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2003; Illian et al., 2008). In the 2D space the spatial distribution of 
neurons and neuronal processes have been analyzed using methods 
such as nearest-neighbor analysis, Voronoi tessellation and Ripley’s 
K-function (Duyckaerts et al., 1994; Duyckaerts and Godefroy, 
2000; Prodanov et al., 2007).

Diggle (2003) classifi es spatial point patterns in three main 
classes, namely aggregation (clustering), regularity (inhibition) and 
complete spatial randomness (CSR). The corresponding theoretical 
framework to simulate these classes uses Poisson cluster, simple 
Poisson inhibition and homogenous Poisson process, respectively. 
In 2D, in theory and in practice, both Voronoi tessellation and 
Ripley’s K-function can be used to analyze spatial organization 
of events (Prodanov et al., 2007). Ripley’s K-function has been, 
since its introduction in 1976 (Ripley, 1987), used frequently in 2D 
applications in a wide variety of fi elds. Attempts have been made 
at applying 3D Voronoi analysis (Eglen et al., 2008) and Ripley’s 
K-function (Baddeley et al., 1993) to 3D image analysis. The major 
obstacles when extending Voronoi tessellation to 3D domains are 
the decomposition of space into polyhedrons and the evaluation of 
their volumes. Another obstacle is the absence of inferential tools 
(such as the bootstrap) for Voronoi decompositions. Extending 
Ripley’s K-function from 2D to 3D is from a theoretical point of 
view straightforward. The real remaining challenge, in the practi-
cal aspect, is introducing a valid edge correction term. None of 
the edge correction terms used in 2D (Ripley, 1987; Stoyan and 
Stoyan, 1994; Diggle, 2003) can directly be extended and applied to 
a point pattern process in 3D. Baddeley et al. (1993) proposed three 
edge correction terms operating in 3D domains. The similarities of 
one of these correction terms to the one proposed in the present 
paper will be discussed. Yet another approach is the usage of a 
probabilistic edge correction term as introduced by Doguwa and 

INTRODUCTION
The study of anatomy and its relation to function requires that we 
can quantify the observed anatomical parameters. Just as we can 
quantify changes in functional properties such as synaptic strength, 
the study of neuronal circuits will benefi t from quantifi cations of 
the topographical organization of neurons. Examples of such ana-
tomical features that have been quantifi ed with regard to the spatial 
distribution includes the bundling of the apical dendrites from layer 
5 pyramidal cells (Skoglund et al., 2004; Vercelli et al., 2004; Krieger 
et al., 2007), the vertical organization of cell bodies in human cortex 
(Buxhoeveden et al., 2000), amacrine cells in the retina (Diggle, 
1986; Costa et al., 2007), peripheral nerve organization (Prodanov 
et al., 2007) and the location of ponto-cerebellar neurons (Bjaalie 
et al., 1991). These studies give examples of how the analysis of the 
spatial distribution is important for testing hypothesis on develop-
ment, pathological reorganization and information processing in 
a cortical column.

With new emerging methods that allow us to genetically target 
cell types with fl uorescent markers (Gong et al., 2003; Groh and 
Krieger, 2010) and subsequently reconstruct their distribution in 
3 dimensions we need mathematical tools to analyze these data. 
Recent efforts in the development of high-resolution 3D digital 
atlases require the development of analytical tools for the analy-
sis of the data. The digital atlases provide remarkable tools for 
visualization, but the fundamental advantage of the digital era in 
anatomy is the use of mathematical tools to analyze large datasets. 
The methods used for analyzing the spatial distribution of neurons 
and their processes must thus be expanded to 3D space.

The distribution of neurons can be described as a spatial point 
pattern, a multi-dimensional stochastic process which can be ana-
lyzed with mathematical methods (Baddeley et al., 1993; Diggle, 
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Upton (1988) and employed by Reed and Howard (1997). Ripley’s 
K-function can also be used in 3D in a local (non-domain exceed-
ing) form in which case there is no need for an edge correction 
term (Beil et al., 2005; da Silva et al., 2008). In the present paper 
we describe one practical relevant procedure for using Ripley’s K-
function in 3D using numerical evaluations that can be run on a 
computational platform.

