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presented to a network where the reservoir consisted of laterally 
inhibited clusters. They observed that each cluster attenuated to a 
subcomponent of the input signal, improving performance. The 
Scale-Free Hierarchical ESNs (SHESN) of Deng and Zhang lack 
explicit decoupling and instead employ a hierarchically clustered 
reservoir architecture. These SHESNs perform better in predicting 
the Mackey-Glass sequence, which is often used as a benchmark 
for non-linear systems.

Deng and Zhang further noted that SHESNs appeared to be 
more robust to the choice of spectral radius as they remained stable 
for a larger range of spectral radius values. They observed stable 
behavior for r = 6, much higher than in similar ESNs that only 
displayed stable responses for r < 1. While this does not imply that 
the echo state property has been violated by increasing r > 1, it does, 
however, indicate that clustered ESNs may extend the range of per-
missible values for stable and transient states. In their report, only 
one set of reservoir parameters was examined for SHESNs and so 
how r varied with reservoir architecture was not quantified. Thus, 
it is unclear how the transition from a homogeneous reservoir to a 
hierarchically clustered network affects the stability of the system; 
in particular, is stability affected more by the presence of hierarchy 
or of clusters, or by a combination of both? Furthermore, is the 
transition from stable to unstable behavior independent of the 
degree of clustering and does the activity transition through an 
intermediate regime, such as those observed elsewhere (Ozturk 
and Principe, 2005)?

To address these issues, we use hierarchical ESNs (HESNs), a 
modified version of SHESNs, as a case study. We begin with a con-
ventional ESN and introduce hierarchical clusters, charting how sta-
bility depends on both reservoir architecture and the spectral radius 

IntroductIon
Echo State Networks (ESN) are a type of reservoir networks that 
have been demonstrated to be successful at predicating non-linear 
signals, especially those with strong spatiotemporal components 
(Skowronski and Harris, 2007; Tong et al., 2007; Verstraeten et al., 
2007). Proposed by Jaeger (2001), they exploit a reservoir of analog 
units with random but fixed connections where training affects 
only weights that project from the reservoir to the output popula-
tion units. This makes reservoir networks computationally cheap 
to train in comparison to methods such as backpropagation. The 
stability of ESNs is assured by fulfilling the echo state property, which 
ensures that the initial conditions are washed out at a rate independ-
ent of the input and prevents the accumulation of activity (Jaeger, 
2001). Criteria for fulfilling the echo state property are outlined 
for a specific subclass of ESNs in Buehner and Young (2006) and 
for leaky integrator units (Jaeger et al., 2007).

Although their strength derives from the homogeneity of the 
reservoir and its ability to generate rich non-linear dynamics, 
the connectivity of ESN reservoirs is random and therefore sub-
optimal. Previous reports investigated the idea of optimizing the 
network by modifying the reservoir connections, either by pruning 
connections (Dutoit et al., 2009) or training connections within 
the reservoir (Sussillo and Abbott, 2009). Other work has focused 
instead on modifying network architecture by either including a 
hierarchy of ESNs to extract features (Jaeger, 2007) or introducing 
reservoir substructures (Deng and Zhang, 2007; Xue et al., 2007). 
Both of the latter papers reported an improvement in perform-
ance against conventional ESNs for specific tasks with interesting 
additional properties: For the decoupled ESNs (DESN) presented 
by Xue et al., an input signal composed of sinusoidal terms was 
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to determine the relative influence of each. To identify the relative 
contribution of clusters and hierarchy, we compare reservoirs that 
are clustered but lack hierarchy against those that have both.

MaterIals and Methods
network Model
We first consider a generic ESN (Jaeger, 2001), which consists of an 
input population u, reservoir population x and output population 
y. These populations are coupled by connection weight matrices 
Win for input to reservoir units, sparse connection matrix Wres for 
connections between reservoir units and Wout for reservoir to out-
put units. Note that all matrices are directed, so generally W

ij
 ≠ W

ji
. 

Additionally, ESNs can include feedback connections projecting 
from y back to x as well as connections directly from the input to 
output populations. Here, we chose to exclude both as we wanted 
to consider only the dynamics of the reservoir and their impact on 
the output population.

The governing equations, modified from the original description 
in Jaeger (2001), are given by

x n f u n x n n na( ) ( ) ( ) ( )+ = + + +( )1 1W Win res

 
(1)

y n g x n( ) ( )= ( )Wout

 
(2)

where f and g represent activation functions which are typically 
monotonic and bounded, such as sigmoidals. We chose both f and 
g as tanh and scaled and shifted the incoming signal from the input 
population in order to place it into the optimal operating range of 
the network. Here, the input signal always consisted of a sequence 
of impulses, each of unit amplitude. Noise n

a
 is added to the res-

ervoir units in order to stabilize the network during the training 
process. Unless otherwise stated, noise was uniformly distributed 
for | | .na ≤ −10 6

The input and output populations were chosen to consist 
of 5 units each. The reservoir populations were set to be of size 
50–1000 units (see following subsection for more details). These 
sizes were chosen for computational tractability. Connections in 
both Win and Wres were randomly and independently assigned with 
connection probabilities conn

in
 and conn

res
, respectively. The con-

nectivities were set as Win being fully connected with weights drawn 
with uniform probability from [−1, 1]. Since this study is concerned 
with reservoirs for feedforward ESNs, training was only performed 
for tasks where the output units were relevant, such as the calcu-
lation of memory capacity. As for all ESNs, Win and Wres remain 
fixed for the duration of the network simulation so training, when 
performed, did not affect the structure of the reservoir.

