image sharpness while increasing

the measurement time as well as a potential sensitivity to motion.

Variation of TE and TR parameters alters the contrast between

different types of tissue. ETL and EPI factor parameters have a

large impact on, e.g., distortion and motion sensitivity as well

as image blurring and ghosting artifacts in reconstructed images.

Slight variations in the readout duration were introduced for

potential effects on SNR values. Excitation, as well as refocusing

angles, were fixed to 90 and 180, respectively. Finally, the number

of measurements was altered to introduce potential steady-state

effects on the simulation process. Figure 7 shows the sequence

diagrams of a single configuration per sequence variant (underlined

in Table 1).

3.2. Hyperparameters and error metrics

As already mentioned in Section 2, there are three models

whose hyperparameters are optimized using error measures.

These are the support vector regression, the k-nearest neighbor

regression, and a random forest. For the k-nearest neighbor model,

we vary the distance parameter (range [0.1, 20]), and the kernel.

For the support vector regression, we vary the tolerance parameter

([0.001, 0.9]), the epsilon parameter ([0.1, 0.9]), and again, the

kernel. For the random forest mode, we vary the maximum

depth ({0, 20}) and the number of trees ({1, 20}). Each model

type has 200 evaluations to determine the best hyperparameter

set. For implementation, we used the R-package mlr3verse. For

the implementation of the PCA analysis, we used the built-in

functions of R.

There were three different metrics used to guide the

optimization of the hyperparameters. The main error metric was

the well-known root mean squared error. However, this error metric

is at a disadvantage when the absolute values are very high. Then,

it is more accurate to use a relative measure that motivates the

second error metric, the root relative squared error. This metric,

however, has its difficulties with values close to zero. To have an

error metric capable of dealing with that, a logarithmic one was

chosen: root mean squared logarithmic error. All three values are

reported in the results. However, as we saw that the errors did not

lead to disparate results, we decided to choose the most common

error metric (Shcherbakov et al., 2013).

3.3. Specification of optimization
algorithms

We specified our evolutionary algorithms to work with real-

valued encoding. This can lead to invalid solutions for categorical

data, however, as already explained in the methodology, this is

taken care of via a repairing function, if possible. Mutation and

recombination operators are chosen fittingly to the real-valued

encoding. A line crossover chooses a value on a (hyper)line between

two values in a room (probability: 0.1) while the Gaussian mutator

varies with a given step size around the actual value (probability:
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TABLE 2 Results of principal component analysis for input and output data.

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12

Input

Std. deviation 2.22 1.5 1.20 0.88 0.77 0.63 0.59 0.5 0.18 0.05 0.00 -

Proportion 0.45 0.20 0.13 0.07 0.05 0.04 0.03 0.02 0.00 0.00 0.00 -

Cum. prop. 0.45 0.65 0.78 0.85 0.91 0.94 0.97 1.0 1.0 1.0 1.0 -

Output

Std. deviation 1.97 1.44 1.32 1.18 0.92 0.89 0.72 0.65 0.44 0.33 0.11 0.07

Proportion 0.32 0.17 0.15 0.12 0.07 0.07 0.04 0.04 0.02 0.01 0.0 0.0

Cum. prop. 0.32 0.5 0.64 0.76 0.83 0.90 0.94 0.97 0.99 1.0 1.0 1.0

FIGURE 6

A schematic depiction of the data split based on the three-way-holdout principle.

0.9). The selection is guided by an elite approach, together with

a tournament approach to ensure diversity in the population.

The population size is chosen at 50 as a medium size to keep

computation time low, but allow a certain level of diversity. The

determination of the maximum number of generations follows a

trade-off as well: It should be high enough to enable the algorithm

to move toward a global optimum. At the same time, it should

be as low as possible to reduce computation time. We chose 100

generations for this experimental setup.

Another important aspect is the construction of the fitness

function. Mainly, the fitness function contains the values to be

optimized. Additionally, strict constraints are added via a penalty

constant, when violated. The same holds for vague constraints,

however, the penalty constant is chosen smaller and relative to the

optimization value. This is necessary, as the actual optimization

goal would have no significant influence on the fitness function.