MATERIALS AND METHODS
MOUSE BRAIN 3D CELL DATA
The described screening analysis tool was used to investigate the 3D 
distribution of two different types of layer 5 pyramidal neurons. These 
cell types and the acquisition of the data has been previously described 
in Groh et al. (2010). Briefl y, the distribution of layer 5 (L5) etv-
expressing pyramidal neurons (etv-pyramids) and L5 glt- expressing 
pyramidal neurons (glt-pyramids) was determined by manual cell-
counting of all EGFP labeled cells in a given area of layer 5 in mouse 
somatosensory barrel cortex in 50 to 100-µm thick slices.

STATIONARITY
An essential assumption needed in order to obtain reliable results 
when samples are processed through Ripley’s K-function with con-
stant intensity, is the assumption of stationarity. Spatial intensity 
is generally defi ned by:
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where N(V) denotes the number of events in a region V. λ(x) in 
Eq. 1Section “Stationarity” is called the intensity function and called 
constant intensity or simply intensity as represented in Eq. 2. When 
stationarity exists the distribution of the overall pattern is invariant 
under translation and regarded from any fi xed point follows the 
same probability law. Hence the constant value regardless of x.

The assumption of stationarity, as seen above, implies a con-
stant intensity. Although having an intensity function liberates us 
from adjusting the raw samples, it would indeed imply diffi cul-
ties in practice due to its direct involvement in the estimation of 
K- function as we shall see later. Intensity functions have, how-
ever, been used and discussed as in Stoyan and Stoyan (2000) and 
Tscheschel and Chiu (2008).

ISOTROPY
The assumption of isotropy implies invariance under rotation. 
Loosely speaking, under isotropy the spatial point pattern of inter-
est appears the same in all directions.

RIPLEY’S K-FUNCTION
Ripley’s K-function is a quantitative tool in assessing the structure 
of the underlying point pattern in a sample. It has a non-parametric 
nature and does not rely on prior assumptions on the distribu-
tion family of samples (we still have to assume stationarity and 
isotropy due to our desire to employ constant intensity). Ripley’s 
K-function, regardless of the domain where it is applied, can simply 
be stated as

K t( )
[ ]= E Number of cells within a distance t of an arbitrary cell

The tootal cell intensity

We estimate a constant total cell intensity using λ� = n V/  where 
n is the observed number of cells in region V, which is in fact the 
unbiased maximum likelihood estimator if the underlying proc-
ess fulfi lls the assumptions of complete spatial randomness (CSR) 
(Møller, 2003). Intuitively the K-function in 3D is estimated by:
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where |V| is the volume of the sample domain of interest, V
t
 is a 

spherical neighborhood of radius t, n is the number of events in 
the sample, e

i
(t) is the edge correction term for event i (see Edge 

Correction in 3D), I[·] is the indicator function and D(i,j) repre-
sents the Euclidean distance from cell i to cell j.

The expected value of K t�( ) in 3D is:
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Throughout this paper we choose to deliver our graphic repre-
sentations of the estimated K-functions in form of K t E K t� �( ) [ ( )]−  
due to the stronger distinguishing factor of this representation 
when there are deviations from CSR E K t[ ( )] .�( )

To acquire the variance of estimated K-functions, we use the 
bootstrap procedure (see Estimating the Variance of the K-function 
Using Bootstrap) rather than establishing a theoretical framework 
for this. There are, nevertheless, numerous ways of representing the 
variance of K t�( ) theoretically in 2D (Diggle, 2003), none of which 
is naturally extendable to 3D.