IntroductIon of hIerarchy
Different models of hierarchical networks exist which focus on dif-
ferent aspects of their structure: a clustered or modular architecture 
(Ravasz et al., 2002), existence of hubs (Sporns et al., 2007; Mueller-
Linow et al., 2008), repetition of motifs across different scales (Ravasz 
and Barabasi, 2003; Sporns, 2006) or a combination of these features. 
For this study, we focus on a network model based on the SHESNs 
(Deng and Zhang, 2007), where sigmoidal units were replaced by 
ESN reservoirs. The resulting reservoir architecture differs from flat 
modular networks due to the presence of backbone units, which 

are units within a cluster that connect to backbone units in other 
clusters, in contrast to intracluster (local) units that only make con-
nections within their own cluster (Figure 1A). Although no univer-
sally accepted definition of hierarchy exists, the majority of models 

Figure 1 | (A) Example of a HESN network with four clusters (light gray). 
Each cluster contains four local units (white circles) that only project within the 
cluster and one backbone unit (dark gray circles) that provide connections 
between clusters. Dashed lines indicate trainable weights. Each unit has a 
sigmoidal transfer function, bounded on [−1, 1]. (B) Non-hierarchical HESN 
with similar topology and two backbone units per cluster. By increasing the 
number of backbone units per cluster, the HESN becomes non-hierarchical 
and increasingly more homogeneous. (C) Average out-degree distribution 
Pout(k) for HESN with arbitrary configuration (200 units, 20 clusters, 
conninter = connintra = 0.7) against different values for backbone unit per cluster 
(bbpc), calculated over 50 independent realizations of reservoir. The 
connectivity does not follow a power law distribution and so is not scale-free, 
unlike the original SHESN model.
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a fixed total number of intercluster connections while changing 
their distribution. This was possible by specifying a larger number 
of backbone units per cluster and then decreasing the intracluster 
connectivity to compensate.

In conventional ESNs, the largest eigenvalue of Wres (spectral 
radius r) is used as an indicator of stability of network dynamics. 
Traditionally, r less than unity is sufficient for zero-input networks 
to ensure stable dynamics; Buehner and Young (2006), however, 
outlines an additional criterion necessary to ensure stability, as sta-
bility is also observable for ESNs when r > 1 (Ozturk and Principe, 
2005; Verstraeten et al., 2007). We examined the effect of increas-
ing r on stability and during our simulations the spectral radius 
was varied from 0.05 to 2 in increments of 0.05. For each cluster 
configuration, we determined r

max
, which we defined as the largest 

permissible r for which the network remained stable under the 
criteria outlined in the following subsection.

IdentIfIcatIon of network behavIor
Different possibilities exist for characterizing a specific reservoir 
configuration (see Lukosevicius and Jaeger, 2007; Schrauwen et al., 
2007 for discussion). Of specific interest to us was how sensitive the 
system was to noise and how reproducible its dynamics were. Here, 
we considered an approximation of the maximal Lyapunov expo-
nent to determine stability, and the distribution of reservoir activity 
values upon multiple stimulation with the same sparse stimulus 
to assess reproducibility. We also calculated the network memory 
capacity to provide a measure for the functional performance.

A measure of stability is the Lyapunov exponent λ, which relates 
the divergence ∆ between two trajectories after introducing a small 
perturbation δ to the elapsed time via ∆ = eλt. For stable systems, 
the deviation between the two trajectories should converge to 0, 
corresponding to a negative Lyapunov exponent. The existence of a 
positive Lyapunov exponent signifies that the trajectories exponen-
tially diverge from each other with time, indicating that the system is 
sensitive to initial conditions and is thus likely to be chaotic. While 
the Lyapunov exponent cannot be easily calculated analytically for 
non-autonomous systems, different approaches for determining 
approximations of Lyapunov exponents for reservoir networks 
have been outlined, either based on experimental observation of a 
trajectory’s divergence following a perturbation (Skowronski and 
Harris, 2007) or theoretically by considering the deformation of an 
infinitesimally small hypersphere as the center follows a trajectory 
(Verstraeten et al., 2007). Here, we implemented an approximate 
numerical method, using the former approach (Wolf et al., 1985; 
Skowronski and Harris, 2007) and estimated the pseudo-Lyapunov 
exponent by introducing a perturbation δ to the reservoir state at 
time tδ. Two identical networks, f and p, were created and driven 
with identical input and n

a
 = 0. At tδ, only the second network p 

was perturbed, after which the simulation continued to run until 
t

end
. The resulting divergences was then measured as the Euclidean 

distance d x t x ti i
f

i
p= ∑ −( ( ) ( )) .end end

2  The Lyapunov exponent λ̂ 

was calculated as ˆ /( )log .λ δ= −1 2t t dend  The networks were always 
driven by input consisting of a train of impulses, whose average 
rate was set to be equal to the rate used for the reservoir activity 
distribution task below. The perturbation δ was applied to the entire 
reservoir state, uniformly distributed with |δ| = 10−6 with t

end
 = 100 

timesteps. As this technique does not lend itself to estimating the 

 examined in the literature focus on structures with a minimum of 
two levels of hierarchy. However, our aim was to establish the impact 
of hierarchy within a reservoir and contrast this effect against a struc-
tured but non-hierarchical architecture. Thus our modified SHESNs 
are minimally hierarchical networks, a property that is lost when the 
number of backbone units per cluster exceeds 1.