The artifact constraints are included with penalties regarding their

discrepancy. If the constraint is only violated slightly, there is

only a small penalty, however, for major violations, huge penalties

are given.

This leads to the following construction principle for fitness

functions based on the optimization goal:

fitness(x) = p(x)goal −

s∑

i=1

psi(x)−

t∑

j=1

pvj(x) (1)

where x is the search space candidate, i.e., the sequence, p(x)

the result of applying the ML-model, s is the number of

strict constraints, psi the penalty awarded for a violation of

strict constraint i, t the number of vague constraints, and pvj
the penalty awarded for a violation of a vague constraint j.

Usually, penalties are constant values, for constraints regarding

ghosting, motion sensibility and distortion sensibility, however,

we used an exponential function on the degree of violation, e.g.,

exp(a(p(x)ghost − cghost)), where a is some factor, p(x)ghost the

predicted ghost value, and cghost the boundary from the constraint.

This enables small penalties for small violations, and increasing

penalties for larger violations.

After sequence optimization, the resulting sequences for both

defined goals in Listings 1, 2 are acquired for validation of the

provided goals using the gammaSTAR framework on a 3T Siemens

VidaFit MR scanner (Siemens Healthineers, Erlangen, Germany).

The subject provided informed consent prior to the scan.

4. Results

This section contains three main parts: First, we will show

and describe data that served for the training of the ML-model.

Then, the results of the ML-training are reported. Third, we will

show the results of two optimization examples to give the reader

an impression.
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FIGURE 7

Exemplary sequence diagrams from indicated parameter combinations in Table 1 as generated in the gammaSTAR framework.

4.1. Training data variation and linearity

For this work 127 bSSFP, 199 EPI/SE EPI and 40 RARE

sequences were simulated and respective image metrics were

calculated. Figure 8 shows the distribution of the simulated output

variables differentiated by the associated sequence type, separated

into groups of three variables (Figure 8A: SNR CSF, SNR gray

matter, SNR white matter—Figure 8B: gray matter white matter

contrast, CSF white matter contrast, CSF gray matter contrast—

Figure 8C: Ghosting, sharpness, homogeneity, Figure 8D: Motion

sensitivity, distortion sensitivity, acquisition time). All four figures

are structured similarly. The different colors represent the different

density distributions depending on the underlying sequence type

(see colored names in the panels in the upper half). The three

upper right panels show the correlation values of the corresponding

variables. The number of stars shows the statistical significance.

For example, white matter SNR and gray matter SNR seem to

be highly correlated, while the other combinations still have high

values (besides sequence type RARE) but not as high. The lower left

panels show the dependence between both corresponding variables.

The high correlations between gray matter SNR and white matter

SNR, as well as between CSF white matter contrast and CSF gray

matter contrast are visible. Figure 8C shows high values in the

training data for Sharpness and Homogeneity as well as the smaller

values for Ghost-Artifacts.

After validating that the chosen input variables show a good

distribution of output variables, the analysis of the dependency

between input and output variables is necessary. Table 2 shows the
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FIGURE 8

Distribution of output variables di�erentiated by sequence types. (A) SNR-related output variables; (B) Contrast-related output variables; (C) Ghost,

sharpness, and homogeneity; and (D) Motion and distortion sensitivity and acquisition time.

results of a principal component analysis on the input data in the

upper half, and the results for the output variables in the lower

half. Principal components differ for input and output variables.

The first line in both tables shows the standard deviation that this

principle component is responsible for and in the last line, the

reader can see the cumulative proportion. Usually, it is sufficient to

take as many principal components as are necessary to explain 95%

of the data deviation. In this case, it would be sufficient to choose

the first seven principal components for the input variables and the

first eight principal components for the output variables. The PCA

shows that the output variables need more principal components to

express their data than the input variables.