HYPOTHESIS TESTS OF CSR

Our interest is not only to observe possible deviations from CSR 
but to quantify the deviations from CSR in a statistically consistent 
manner. Since the geometry of samples in general differ to some 
point, we choose to design individual two-sided null hypothesis 
corresponding to the geometry of the sample in question. Loosely 
formulated, the hypothesis is:

H K CSR0 : ∼  (5)

After conducting s simulations of CSR-distributed point patterns 
identical in geometry to the samples of interest, the corresponding 
obtained estimates of the K-functions are processed to return a 
probability density function for each t. That is t probability density 
functions for each point pattern obtained from s simulations.



Frontiers in Neuroinformatics www.frontiersin.org May 2010 | Volume 4 | Article 9 | 3

Jafari-Mamaghani et al. Analyzing cell distribution in 3D

Acquiring a p-value for the two-sided test, would then be a  simple 
matter of locating K t�( ) on the corresponding probability density 
function and calculating the area under the curve (see Figure 1).

ESTIMATING THE VARIANCE OF THE K-FUNCTION USING BOOTSTRAP
To estimate the variance of the K-functions we adapt the method 
described by Diggle (2003) to estimate the K-function using rep-
licated data by the bootstrap (Efron and Tibshirani, 1993). Here 
is how we proceed:

• We introduce the weighted average K-function for each group 
of point patterns:
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• We create the residual K-function:

R t n K t K t i ri i i( ) ( ) ( ) : ,...,= −( ) =� � 1

where r is the number of point patterns in each group.
• The bootstrap sample of K-functions from replicated data is 

then:
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where the R ti
∗( ) are chosen randomly with replacement from the 

set of all R
i
(t): i = 1,…,r.

• Finally our estimated K-function from replicated data is:
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This is repeated, say, 1000 times in our applications and results 
in an equal number of K�

∗
-functions for each type/group.

The variance of K t�∗
( ) for different values of t is used as an 

estimate of V ar K t�( )( ) .

The lower and upper boundaries of the 95% confi dence 
 intervals are then constituted by the 25th smallest and 25th largest 
K ∗-functions respectively.

BETWEEN-GROUP COMPARISONS
In a test for between-group comparisons, the null hypothesis states 
that the samples of interest follow the same underlying distribu-
tion. The test focuses on signifi cant deviations of the estimated 
K- functions from a weighted average over the entire group/type 
(Eq. 7) under repeated sampling. This test is argued to be valid even 
when the underlying intensities of the estimated K-functions vary 
within or between groups (Diggle, 2003). To start, we let n

ij
 denote 

the number of events in sample j in group i, K tij
� ( ) the corresponding 

estimated K-functions and K ti
� ( ) the group estimator according to 

Eq. 6. We defi ne K t�
0( ), our weighted average, as:
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The null hypothesis is thus:

H K t K t i ri0 1: ( ) ( ), ,...,= =  (8)

where K(t) is estimated by Eq. 7 and K
i
(t) by K ti

� ( ). The statistic 
suggested by Diggle for this hypothesis is:
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where BTSS is the abbreviation for ‘between-treatment sum of 
squares’ and w(t) is a weight function (we use w(t) = t−2 in our 
applications). This particular choice of weight function is believed 
to counter the increasing variance of the K-function for increasing 
values of t in an effective way.

To proceed, we follow a procedure somewhat similar to the one 
given in Section “Estimating the Variance of the K-function Using 
Bootstrap”. Having the notations given earlier intact, we defi ne the 
residual K-function for sample j in group i as:

R t n K t K t j p i rij ij ij i( ) ( ) ( ) : ,..., ,..., .= −( ) = =� � 1 1and

 

(10)

We then introduce a set of resampled K-functions under H
0
 as
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where R tij
∗( ) is obtainted by random sampling with replacement 

from the set of R
ij
(t):j = 1,…,p and i = 1,…,r. We then establish 

BTSS
k
:k = 1,…,s from the K tij

∗( )  according to Eq. 9 and compare 
our observed value with this set (using a probablity density func-
tion from the resampling). We choose to apply this resampling 
procedure s = 1000 times where every resampling procedure leads 
to ∑ =i

r
ip1  estimations of bootstrapped K-functions.