Four important changes were made in our networks as com-
pared to the generation process outlined originally by Deng and 
Zhang to avoid some of the limitations present in their model 
with respect to the purpose of this case study: (1) Backbone units 
were originally detailed as being fully connected to one another. To 
enable us to decouple the intercluster and intracluster connectivities 
and examine the effect of varying them independently, we allowed 
the network of backbone units to have sparse connectivity; (2) To 
ensure that our network was topology independent, we did not 
assign a spatial location to the reservoir units; (3) To predetermine 
the network connectivities and cluster sizes, we kept the number of 
units per cluster constant within a network, using a seeding method 
outlined in more detail below; (4) To examine the transition from 
highly clustered to homogeneous architectures, we allowed more 
than one backbone unit per cluster which additionally allowed us 
to inspect non-hierarchically clustered networks (Figure 1B). These 
changes introduced three new parameters: intracluster connectivity 
conn

intra
, intercluster connectivity conn

inter
 and number of backbone 

units per cluster bbpc.
The degree-distributions P

out
(k) and P

in
(k) (Albert and Barabási, 

2002) followed a bimodal (Figure 1C) rather than the scale-free 
distribution observed for SHESNs. This can be attributed to 
our restriction of uniform cluster sizes and the fixed values for  
conn

intra
 and conn

inter
. For this reason, we differentiate from SHESNs 

and instead refer to our model as hierarchically clustered ESNs 
(HESN).

A network was generated by first specifying the total reservoir 
size R, the number of clusters n, and the number of backbone 
units per cluster b. Each cluster was then created for size R/n and 
connectivity probability conn

intra
, followed by the generation of the 

intercluster connectivity matrix. This was performed by identi-
fying the first b units within each cluster as backbone units and 
then defining a matrix of size (bR/n) with connection probability 
conn

inter
. The connectivity weights were drawn randomly from a 

uniform probability on [−1, 1]. The connectivity matrix of the 
reservoir Wres was then rescaled to set the largest eigenvalue to be 
equal to the defined spectral radius.

To establish the effect of reservoir size on cluster configuration, 
we defined several configurations of cluster number and size while 
keeping the total number of units within the reservoir constant. 
Reservoir size was limited to 1000 units for computational tractabil-
ity. Note that a conventional ESN is obtained when cluster size is 
equal to either 1 or the total reservoir size. As a default configura-
tion for HESNs, we assumed bbpc = 1 and conn

inter
 = conn

intra
 = 0.7. 

Connection probabilities were always incremented in steps of 0.05. 
bbpc was generally set to be multiples of 5, except if cluster size was 
below 10. In these instances, all possible values for bbpc were tested. 
These additional criteria allowed us to manipulate the reservoir 
structure and independently vary its degree of hierarchy and clus-
tering. Importantly, we were able to test hierarchically clustered res-
ervoirs against non-hierarchically clustered reservoirs by  retaining 



Frontiers in Neuroinformatics www.frontiersin.org July 2010 | Volume 4 | Article 11 | 4

Jarvis et al. Hierarchy in Echo State Networks

sparse input sequence repeated every 50 timesteps, and observed three 
response types across all simulations: (i) the network showed some 
activation, but this quickly died with exponential decay (Figure 2A). 
The corresponding reservoir activity values had both low mean and 
low standard deviation. (ii) The network either never stabilized or was 
unstable after the presentation of the first stimulus (Figure 2C), with 
large mean reservoir activity values with low standard deviation; or 
(iii) transient behavior, which was similar to stable behavior except 

Lyapunov exponent by combining estimates of the same system 
(Wolf et al., 1985), we classified each network configuration by 
 calculating the Lyapunov exponent for 100 independent realiza-
tions and determining the mean.

To relate this somewhat abstract notion of stability to a quantita-
tive description of reservoir dynamics, the distribution of reservoir 
activity values in response to a sparse stimulus was also considered. 
This was determined by first defining a stimulus consisting of fixed 
pattern of input impulses presented multiple times at a constant 
interstimulus interval of either 10, 50, 100, or 1000 timesteps. We 
calculated the total reservoir activity for each timestep and normal-
ized it by the number of reservoir units before computing the mean 
and standard deviation. This was repeated for 100 independent 
realizations of the same network configuration with n

a
 = 0.