Additionally, it is interesting to look at the position of the

original data relative to the principal components. To that end,

Figures 9A, B each show the direction of the input (output,

resp.) variables relative to the first two principal components.

For Figure 9A the color of the points shows the GWC value. It

is visible that, e.g., the echo train length majorly points in the

direction of the second principal component, whereas the input

variables TR, TE, refocussing angle, and EPI-factor all point along

the direction of the first principal component. They seem to be

strongly correlated regarding the training data. Interestingly, the

first principal component seems to explain the gray-white matter

contrast acceptably well. The more to the right a data point is,

the more light the blue and thus, the higher the GWC value. In

Figure 9B, the color again represents the sequence type. Gray and

white matter SNR point basically in the same direction, as well as

gray and white matter contrasts. Additionally, the bSSFP sequences

are rather found to the left, whereas both EPI sequences are mostly

on the right side of the sharpness/SNR in the CSF border.

4.2. Results of ML-training

As discussed in Section 2, a three-way holdout was used for

training and evaluating the ML-model. The training data set itself

was used for hyperparameter optimization. The resulting best

parameters were then applied for all three considered models on

the test data set. The results are shown in Table 3 under test.

These show how well every model in its optimal hyperparameter

setting performs on unseen data. Based on these results, the best-

performing model was chosen and validated on the validation set.
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FIGURE 9

Principal component analysis results. (A) PCA Results on the input variables for PC1 and PC2 with output GWC; and (B) PCA Results on the output

variables for PC1 and PC2 with data colored with respect to the sequence.

The result of this final test can be found in columns val. As these

values (again) have been computed on previously unseen data, they

can be used as a prognosis of the performance of the machine

learning model for new data.

It is noteworthy that only the k-nearest neighbor and the

support vector regression performed well enough to be chosen

for the final validation. The random regression forest method was

discarded due to overall poorer performance. Note that, for some

variables however (e.g., homogeneity and sharpness), it performed

comparably well. The high values for the rmse for acquisition time

are a result of the overall high values for this particular variable

because the rmse is an absolute error metric. One can see that the

corresponding relative error rrse does not strongly deviate from the

relative error metric for the other output variables.

Figure 10 shows the results of the validation data (the last

portion of the overall training data) on the—for each output

variable—chosen ML-model and hyperparameter settings. Each

subfigure represents one output variable. It compares the predicted

value (response) to the value from the validation data (truth). The

colors depict the four different types of sequences present in the

training data. The solid line shows the bisector. If the model was

a perfect prediction, every point would lie on the bisector. The

dashed lines show the 10% margins, i.e., every data point inside the

dashed lines deviates at most 10% from the original value.

Overall, the machine learning model predicts the validation

data into the 10% deviation corridor around the bisector. However,

there are also output variables that have several outliers. Particularly

ghosting, acquisition time and motion sensitivity. There is no

visible influence regarding the quality of the model with respect

to the sequence types, i.e., the sequence type does not seem to

influence the quality of the prediction.

4.3. Results of optimization flow

Finally, the results of the MRI sequence optimization

process and the effect of the repairing step are presented. The

exemplary requirement from Listings 1, 2 were transformed to

an optimization function and constraints through the use of the

DSL as well as a dictionary for the ordinal values with regard to

the respective variables. This process yielded the following formal

constraints for the first task:

GWC− > max!

SNR− GM > 30

SNR−WM > 30

SNR− GM > SNR−WM

GHOST < 0.05

and for the second task:

SNR− CSF− > max!

SHARPNESS > 0.85

CGC > 10

CWC > 10

GHOST < 0.05

MOTION.SENS < 0.05

DISTORTION.SENS < 0.05

These optimization goals were translated to fitness functions as

described in Section 3.3.

Figures 11A, B show the evolution of the fitness function.

Although the goal is maximization, one can see that both

start with negative fitness values. This is due to the fact,

that the constraints are violated and thus the penalization

constant drives the fitness function toward a negative

value. Throughout the evaluation, however, it thrives

toward the positive area which—through the choice of

the penalization constants—signalizes that no constraint is

violated anymore.