RESULTS
DATA MANAGEMENT
Our interest in this study is to detect deviations from CSR, a model-based 
study, and to measure the difference between groupwise deviations 
using inferential statistics, a design-based study using bootstrap.

FIGURE 1 | Probability density function for 500 simulated K-functions for 

an arbitrary t and an arbitrary observed value from one of the 

simulations using the edge correction method in Eq. 11.
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The brain slice samples are approximately 50-µm thick. Since 
the analyzed neurons have a cell diameter of 15–20 µm the process 
of edge correction (see Edge Correction in 3D) is sensitive to false 
geometrical assumptions. One other challenge here is the non-
stationary nature of our samples.

Due to the geometry of the samples the assumption of station-
arity is vital for the reliability of our results. Assuming a common 
underlying process in each group (etv-pyramids and glt-pyramids; 
Groh et al., 2010) to justify partitioning, the following procedure 
is meant to enhance the assumption of stationarity (see Figure 2 
for a graphic representation of this procedure):

• The samples go through the station function (see station), 
carrying out 2D rotation transformation, to leave as little 
‘empty space’ as possible inside the sample domain.

• The samples are then sent to the divide function (see divide) 
to be divided in smaller samples (Table 1). The aim here is to 
obtain even and quadratic domains with respect to the two 
largest sides (the smallest being that of thickness).

Due to time effi ciency and given that the rotation transforma-
tion is performed in 2D, extensive simulations of the K-function 
in 2D confi rmed the satisfactory output of this procedure.

EDGE CORRECTION IN 3D

Edge correction in 3D is vastly different and comes with more 
limitations than in 2D. The idea is, nevertheless, the same as in 2D 
where only those parts of a sphere’s volume outside the sample 
domain are measured when evaluating Ripley’s K-function accord-
ing to Eq. 4 in Section “Ripley’s K-function”.

Baddeley et al. (1993) proposed three edge correction terms of 
which the ‘isotropic’ term bears some similarities with the edge cor-
rection term we propose in this paper. The ‘isotropic’ edge correction 
term proposed by Baddeley et al. (1993) is e

i
(t) = w(i,j)s(|i − j|),i ≠ j 

where w(i,j) is an edge correction equal to the proportion of the sur-
face area of the sphere with center at i and radius |i − j| within the 
sample domain and s(·) is a global geometry correction. The deriva-
tion of these terms is demonstrated comprehensively in Baddeley 
et al. (1993). One distinguishing difference between the ‘isotropic’ 
edge correction term and the edge correction term outlined in the 
present paper is the absence of a term treating the surface area of the 
spherical neighborhoods. Our edge correction operates solely on the 
volumes of those parts of the spheres outside the sample domain. 
This and other distinguishing factors between our and the ‘isotropic’ 
edge correction term are discussed in the Section “Discussion” of 
this paper.

Table 1 | Data Management For the K-function Estimations.

 Number of  Number of  x × y × z µm

 samples events in average

The properties before running the samples through divide.

etv 5 226 1521 × 280 × 61

glt 6 267 1708 × 329 × 78

The properties after running the samples through divide.

etv 32 33 216 × 163 × 55

glt 37 43 261 × 178 × 70

We establish the following edge correction term for event i with 
coordinates (x

i
,y

i
,z

i
):

e t
c t w t s t
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i i i( )
( ) ( ) ( )

/
.= − − +

1
4 33π  

(11)

where c
i
(t) is the outside-of-sample volume of a sphere with radius 

t intercepted by one plane (cap), w
i
(t) is the outside-of-sample 

volume of a wedge caused by the interception of two planes and 
s

i
(t) is the outside-of-sample volume of a semi-wedge caused by the 

interception of three planes. These volumes are calculated using 
analytical formulas and integrals where the latter are computed 
numerically by the quad function in MATLAB.