 The memory capacity MC for different HESN configurations 
was determined by presenting input signals to the network to be 
reproduced with increasingly longer delays between presentation 
and retrieval. MC is obtained by summing the correlation coeffi-
cient between the output signal and the input signal for each delay 
k, MC = ∑

k=1
MC

k
, where MCk

x t k y t
x t y t= −cov ( ( ), ( ))

var( ( ))var( ( )) ,
2

 as described in Jaeger 
(2002) and Verstraeten et al. (2007). Here, we calculated MC for 
k = 1–20 timesteps for an input signal consisting of train of exactly 
one delta input present at each timestep, distributed equally across 
all five input channels.

results
The aim of the current study was to establish the impact of reservoir 
substructures – particularly hierarchical clustering – on the stability 
of ESNs. We begin by analyzing the effect of hierarchical clustering 
within reservoirs for a fixed spectral radius, considering underly-
ing factors such as the number of backbone units per cluster and 
intercluster connectivity. We then test whether clustering by itself 
is sufficient to alter the upper bound of permissible values for the 
spectral radius. Lastly, we consider the memory capacity for various 
network configurations.

Impact of clusters on stabIlIty
We aim to determine the effect of hierarchical clustering on the lim-
its for spectral radius values for stability and began by systematically 
examining the impact of cluster on dynamics for different cluster 
configurations while the spectral radius remained constant. We con-
sidered a simple HESN with a fixed r = 1.2, conn

inter
 =  conn

intra
 = 0.7 

and assumed only one backbone unit per cluster.
Various network configurations were examined by first fixing 

the total reservoir size and then increasing the number of clusters 
(Table 1). We determined the reservoir activity distribution, using very 

Figure 2 | responses of reservoirs to a repeated stimulus pattern for 
networks with R = 100 and different values of r. (A) For n = 2 clusters, 
stable dynamics occur where responses fade within a highly reproducible and 
fixed time-period, illustrating that the dynamics are input driven only. Shown is 
for both the normalized total activity rate (top) and reservoir activity (bottom). 
(B) With n = 20, transient dynamics were similar to stable but were 
characterized by activity decaying to a non-zero baseline. Baseline activity 
values for identical network configurations displayed high variability across 
trials. (C) Unstable dynamics for n = 50, where the system never returns to 
zero activity after the first input.

Table 1 | Cluster configurations tested for different reservoir sizes.

reservoir size Number of clusters

50 1, 2, 5, 10, 25

100 1, 2, 4, 5, 10, 20, 25, 50

200 1, 2, 4, 5, 8, 10, 20, 25, 40, 50, 100

500 1, 2, 4, 5, 10, 20, 25, 50, 100, 125, 250

750 1, 3, 5, 6, 10, 15, 25, 30, 50, 75, 125, 250

1000 1, 2, 4, 5, 8, 10, 20, 25, 40, 50, 100, 125, 200, 250, 500
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The pseudo-Lyapunov exponent λ̂ was also calculated for the 
same set of network configurations (Figure 3C). Only negative 
values were observed, indicating that all configurations were non-
chaotic for r = 1.2. However, the magnitude of the exponent var-
ied and revealed that configurations of intermediate cluster size 
had the lowest value for λ̂ . This result also demonstrates that the 
responses of networks with a negative maximum pseudo-Lyapunov 
exponent do not necessarily decay to 0, and that ongoing activity 
in feedforward ESNs (Figures 2B,C) does not necessarily imply a 
chaotic regime.

To examine how these trends for stability and chaoticity developed 
as the spectral radius increased, we analyzed different cluster configura-
tions for a HESN with a fixed reservoir size and considered both dis-
tribution of reservoir activity values and the largest  pseudo-Lyapunov 

that the reservoir activity does not return to 0, but rather to some non-
zero baseline activity (Figure 2B). Although the non-zero baseline 
remained more or less constant within a trial, its value varied between 
trials, leading to a standard deviation of normalized reservoir activity 
values that was far higher than of either stable or unstable reservoirs, 
where the standard deviation of reservoir activity was <0.05.

The stability of a network did not depend on absolute reser-
voir size, absolute cluster size or the number of clusters alone, but 
rather on the combination of these factors (Figures 3A,B). Unstable 
responses occurred in large networks with a small number of larger 
clusters, while stable responses were observed for configurations 
with smaller clusters. Transient responses occurred in a broad 
region between stable and unstable responses and for configura-
tions of intermediate cluster size.

Figure 3 | (A–C) Six different reservoir sizes were examined (R = 50, 100, 200, 
500, 750, 1000) with varying number of clusters. All other network parameters 
were kept constant with r = 1.2, connintra = conninter = 0.7, and bbpc = 1. Mean 
and standard deviation of normalized reservoir activity (A,B) were determined 
for 100 realizations of each network configuration, with red dots indicating the 
location of each network configuration in parameter space and white lines 
indicating networks with identical reservoir size. The area between tested 
network configurations was interpolated to visualize the trend. Unstable 
responses are characterized by a high value for the mean reservoir activity and 
occurred for networks with a small number of large clusters. Transient 

responses can be distinguished by large fluctuations of normalized reservoir 
activity, while stable responses have low mean activity. The same network 
configurations were also used to calculate the pseudo-Lyapunov exponent λ̂ (C). 
Negative values were observed for all networks, indicating that networks tested 
were non-chaotic. (D–F) Distributions of normalized reservoir activity values and 
the pseudo-Lyapunov exponent were calculated as the spectral radius r was 
varied between 0.05 and 4 in HESNs for R = 200 with different cluster 
configurations. rmax increased with increasing number of clusters up to n = 40, 
while the region of networks that generate transient responses also increases 
with increasing n.
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exponent r
max

 for three different parameters related to reservoir 
architecture: reservoir size R, the number of backbones per cluster 
bbpc and intercluster connectivity conn

inter
.