After finishing the evolution process, the solution with the

best fitness value is returned. These first need repairing (as
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mentioned in Section 2) to ensure they represent valid sequences.

This is necessary for two reasons: First, as already mentioned,

the presence of categorical data. Second, the optimization system

does not yet contain physical knowledge about sensible sequences.

An example of the first repair is the question of whether the

sequence is of type GradientEcho or SpinEcho and if it is of

type LineReadout or EpiReadout. This can be done by using

the information in the refocussing angle and the EpiFactor. An

example of the second problem is the interplay of TE and

TR. Here, the optimization does not yet include physical logic

to ensure that respective values yield plausible sequences. For

instance, the second optimization yields a TE/TR combination

of 130/4,300 ms which is not reasonable in combination with

a gradient echo and a line readout. Therefore, these values are

repaired to the largest TE/TR available in the generated training

data (17/36 ms). Additional discussion on how limitations of

the repairing function are given in section 5.2. Re-transforming

these repaired solutions into the presented DSL yields the MRI

sequences as given in Listings 7, 8. Figure 12 finally shows

in-vivo scans using optimized MR sequence examples from

Listings 7, 8.

d e f i n e MRI sequence " Example 1 "

u s i n g a " SpinEcho " wi th " EPIReadout " .

S p e c i f y echo

a s e x c i t a t i o n

wi th t yp e s i n c p u l s e and ang l e 90 ,

and r e f o c u s s i n g

wi th t yp e s i n c p u l s e and ang l e 1 8 0 .

S p e c i f y r e adou t

wi th du r a t i on 500

and number−of−columns 3 2 .

S p e c i f y t im ing pa r ame t e r s

w i th TE 46

and TR 5014 .

S p e c i f y t r a j e c t o r y

wi th Epi−F a c t o r 32

and ETL 1

and number−of−rows 3 2 .

S p e c i f y measurements

w i th count 1 0 .

Listing 7 DSL formulation of the solution for requirement

example 1.

d e f i n e MRI sequence " Example 2 "

u s i n g a " Grad ien tEcho " wi th " L ineReadout " .

S p e c i f y echo

a s e x c i t a t i o n

wi th t yp e s i n c p u l s e and ang l e 90 ,

S p e c i f y r e adou t

wi th du r a t i on 2000

and number−of−columns 6 4 .

S p e c i f y t im ing pa r ame t e r s

w i th TE 17

and TR 3 6 .

S p e c i f y t r a j e c t o r y

wi th Epi−F a c t o r 1

and ETL 1

and number−of−rows 6 4 .

S p e c i f y measurements

w i th count 2 .

Add p r e s c a n s

wi th count 8 .

Listing 8 DSL formulation of the solution for requirement

example 2.

5. Discussion

5.1. Restrictions of software tools and MRI
simulations

In this work, a chain of different software toolboxes is utilized

to generate training data for the ML algorithms (see Figure 5).

Due to the lack of a direct JEMRIS export, the workaround

using pulseq exports with subsequent conversion to the JEMRIS

format is utilized. While appropriate for this work, this approach

is highly inefficient concerning computational demands because

JEMRIS sequences are usually formulated in a high-level fashion,

while Pulseq files implement a low-level formulation of MRI

sequences. This results in computation times of several hours

for complicated sequences, being a limiting factor during the

training data generation process. The latter would therefore

benefit from a direct DSL to JEMRIS export. An alternative

approach would be the implementation of a low-level differentiable

representation of MR sequences as already proposed (Loktyushin

et al., 2021). This would not only allow for faster data generation

but would also enable hybrid optimization approaches using

analytical gradients.