Volume of a cap, using the notations in Figure 3, is evaluated 
according to:

V
h r h

cap = +( )( )
.

π 3

6

2 2

FIGURE 2 | (A) Scatterplot of a raw glt sample. (B) Same sample after 
executing the station function. (C) After executing the divide function.
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As for a wedge, using the notations in Figure 3:

V t u v b u v
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Semi-wedges occur when the spherical neighborhood is centered 
around an event in the corner of the domain. Taking these semi-
wedges into our calculations would liberate us from eliminating 
the corner-events and naturally increase the number of events to 
be observed and thus enhance the edge correction term in accuracy. 
The cost-benefi t analysis here is, however, subjective and depends 
primarily on the geometry of samples and the contribution of corner 
events to the overall accuracy, and the performance of the computing 
device. The volume of a semi-wedge can be expressed by:

V t u v b u v
t a b

g

a

t b

semi-wedge d d= − + −( )+

− − +( )
−

+∫∫ 2 2 2
2 2 2

2 2

( )
( )

where, keeping the notations of Figure 3 intact, g is the Euclidean 
distance from the center of the sphere to a plane, parallel to the page, 
cutting the sphere. The edge correction term in Eq. 11 is outlined in 
details in the Section “The Edge Correction Term” in Appendix.

Thus, the edge correction term e
i
(t) in Eq. 11 consists of 6 possible 

analytical terms and 20 possible integral terms of which 12 are wedge 
volumes and 8 are semi-wedge volumes. The computational effi -
ciency of this method depends, to a large extent, on a few intuitively 
obvious factors such as the upper limit of t, the number of events in 
the sample and the performance of the computing device.

Simulations
Figures 4A,B represent the obtained K t t�( ) /− 4 33π  plots from 
simulations of under CSR without any edge correction term. 
Figures 4C,D represent the simulations with the edge correction 
term in Eq. 11. The geometries of the sample domains are identical 
to the samples used in the 3D application after executing the steps 
in Section “Data Management”. Clearly, the absence of an edge 
 correction term results in a display of inhibition by the K- function 

as it regards the ‘empty space’ outside the sample domain as a part of 
the domain. The simulation results in Figure 4 confi rm the satisfac-
tory performance of the established edge correction term where the 
K-function estimations subtracted by the expected value (4πt3/3) 
are expected to be centered around 0.

Note that the K-function has been evaluated for t = 0,…,60 µm. 
Ripley (1987), Diggle (2003) and Costa et al. (2007) recommend 
a maximum threshold for t equal to the 0.25 of the shortest side 
length. This is partially the reason why we use simulations to have 
an understanding of how t-values larger than the one recommended 
infl uence the outcome of the K-function. How exceeding the rec-
ommended threshold for t infl uences our results and interpretation 
is outlined in the Section “Discussion”.

ANALYSIS OF THE MOUSE BRAIN DATA
K-function estimations
Having performed the steps in Section “Data Management” and 
established a consistent edge correction term, the samples fulfi ll the 
prerequisites to be analyzed by Ripley’s K-function. Figure 5 repre-
sents the estimated K-function values subtracted by its expected value 
( ( ) / )K t t� − 4 33π  for etv- and glt-pyramids. Values larger than zero given 
by K t t�( ) /− 4 33π  suggest aggregated underlying point patterns.

Hypothesis tests of CSR

In order to investigate the signifi cance of the observed deviations 
from CSR, the p-values from the hypothesis tests of CSR, the two-
sided null hypothesis in Eq. 5, obtainted from 500 CSR point pat-
tern simulations, are given in the table below. Figure 6 present an 
arguably more useful representation of these p-values.

 t etv glt

 20 µm 0.7837 0.7607

 30 µm 0.1744 0.2839

 40 µm 0.0754 0.0323

 50 µm 0.0230 0.0204

 60 µm 0.0060 0.0046

Given that the results obtained from the simulations allow more 
variance for larger values of t, the etv- and glt-pyramids display 
signifi cant tendencies towards clustering for values larger than 
t = 47 µm and t = 38 µm, respectively. Loosely interpreted in a 
geometrical sense, this expresses a more intense clustering in glt-
pyramid samples, or alternatively, a higher frequency of empty 
spaces in the spatial point pattern underlying the glt-pyramids.