To determine how the span of r for stable networks was affected 
by total reservoir size, the simulation was repeated for R = 100, 200, 
and 500 (Figure 4A). As the reservoir size increased, r

max
 strongly 

decreased. The location of the peak value for r
max

, however, remained 
relatively constant when plotted against relative cluster size (n/R) 
and occurred for clusters sizes 2–5% of the total reservoir size.

Increasing the number of backbone units per cluster makes the 
reservoir more homogeneous, which should have a greater impact 
on the spectral radius range for networks with smaller clusters. 
Increasing the number of backbone units per cluster to bbpc = 5 
for R = 200 (Figure 4B) yielded a decrease in r

max
 and caused 

the distribution to become progressively more uniform. The loca-
tion of the peak value for r

max
 appeared to remain unchanged for 

bbpc ≤ 2. To test whether increasing bbpc affects reservoir activ-
ity and the pseudo-Lyapunov exponent, we examined the various 
size networks previously tested using a fixed r = 1.2 and bbpc = 5 
(Figures 5A–C). We observed that many previously stable networks 
now displayed higher values for both mean reservoir activity and 
the pseudo-Lyapunov exponent, confirming that this effect was a 
general property of increasing bbpc.

exponent λ̂ (Figures 3D–F). We set R = 200 and kept all other param-
eters identical to those used in the previous task, but increased r from 
0.05 to 4 in 0.05 increments. Our results clearly demonstrate that both 
the mean reservoir activity value and the pseudo-Lyapunov exponent 
were lower for the same spectral radius value when clusters were present, 
with the lowest values occurring for reservoirs with 20–50 clusters. This 
confirms that the addition of hierarchical clusters extends the permis-
sible range of spectral radius values and is consistent with the trend 
observed in Figure 3C, with cluster configurations of intermediate size 
displaying the largest range of negative Lyapunov exponents.

Increasing the input population from 5 to 50 units for bbpc = 1 
led to more network configurations with unstable responses (not 
shown), corresponding to an extension of the region of instability 
in Figure 3A toward networks with a larger number of clusters. 
We hypothesize that the larger input population provides more 
activation to the reservoir, which saturates network activity. Thus, 
networks with larger clusters are able to resist network activity 
saturation better than networks with smaller clusters.

spectral radIus range
To establish the effect of other network parameters on the range 
of permissible spectral radius values, we determined the maximal 
spectral radius value that resulted in a negative pseudo-Lyapunov 

Figure 4 | (A–C) Range of rmax as a function of relative cluster size for three 
different reservoir sizes (A), different number of backbone units per cluster 
(B) and different intercluster connectivities (C). (A) Increasing the reservoir size 
decreases rmax, while the location of the peak value remains unchanged. 

(B) Increasing bbpc drastically decreases the peak value of rmax, while (C) 
decreasing conninter only slightly increases rmax across different relative cluster 
sizes. Note that the default network configuration for this task is signified by red 
in all plots.

Figure 5 | Mean and standard deviation of normalized reservoir activity values (A,B) and the pseudo-Lyapunov exponent λ̂ (C) when the number of 
backbone units per cluster bbpc is increased to 5. This leads to an increase in the number of configurations with unstable responses. Details as for Figure 3.
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The cumulative memory capacity ∑ =k
t

kMC1  was determined for 
increasing delays t from 1 to 20 while r was fixed at 0.7 (Figure 8). 
MC increased with decreasing the number of clusters, with a maxi-
mum of 8.04 for n = 1. The higher plateau level indicates that there 
was no contribution to MC for delays higher than 10 timesteps.

It has been observed for ESNs that sparser connectivity results in 
lower error rates. If we treat each cluster as being comparable to a 
single unit within an ESN reservoir, then the performance of HESNs 
should increase with lower intercluster connectivity conn

inter
. Since 

high performance requires stable network configurations, we expect 
some dependence of r

max
 on conn

inter
. Our findings reflect this, with 

r
max

 increasing for network configurations with larger numbers of 
clusters as conn

inter
 was decreased (Figure 4C). The location of peak 

r
max

 at n = 20, however, remained unchanged by decreasing conn
inter

.
As varying the spectral radius only changed the values but not 

the structure of the distribution of eigenvalues, we expected that 
any change in r

max
 for increasingly clustered networks is likely due 

to differences in the eigenvalue distribution, rather than the spec-
tral radius itself. We therefore analyzed the eigenvalue spectra of 
20 realizations of each cluster configuration previously examined. 
Eigenvalue spectra for configurations with a small number of clus-
ters were homogeneous (Figure 6A), similar to those obtained for 
ESNs. The spectra became increasingly more focused around the 
origin as clustering was increased (Figure 6B). However, the eigen-
value spectra partially dispersed again for reservoirs with a high 
number of clusters, e.g., n = 500, and appears similar to Figure 6A, 
but now with approximately 40% of the eigenvalues located at the 
origin. The distribution of eigenvalues sorted by distance from the 
origin summarizes this for all cluster configurations (Figure 6C). 
The distributions increasingly deviated from a homogeneous distri-
bution as the number of clusters increased, due to the progressively 
more significant contribution of the intercluster connections.

hIerarchIcal clusters
Hierarchy is determined by the degree distribution while clustering 
is determined by the degree count. To establish the relative influ-
ence of each on network dynamics, we compared four network 
configurations with varying bbpc and conn

inter
 values. Specifically, 

we chose values for both parameters that would lead to identical 
degree counts but different degree distributions (Table 2).