It must also be mentioned that MRI sequences are restricted

to Cartesian trajectories in this work. While the implementation of

Cartesian image reconstruction methods is simple, non-Cartesian

trajectories require more sophisticated approaches. Here, the

reconstruction algorithm itself will have a major impact on

different image quality metrics and we suggest incorporating

open reconstruction frameworks such as Gadgetron (Hansen

and Sørensen, 2012) or BART (Uecker et al., 2015) into the

reconstruction pipeline providing heavily optimized algorithms

for this purpose. Note that these algorithms might also require

additional simulation of coil sensitivity profiles. Another challenge

will be to align the simulated profiles to the real ones used during

the actual MRI experiments. Close alignment is important because

the sensitivity profiles have a significant impact on the image quality

in parallel imaging scenarios. Finally, it shall be noticed that the

calculation of presented image metrics is suitable for Cartesian

MRI sequences but might not be reasonable for spiral or radial

trajectories. Images reconstructed from radial projections often

suffer from streaking artifacts that overlay the background noise,

thus making the presented approach for SNR calculation difficult.

This also holds for the estimation of ghosting artifacts due to

the lack of a phase-encoding direction. Therefore, a comparison

of Cartesian and non-Cartesian trajectories in terms of provided

metrics is difficult and respective metric algorithms need to be

adopted for these scenarios.

5.2. Generated training data and its
properties

The simulated training data using sequence parameters from

Table 1 results in a sufficient variation of quantitative image metrics

as can be seen from Figure 8. The given SNR and contrast examples

(see Figures 8A, B) clearly show different trends for the different
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TABLE 3 Result of the machine learning process of test and validation data.

Model Error GWC CGC CWC SNR-CSF SNR-GM SNR-WM

test val test val test val test val test val test val

svm

rrse 0.45 0.8 0.77 0.28 0.47 0.49 0.53 0.52

rmse 0.14 5.04 4.06 15.3 11.5 10.8 9.01 7.75

rsle 0.06 0.39 0.42 0.17 0.55 0.53 0.51 0.46

knn

rrse 0.43 0.43 0.38 0.36 0.38 0.41 0.19 0.43 0.52 0.58

rmse 0.13 0.13 2.38 2.5 2.01 2.48 10.7 22.3 12.8 9.88

rsle 0.05 0.05 0.25 0.3 0.25 0.25 0.21 0.25 0.48 0.45

ranfor

rrse 0.80 0.76 0.72 0.76 0.87 0.88

rmse 0.25 4.84 3.76 41.7 21.3 14.9

rsle 0.1 0.46 0.44 0.48 0.80 0.7

Ghost Sharpness Homogeneity Motion Distortion Time

test val test val test val test val test val test val

svm

rrse 0.53 0.32 0.29 0.75 0.69 0.5 0.48 0.11 0.11 0.54

rmse 0.05 0.02 0.02 0.01 0.01 0.03 0.03 0.00 0.01 5.5e6

rsle 0.04 0.01 0.01 0.01 0.01 0.02 0.03 0.01 -

knn

rrse 0.45 0.61 0.52 0.76 0.73 0.18 0.58 0.46

rmse 0.04 0.04 0.03 0.01 0.04 0.01 2.7e6 2.5e6

rsle 0.02 0.04 0.18 0.01 0.04 0.01 1.21 -

ranfor

rrse 0.96 0.64 0.85 0.89 0.49 0.88

rmse 0.08 0.04 0.01 0.49 0.03 4.1e6

rsle 0.07 0.02 0.01 0.04 0.03 2.3

Bold values indicate hyperparameter sets and ML models chosen for training based on error metrics.

sequence types analyzed in this work. It is reasonable that SNR

values of gray and white matter are highly correlated since both

types of tissue only show minor variations in their respective

T1 and T2 values. The PCA allows getting deeper insights into

the relation between input and output variables (see Figure 9).

The fact that the first principle component of the GWC value

(see Figure 9A) is majorly affected by the TE as well as TR

is expected because these parameters have a large impact on

the resulting image contrast and the amount of signal which

is available during data readout. Nonetheless, the rather small

amount of training data, which was generated for this work, is

a major restriction that required repairing of generated sequence

configurations. Therefore, additional data, generated from input

parameters which are kept fixed for this work, will be beneficial

for further specification of the relation between input and output

parameters. For example, it is well known, that excitation and

refocussing flip angles have large effects on resulting SNR levels

and that 90/180 combinations are not optimal in many scenarios.