To investigate the fact that the glt-pyramids incline towards 
signifi cant aggregation at lower values of t than the etv-pyramids, 
we will employ the BTSS statistic presented in Between-group 
Comparisons in Section “Between-group Comparisons”.

Estimating the variance of the K-functions
We estimate the variance of the underlying K-functions applying the 
theoretical framework presented in Section “Estimating the Variance 
of the K-function Using Bootstrap”. Figure 7 represents the vari-
ance of the estimated K-functions based on bootstrap resampling. 
The fi gure illustrates rather similiar variance functions for etv- and 
glt pyramids which is reasonable (but not necessary)  justifi cation to 

FIGURE 3 | A demonstration of how caps and wedges may occur where a 

and b are the Euclidean distances from the event to the sample domain 

boundaries, t is the radius of the sphere as in K(t), and h and r are the 

height and radius of the outside-of-domain cap respectively.
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compare these two groups using the BTSS statistic outlined in Section 
“Between-group Comparisons”. The estimated variance is also used 
to establish confi dence intervals as seen in Figure 8.

FIGURE 6 | etv (blue) and glt (red) p-values for different values of t. 

The drop for values larger than 10 µm translates well to cell diameters of 
15–20 µm.

FIGURE 4 | 500 estimations of the K-function based on simulations under CSR for samples identical in geometry to etv-pyramids (A,C) and glt-pyramids 

(B,D). The simulations demonstrate the expected outcome when estimating the K-function without (A,B) and with (C,D) the edge correction term under CSR 
(having K t t�( ) /− 4 33π  on the y-axis).

FIGURE 5 | Groupwise average (weighted) K(t) - 4 t /33� π  for samples in 

etv-pyramids and glt-pyramids.
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Between-group comparisons
The p-values represented below are obtained using the test statistic 
BTSS and the weight function w(t) = t−2 as represented in Eq. 8 in 
Section “Between-group Comparisons”. The probability density 
function of the BTSS test is represented in Figure 9. A look at the 
long-tailed density function reveals the large variance of this test 
statistic. This large variance corresponds to the large variability 
of the samples in the etv- and glt-pyramids which produce a test 
sensitive only to relatively large between-group deviations; hence 
the large p-values.

 t p-value

 [0..60] 0.7288

 [20..60] 0.7281

 [30..60] 0.7721

 [40..60] 0.7521

Conclusion
The analysis in general reveals the aggregated point pattern dis-
tribution of the etv- and glt-pyramid samples. This aggregation is 
signifi cant for values greater than 47 µm among the etv-pyramids 
and values over 38 µm among the glt-pyramids. The seemingly 
stronger inclination of glt-pyramids to demonstrate aggregated 
behavior is, however, insignifi cant.

DISCUSSION
We present a framework in which Ripley’s K-function and a cor-
responding edge correction term can be used to analyze the spatial 
distribution of events (such as neurons) in 3D space. We exemplify the 
use of this method by analyzing the distribution of genetically labeled 
layer 5 pyramidal cells in mouse somatosensory barrel cortex.

The assumption of stationarity after adjusting and dividing the 
initial samples into smaller ones turned out to be very solid. This is, 
as emphasized earlier, a very important corner stone of our theoretical 
design when we wish to use a constant intensity in the estimation of 
the K-function. The assumption of isotropy, however, was believed 
to be fulfi lled in the default setting of the samples. Employing the K-
function in a global form implies establishing a solid edge correction 
term to avoid underestimating the number of events in the underlying 
point patterns. The edge correction term in Eq. 11 is constructed to 
neutralize the false assumption of point pattern vacancy when the 
observed space is outside the sample domain. The correction is done 
for every single event at a range of distance values, t, and is therefore 
called a local edge correction term (not to be confused with the local 
(non-domain exceeding) form of Ripley’s K-function). By subtract-
ing the volumes outside the domain, the edge correction term deter-
mines what proportions of the spherical neighborhoods are inside the 
domain. A large part of these volumes are evaluated using numerical 
methods in MATLAB (the quad function).