Our results in the previous section demonstrate that r
max

 is 
decreased by increasing bbpc (Figure 4B) or decreasing the interclus-
ter connectivity. These trends were confirmed while testing the degree 
counts of networks (Figure 7). While we observed no significant 
difference for reservoirs with five clusters or less, as the number of 
clusters increased, so did the difference between r

max
 for hierarchical 

and non-hierarchically clustered networks. The range of r
max

 was 
higher for the hierarchically clustered networks than for the non-
hierarchically clustered networks. We can conclude therefore that it is 
the degree distribution and thus hierarchy, rather than degree count 
and clusters, that exerts the larger influence on the range of r

max
.

MeMory capacIty
So far, we considered only measures related to the stability using 
measures related to reservoir dynamics. To reconcile the affect of 
clustering with measures related to the performance of a ESN, we 
calculated the memory capacity MC of HESNs while varying the 
number of clusters n, intercluster connectivity conn

inter
, and bbpc 

separately to establish their individual influence as r is increased 
(R = 200, conn

intra
 = conn

inter
 = 0.7, and bbpc = 1, unless otherwise 

specified). For each network configuration, MC was calculated as 
the mean of twenty independent realizations.

Figure 6 | eigenvalue spectra for 20 realizations of a reservoir with 
R = 1000 and 2 clusters (A) or 125 clusters (B). To visualize how the 
distribution of eigenvalues varied as clustering was increased, eigenvalues were 
sorted by their distance from the origin and plotted for r = 1 (C), with each curve 
representing the mean of 20 realizations for each cluster configuration. 
Reservoirs with n > 25 have a non-uniform eigenvalue distribution with more 
than 30% of their eigenvalues concentrated at the origin.

Table 2 | Network configurations tested for the effect of varying both 

intercluster connectivity conninter and number of backbones per cluster 

bbpc. Degree count is calculated as the product of bbpc and conninter.

bbpc conninter Degree count 

1 0.2 0.2 Hierarchical

1 1 1 Hierarchical

5 0.2 1 Non-hierarchical

5 1 5 Non-hierarchical
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to 9.8 (bbpc = 5) for n = 40. Overall, increasing bbpc led to a 
more homogeneous distribution of MC values, reflecting that a 
network with n = 1 can be approximated by networks with high 
n and high bbpc values.

MC was compared for conn
inter

 = 0.2, 0.3, 0.7, and 1, which 
were chosen for comparison with previous simulations. Here 
we examined MC across the four cluster configurations with r 
increasing from 0.05 to 4 in increments of 0.05 (Figure 9B). MC 
was maximal for both n = 1 and 5 when r was slightly larger than 
1. As expected, MC was independent of conn

inter
, since conn

inter
 

has little to no influence in networks with few clusters. While 
MC was low in networks with n = 25 and 40, their MC was 
also maximal for r > 1 but, importantly, decreased as conn

inter
 

increased. This is likely because intercluster connections became 
more significant as the number of clusters increased and thus 
the dominance of intracluster connections decreased in favor of 
intercluster connections.

dIscussIon
ESNs with structured reservoirs have been suggested to perform 
better in predicting non-linear signals (Deng and Zhang, 2007; Xue 
et al., 2007). Furthermore, clustered reservoirs appear to extend 
the range of permissible spectral radius values and result in more 
robust reservoir networks. Our results demonstrate that the addi-
tion of clusters within a reservoir does increase the range of spectral 
radius values that can be chosen, but that this increase does not 
occur uniformly. Specifically, we charted how the upper limit for 
the range of the spectral radius r that resulted in stable dynamics 
depended on the reservoir structure and showed: (1) r

max
 varied 

with the number and size of clusters; (2) the range of r
max

 was 
flattened as the number of backbones per cluster was increased 
and the reservoir becomes more homogeneous; (3) decreasing the 
intercluster connection probability conn

inter
 increased r

max
 but did 

not affect the location of the peak value for r
max

. These findings 
demonstrate that several factors interact to set the upper limit for 
spectral radius within HESNs. As we could examine only a small 
subset of all possible combinations of parameter values, however, 
varying multiple parameters simultaneously may have unpredicted 
effects on reservoir dynamics.