In addition, the effect of preparation modules such as inversion

recovery and fat saturation, which are part of the DSL, is not used

during data generation due to a restricted time for data generation.

Including the effects of such preparation modules into the machine

learning routine would result in additional contrast flexibility

because signal from individual T1 components or off-resonant

signal could be canceled out completely, which is exploited in

e.g., fluid-attenuated inversion recovery (FLAIR, Hajnal et al.,

1992) imaging. Finally, additional types of trajectories such as

radial or spiral should be incorporated into the simulation because

the type of trajectory has strong effects regarding motion and

distortion sensitivity and Cartesian readouts are not always the

optimal approach.

5.3. ML models and hyperparameters

ML results from Figure 10 show decent predictability of

resulting parameters in the validation dataset for the MRI

sequences investigated in this work. However, for some sequences,

predicted and ground truth values show deviations (see SE EPI

CGC values in Figure 10A). Here, image artifacts might result in

variations of calculated image metrics, which were not expected

from the majority of the remaining data, which guided the learned

relations. It should be further investigated, whether this occurs

for such image data which also shows low homogeneity scores.

This could help to identify misleading simulations and further

improve the quality of the ML model in the future. In general, the

quality of generated training data was sufficient to apply the DSL

optimization routines as introduced in this work.

5.4. Optimization strategies

The optimization of DSL sequences concerning two given

scenarios (see Listings 1, 2) yields two reasonable configurations
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FIGURE 10

Validation set result on chosen best-performing model with best-performing hyperparameters. (A) CGC; (B) CWC; (C) GWC; (D) SNR-CSF; (E)

SNR-GM; (F) SNR-WM; (G) Sharpness; (H) Homogeneity; (I) Ghosting; (J) Motion Sens.; (K) Distortion Sens.; and (L) Acquisition Time.

of MRI sequences (see Listings 7, 8). In the case of Listing 1,

the maximization of contrast between gray and white matter in

combination with lower bounds for respective SNR values yields a

SE EPI sequence with a low number of rows and columns (32x32) as

well as a long readout duration which is beneficial in terms of SNR.

The contrast between gray and white matter is mainly adjusted via

TE and TR values of respective sequences. To prevent SNR loss,

SE EPI seems to be preferred over EPI to enable more flexibility

in terms of TE variation. Finally, a large number of measurements

(10) results in steady state effects, which seem to be beneficial for the
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FIGURE 11

Evolution process of fitness for both optimization tasks. (A) Evolution of fitness values throughout the optimization process for the first requirement

example; and (B) Evolution of fitness values during the optimization process for the second requirement example.

FIGURE 12

In-vivo examples of optimized MR sequence protocols. (A) In-vivo examples of MR sequences as defined under Listing 7; and (B) In-vivo examples of

MR sequences as defined under Listing 8.

provided goals. Note that no segmentation is suggested here, which

is beneficial to prevent ghosting artifacts. Figure 12 (left) shows the

corresponding in-vivo MR image. The low matrix size results in

decreased sharpness of structures in the interpolated image. Note

that no Nyquist ghosts are visible due to steady state approaching of

the magnetization after ten measurements. The example also shows

distinguishable gray and white matter structures as forced by the

optimization procedure.