FIGURE 7 | Estimated variance of K(t)�  for etv and glt.

FIGURE 8 | Groupwise average (weighted) K t t�( ) 4 /33− π  for etv- (left) and glt-pyramids (right) and confi dence intervals based on the bootstrap procedure 

(dashed).
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The edge correction method outlined in the present paper bears 
some similarities in its theoretical design to the ‘isotropic’ edge correc-
tion term described by Baddeley et al. (1993) [and subsequently applied 
in Eglen et al. (2008)]. The differences, however, are fi rstly that our 
approach produces the volume integrals directly from the theoretical 
framework without any transformations or other intermediate calcula-
tions. Secondly, in contrast to the ‘isotropic’ edge correction method 
we do not need to include a term for the proportion of the surface area 
in the edge correction term. Our edge correction term is consistent 
and leads to an unbiased estimate of the K-function according to the 
simulations. An improvement of the correction term could be made 
along the lines established by Ward and Ferrandino (1999), where the 
edge correction term is evaluated globally for each value of t.

The recommendation on what maximum value of t is reasonable 
to employ in the estimation of the K-function (Ripley, 1987; Diggle, 
2003), is an additional reason why we use simulations to have an 
understanding of how t-values larger than the one recommended 
infl uence the outcome of the K-function. For this purpose, the simula-
tions were done on two sets (500 samples in each) of samples consti-
tuted of Poisson-distributed spatial point patterns. These simulated 
samples follow the same geometry and point pattern intensity of the 
etv- and glt-samples on which we conducted the analyses. What is 
observed is that as the value of t increases, the K-function tends to 
indicate inhibition (Figures 4A,B). Bearing this tendency to inhibition 
for large t-values in mind, and given that the K-functions obtained 
from the analysis on the etv- and glt-samples indicate aggregation, we 
draw the conclusion that using the K-function for values larger than 
15 µm (which in for these data samples is 0.25 of the shortest sample 
side), although arguably inconsistent, does not lead to an errone-
ous indication of aggregation. If anything, the aggregation is rather 
underestimated. Additionally, given what is biologically relevant and 
interesting (the cell diameter itself is 15–20 µm), t-values smaller than 
15 µm do not deliver any result of interest in the present case.

The analysis of the 3D-distribution of specifi cally labeled neuron 
populations will be an important contribution to the characterization 
of neuronal types and for studying structure-function relationships. 
The mouse brain samples investigated in the present study were from 

the somatosensory barrel cortex and contained cells expressing the 
fl uorescent protein EGFP under the control of a cell-type specifi c 
promoter (Gong et al., 2003). The two different cell types labeled 
were glt-expressing layer 5 pyramidal neurons projecting to thalamus 
and pons (corticothalamic/pontine cells), and etv-expressing layer 5 
pyramidal neurons projecting to striatum (corticostriatal cells; Groh 
et al., 2010). Using Ripley’s K-function adapted to 3D we show that 
the spatial distribution of the two cell types was largely similar with 
a signifi cant clustering for t values around 40 µm. Although a ten-
dency was observed for more clustering of corticothalamic/pontine 
(glt-pyramids) compared to corticostriatal cells (etv-pyramids). The 
larger tendency for clustering of the glt-pyramids in lower layer 5 
(the so called, layer 5B) is probably due to a partial overlap between 
the glt-expressing population and the genetically labeled layer 5B 
population described in Krieger et al. (2007), where the pyramidal 
neurons were arranged in cell groups having bundling dendrites. 
Interestingly the signifi cant clustering appears at t-values in the range 
of the expected spacing between minicolumns (White and Peters, 
1993; Krieger et al., 2007). The emphasis in the present project was 
to develop a practical tool to study the spatial distribution in 3D, 
thus a full investigation of the spatial distribution of neurons would 
require a larger data sample covering the whole extent of the barrel 
column to account for variations in the cell density within a barrel 
column (White and Peters, 1993).