The criterion for stability within ESNs is that the echo state 
property is fulfilled; for purely feedforward ESNs, r < 1 is a suf-
ficient but not necessary condition as it ensures that the eigenvalues 
are scaled such that the system always contracts for any possible 
input (Jaeger, 2001). This property is evident in our plots, as the 
estimated Lyapunov exponent and the activity levels are independ-
ent of clusters when r < 1. However, increasing r beyond 1 does not 
directly violate the echo state property and there has been recent 
interest in methods to identify the upper bound (Buehner and 
Young, 2006). As our results and those from others (i.e., Ozturk 
and Principe, 2005; Verstraeten et al., 2007) demonstrate, it is eas-
ily possible to choose r to be larger than 1 and still avoid unstable 
states. Understanding the interaction between different structural 
properties should assist in the identification by quantifying bounds 
for the spectral radius for different reservoir structures, although 
we were unable to determine a universal criterion for the echo state 
property in the networks we examined,

We examined the effect of varying bbpc and conn
inter

 for four 
cluster configurations with n ≤ 40 to ensure we could use the same 
cluster configurations with bbpc = 5. Based on curves obtained 
for Figure 8, we selected n = 1, 5, 25, and 40 as a representative 
cross-section. For 0.05 ≤ r ≤ 4 using bbpc = 1, 2, and 5 and the 
cluster configurations as described above (Figure 9A), increasing 
bbpc had no difference for networks where n ≤ 5. The effect of 
increasing bbpc, however, was most obvious for networks with 
larger n, with the maximum MC increasing from 7.4 (bbpc = 1) 

Figure 7 | rmax for increasing number of clusters for four different 
combinations of values for bbpc and conninter. The corresponding increases 
in rmax are consistent with trends described above. The relative influence of 
hierarchy and clustering can be observed by considering the two networks 
with the same degree count but different distributions: bbpc = 1, conninter = 1, 
and bbpc = 5, conninter = 0.2. For n > 5 clusters, the former configuration has 
higher values of rmax, indicating a greater dependence of rmax on hierarchy 
rather than clustering.

Figure 8 | ∑ =k
t

kMC1  was calculated for a collection of clustered 
reservoirs with total reservoir size R = 200 and for delay t ranging from 1 
to 20 timesteps.
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hierarchically clustered reservoirs against cluster configurations 
that had the same number of intercluster connections that were, 
however, distributed over more than one backbone unit per clus-
ter. Our findings indicate that, while the choice of cluster con-
figuration does influence the value of r

max
, the range of spectral 

radius values for stable ESNs is affected more by the distribution 
of intercluster connections onto cluster units, rather than their 
number. Therefore, we conclude that the presence of hierarchy, 
rather than clustering per se, is responsible for the extended range 
of permissible r values.

This characteristic is likely due to the ability of hierarchically 
clustered networks to reduce the impact of unstable behavior: if 
one cluster becomes unstable, its influence on other clusters is 
minimized by a low number of backbone units, which act as bot-
tlenecks. This behavior has been observed for tri-state networks 
(Kaiser et al., 2007). Consistent with this, increasing the number 
of intercluster connections decreased network stability. This is sup-
ported by analysis of reservoir unit activity traces in networks with 
transient responses, where the activity trace showed one cluster 
that was strongly active.

One question of special interest was whether there was “golden 
ratio” of cluster sizes: Given a total reservoir size, is there an opti-
mal cluster size for that will maximize r

max
? For the reservoir sizes 

we examined, the configuration that resulted in the maximal r
max

 
for R = 200 was 25 clusters of 8 units each, corresponding to 
cluster sizes of 4% of reservoir size. For R = 100 and 500, these 
values were 20 clusters of 5 each (5%) and 50 clusters of 10 units 
(2%), respectively. These results suggest that cluster sizes of 2–5% 
of the total reservoir size are optimal. The benefit of having such 
small cluster sizes can be seen by considering a network with only 
a few large clusters: if one cluster becomes unstable, the instabil-
ity of that cluster drives the baseline activity rate higher, reduc-
ing the elasticity of the reservoir. As successive clusters become 
unstable, the baseline rises and the computational potential of the 
reservoir decreases. For large cluster sizes, this increase happens 
quite quickly; in contrast, the loss of a small cluster results in 
smaller increments and therefore a slower transition to instabil-
ity. Importantly, this interpretation holds true only when clus-
ters have little impact on the activity of other clusters and so is 

In homogeneous ESNs, larger r values result in a slower decay 
of the network’s response to an impulse (Jaeger, 2001) and strongly 
affect performance (Venayagamoorthy and Shishir, 2009). It is 
thus important to choose r appropriately. For example, a HESN 
with 200 units and four clusters was unstable when r = 1.2, but 
was stabilized when the number of clusters was increased. Thus, 
configurations that would previously have been dismissed due to 
instability can now be reconsidered, allowing greater flexibility in 
the design of clustered reservoirs. We were also able to demonstrate 
that the presence of clusters is reflected in the memory capacity 
MC. Clustered reservoirs displayed lower peak MC values; impor-
tantly however, MC values decreased more slowly as r increased 
for clustered reservoirs when compared to non-clustered reservoirs 
for r > 1.5. These factors together imply that clustered ESNs are 
more robust over a broader range of spectral radius values than 
traditional ESNs.