The second optimization aims to maximize the SNR in

CSF regions while ensuring adequate image sharpness with the

prevention of unwanted image artifacts in terms of motion or

geometric distortion. The optimization proposes a bSSFP sequence

with a matrix size of 64x64. This is reasonable to ensure adequate

image sharpness. The bSSFP sequence also offers robustness against

off-resonance effects as well as motion as long as motion appears as

a slow drift as simulated in this work. The corresponding in-vivo

scan (see Figure 12, right) clearly shows sharper brain structures

when compared to the previous configuration. Also note the bright

CSF signal in the ventricles, which corresponds well to the target of

maximized SNR in CSF regions. Note, however, that the optimality

of generated image sequences heavily depends on the underlying

simulated database, which guides the repairing algorithm. In this

work, this database was still small due to high computational

demands, being a limiting factor, which will be overcome in

the future. Future work should also simulate additional motion

patterns on shorter timescales to cover different motion scenarios

during the scan. In the case of the second optimization goal, the

vague constraint to prevent ghosting artifacts is exceeded in favor

of improved image sharpness (see Section 4.3), which could have

interesting implications for future scenarios. When it comes to

motion and distortion sensitivity, these could be formulated as

vague or hard constraints. While vague constraints are an option

in brain imaging, where motion is likely but not guaranteed

and severe inhomogeneities are mitigated by optimized shimming

processes, hard constraints should be formulated in the case of

abdominal imaging, where breathing motion can not be neglected
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and severe off-resonance effects are expected due to air-tissue

interfaces near the lungs. Here, the prevention of artifacts should

be prioritized because otherwise reconstructed images cannot be

used for diagnostic purposes. Future work needs to incorporate

these considerations into the repairing function, which might then

propose different configurations to the user, optimized for these

two scenarios. The quality of repaired sequence configurations

also heavily depends on a large amount of training data. The

optimization and repairing routines would especially benefit from

additional data, corresponding to sequence configurations, yielding

images with poor quality and/or low signal, naturally restricting

the search space for certain sequence parameters and reducing the

number of required repairs. Finally, this work only demonstrated

the application of in-vivomeasurements on a single-vendor system.

Future work should therefore further investigate the optimality

of generated sequences in a multi-vendor environment, ensuring

comparable results on different systems. However, all sequences

resulting in the proposed optimization workflow are representable

as gammaSTAR sequences which ensures cross-vendor application

(Cordes et al., 2020).

5.5. Generalizability of DSL approach

This work presents a high-level DSL specifically designed

to reduce the complexity of MRI sequences to a small level

of flexibility. This could be helpful for users who are not

familiar with the underlying physical principles of MRI sequences

and thus might be easily overwhelmed by a large variety of

options. However, experienced users might want to have more

flexibility when designing MRI sequences. We, therefore, propose

additional layers in the DSL which introduce different levels

of complexity to meet the needs of different groups of users.

For example, the upper-level DSL offers the selection between

different types of echoes. If spin-echo is selected, the pulse

shape is set to a pre-defined sample (e.g., a slice-selective sinc

pulse) and the refocusing angle is set to 180◦. A second-level

DSL could then allow switching between different pulse shapes

such as sinc, rect or more complex waveforms and allows

adjustments of the refocusing angle. In the lowest DSL layer,

actual ADC, RF and gradient events could be defined for each

discrete raster timepoint of the MRI system. On this level, the

optimization would be closely related to the approaches which

were previously presented in Loktyushin et al. (2021) (MRZero)

and (Glang et al., 2022) (MR-double-zero). Further investigation

is therefore recommended on how to combine the presented

ideas with our DSL approach. As seen, the DSL approach has

the potential to offer strong flexibility in terms of sequence

optimization for different scenarios by introducing different layers

of complexity.

6. Conclusion

This work demonstrates the definition and optimization

of MRI sequences by utilizing a high-level DSL. This DSL

allows to build a variety of MRI sequences by combining

different sequence components, enabling easy access to the

often complex MRI sequence programming for a larger number

of users with different levels of experience. In addition, the

presented DSL allows automized optimization of MRI sequences

regarding a variety of different image quality goals such as SNR,

contrasts as well as the sensitivity to motion and geometric

distortion by using machine learning approaches. This has the

potential to offer optimal solutions for different clinical scenarios,

potentially reducing exam times by preventing suboptimal MRI

protocol settings. Future work will cover additional DSL layers

of higher flexibility to suit the needs of more experienced

MRI sequence programmers as well as an optimization of

the underlying MRI simulation process. This will eventually

enable the machine learning-based proposal of completely new

types of generated MR sequences, tackling a specific clinical

problem optimally.
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