In a broader perspective, the emergence of high-resolution 3D 
digital atlases and tools for 3D morphological reconstructions elu-
cidating various underlying biological structures necessitates the 
implementation of consistent analytical methodologies in order 
to utilize the output of these reconstructions in the most optimal 
way (Allen Brain Atlas1; GENSAT2; Kötter, 2001; Briggman and 
Denk, 2006; Hjornevik et al., 2007; Martone et al., 2008; Mailly 
et al., 2009; Oberlaender et al., 2009). Ripley’s K-function and its 
corresponding inferential designs using bootstrap re-sampling is 
one such methodology for analyzing the spatial distribution of 
neurons and neuronal processes having the advantage that it is 
theoretically fairly simple and practically reasonably intuitive.

APPENDIX
DATA MANAGEMENT
Station
The station function is based on the two following 2D rotation 
matrices:

R Rcw ccw

cos sin

sin cos
and

cos sin

sin cos
( ) ( )θ

θ θ
θ θ

θ
θ θ
θ θ

=
−

⎛
⎝⎜

⎞
⎠⎟

=
−⎛⎛

⎝⎜
⎞
⎠⎟

The 2D rotation is even applied to 3D data due to the slight thick-
ness of samples in this paper. The function recognizes the thickness 
dimension (we choose to call this dimension z) automatically as the 
dimension with the smallest span of coordinates, and performs a 
2D rotation if the angle constituted by the diagonal on the xy-plane 
and the longest edge exceeds theta degrees. The output is a new set 
of coordinates constituting a domain which fulfi lls the assumption 
of stationarity and a 2D scatter-plot that shows the data before and 
after the 2D rotation on the xy-plane.

FIGURE 9 | Probability density function of BTSS for s = 1000 resamples 

and the observed BTSS (fi lled bar) when w(t) = t−2 and t = 20,…,60 µm.

1www.brain-map.org
2www.gensat.org
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Divide
This function divides the initial 2D set of coordinates into subsets 
where the width and length of the domains embodying the new 
subsets is as equal as possible. The goal, in other words, is to create 
quadratically shaped subsets on the 2D plane.

THE EDGE CORRECTION TERM
We introduce the following notations for an arbitrary event i with 
coordinates (x

i
,y

i
,z

i
):

dx
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where x
min

, for instance, represents the lower sample domain bound-
ary along the x-axis and x

max
 its corresponding upper boundary.

We establish the following edge correction term for event i with 
coordinates (x

i
,y

i
,z

i
):
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(t) is the outside-of-sample volume of a sphere with radius t 

intercepted by one plane (that is volume of the cap outside the sample 
domain), w
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(t) is the outside-of-sample volume of a wedge caused 
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volume of a semi-wedge caused by the interception of three planes.
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Implementing the fi rst semi-wedge integral in MATLAB for 
a given t, given that (t>dxmin && t>dymin && t>dzmin), 
corresponds to:

i = sqrt(tˆ2−dyminˆ2−dxminˆ2)*(tˆ2−dyminˆ2−dxminˆ2>0);

F = @(x,y)(sqrt(t.ˆ2−(x.ˆ2 + y.ˆ2))−dymin).
*(t.ˆ2−x.ˆ2−y.ˆ2> = dyminˆ2);

Vol_sw = dblquad(F,dzmin,i,dxmin,sqrt
(tˆ2−dyminˆ2),tol);

where tol is a specifi ed tolerance degree in the numerical 
 evaluation by the function dblquad.
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