We were also able to map the transition between stable to unsta-
ble responses through an intermediate regime, where the reservoir 
activity decayed to a non-zero baseline after the first stimulus was 
presented, resembling the transient activity identified by Ozturk 
and Principe (2005). The baseline of reservoir activity was generally 
constant for each realization of an HESN. For all reservoir con-
figurations, the mean reservoir activity increased as r grew larger. 
The level of ongoing activity can be thought of as corresponding 
to the elasticity of the system: as the ongoing activity increases, the 
potential energy of the system decreases. The gradient at which this 
transition to instability occurs as the spectral radius is increased, 
therefore, greatly affects the maximal spectral radius that can be 
chosen. Our findings indicate that this transition was slowest for 
40–50 clusters in reservoirs with 200 units (Figures 4D,E), which 
is reflected in the slow decrease in MC for the corresponding 
network configurations.

effect of hIerarchIcal clusters on dynaMIcs
One question raised implicitly following the original observation 
of an extended range of r

max
 was whether it was increased by the 

introduction of hierarchy, or whether merely a clustered topology 
was sufficient. As hierarchically clustered reservoir are character-
ized by having only one backbone unit per cluster, we compared 

Figure 9 | MC was calculated for four different cluster configurations as r was increased from 0.05 to 4 (R = 200, connintra = 0.7 with conninter = 0.7 and 
bbpc = 1, unless otherwise stated). The effect of increasing bbpc (A) and varying conninter (B) was most noticeable for networks where n ≥ 25 where MC was high 
over a broader range of r.
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allows us to conclude that, although the location of the transition 
to a chaotic regime depends on input and perturbation magnitude, 
reservoir stability remains strongly determined by not only the 
presence but also the size of clusters within the reservoir.

conclusIon
The total reservoir size, number of clusters, backbone clusters per 
unit, and intercluster connectivity all affect the range of permissible 
spectral radius values and we demonstrated that their interplay 
determines the upper boundary for the spectral radius. Specifically, 
the range of permissible spectral radius values strongly depended 
on the ratio of cluster size to total reservoir size. Hierarchy, rather 
than clustering alone, had the largest impact on the range of spectral 
radius values for stable networks. Furthermore, increasing the inter-
cluster connectivity extended the range of spectral radius values 
for stable ESNs, while increasing the number of backbone units 
per cluster had the opposite effect.

The transition from stable to unstable dynamics was charac-
terized by responses with varying levels of ongoing activity, even 
in the absence of any stimulus. The amount of ongoing activity 
increased as the spectral radius was raised, leading to progressively 
more unstable reservoir dynamics. Importantly, the rate at which 
this transition occurred was slowest for hierarchically clustered 
reservoirs with clusters of size in the range 2–5% of the total res-
ervoir size. We suggest that this is due to backbone units acting as 
bottlenecks that partition the reservoir, which minimizes the influ-
ence of any unstable units by limiting their impact to their own 
cluster. This effect is optimal when clusters sizes are small enough 
that the loss of any single cluster does not greatly affect the overall 
reservoir dynamics, leading to a graceful degradation of reservoir 
performance, but large enough for them to still contribute to res-
ervoir dynamics. We conclude that hierarchy is a crucial feature for 
extending the range of permissible spectral radius values within 
feedforward ESNs.
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only observed in hierarchically clustered networks, due to the 
presence of bottlenecks which allow the HESN’s performance to 
degrade gracefully.

QuantIfyIng esns
One problem that has often been discussed is how to measure the 
“goodness” of a given ESN (Lukosevicius and Jaeger, 2007). While 
more primitive measures, such as the error rate, can be easily applied, 
they are task dependent and therefore highly subjective. Most impor-
tantly, they do not supply any additional information as to how the 
reservoir structure impacts on performance. Other measures that 
examine reservoir activity, such as cross-correlation of reservoir unit 
activity or entropy of reservoir states (Ozturk et al., 2007), have been 
used to relate performance to reservoir dynamics. Here, we used the 
normalized reservoir activity, a metric based on mean reservoir acti-
vation following a sparse input applied at a fixed frequency. While 
this measure has limited use, it was well-suited to indicate the level 
of ongoing activity, which was of particular interest to us.

A more sophisticated measure is the Lyapunov exponent, 
which indicates how chaotic a system is. However, this measure 
has strong shortcomings associated with it. Generally, Lyapunov 
exponents are difficult to estimate for non-autonomous systems, 
such as stable feedforward ESNs, which must be externally driven. 
Correspondingly, any estimate of the Lyapunov exponent is sensi-
tive to the input used, making generalization difficult. On the other 
hand, there is no clearly better method to estimate the Lyapunov 
exponent: while the theoretical approach used by Verstraeten et al. 
(2007) allows for simultaneous consideration of all trajectories 
in the vicinity of the operating point, it can only estimate posi-
tive Lyapunov exponents. As we explicitly wanted to observe how 
quickly a network configuration moved from stable to chaotic 
behavior, we chose to approximate the Lyapunov exponent numeri-
cally. However, the disadvantage of numerically approximating the 
Lyapunov exponent is that it is inexact and time-consuming to 
calculate. Furthermore, determining the Lyapunov exponent by 
applying a reservoir perturbation is also subjective to the magnitude 
of the applied perturbation. We were able to demonstrate that for 
perturbations both two orders of magnitude larger and smaller than 
δ = 10−6, the same dependency of stability on the number of clusters 
was still present and with the same structure. This observation 
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