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non-efficient or inaccurate. This, in turn, may lead to spurious 
covariances in areas of the brain like those located near prominent 
vascular structures.

Here we describe a method to deliver maps of net connectivity levels 
that quantifies non-redundant connectivity and that takes into account 
synchronous and non-synchronous (non-instantaneous) covariabil-
ity. The proposed method uses the conditional mutual information 
(CMI) in the frequency domain, which is a truly multivariate associa-
tion measure, and stems from previous work (Salvador et al., 2007, 
2008, 2010). Prior probabilistic models are adapted to include a third 
set of stochastic processes, which characterize the gross physiological 
noise, and formulas for the mutual information (MI) are updated to 
partial out the common variability related to this third set by condition-
ing. Finally, output connectivity maps are delivered at the voxel level, 
avoiding some of the biases and lack of anatomical resolution found in 
Salvador et al. (2008). Being summaries of net connectivity levels (each 
individual’s connectivity is summarized in a single image) CMI brain 
maps can be easily used on group analyses to look for differences or 
trends in connectivity. To illustrate the method, first we show average 
CMI maps from a sample of healthy individuals and, later, we evaluate 
possible patterns in CMI related to age in the healthy brain and related 
to clinical symptoms in a sample of patients with schizophrenia.

Materials and Methods
fMri data acquisition and processing
The proposed method was applied to a sample of resting-state fMRI 
datasets from 45 healthy individuals, and another sample from 40 
chronic schizophrenic patients. All datasets had been acquired in 

introduction
In recent years there has been a growing interest in finding ways 
to summarize connectivity properties of the brain through maps 
based on sets of functional magnetic resonance images (fMRI). 
Although these maps may use different measures of connectiv-
ity and have been named differently (e.g., maps of cortical hubs, 
Buckner et al., 2009; global brain connectivity maps, Cole et al., 
2010; overall brain connectivity maps, Salvador et al., 2010) they 
aim at describing the general levels of connectivity between each 
site of the brain and the remaining brain.

In the core of most of these methods there are bivariate measures 
of association such as Pearson correlations (Buckner et al., 2009; 
Cole et al., 2010; Sepulcre et al., 2010) or coherences (Salvador et al., 
2010). Although these measures are clear, simple, and computation-
ally efficient, they are not adequate to quantify what can be called 
non-redundant connectivity (see Figure 1), which will require the 
use of multivariate measures of association. On the other hand, 
while Pearson correlations may be appropriate to capture instanta-
neous patterns of covariability in the brain, which probably account 
for the largest proportion of covariance in the brain (at least at the 
coarse temporal resolutions of fMRI time series), they will fail at 
quantifying non-instantaneous or dephased relations. This non-
synchronicity will be also relevant in the steps involved in removing 
physiological artifacts, as these have an uneven spatiotemporal dis-
tribution in the brain (Shmueli et al., 2007; Majeed et al., 2009). In 
consequence, procedures that quantify instantaneous covariability 
between physiological factors (or their surrogates like global or CSF 
data) and time series in the brain parenchyma may be significantly 
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the same 1.5 T GE scanner, where a time series of 266 volumes 
(with 16 slices each) was obtained while the individuals were rest-
ing with the eyes open. The following parameters were used in 
the acquisition: TR = 2000 ms, TE = 20 ms, flip angle = 70°, sec-
tion thickness = 7 mm, section skip = 0.7 mm, in-plane resolu-
tion = 3 × 3 mm. The first 10 volumes were discarded to avoid T1 
saturation effects. Apart from five added controls, both samples had 
been previously used in Salvador et al. (2010). All participants gave 
written informed consent prior to involvement in accordance to the 
Declaration of Helsinki, and the research protocol was approved by 
the local ethics committee of the Benito Menni Hospital.

The preprocessing steps also matched those followed in this 
previous work. Several FSL functions were used (Smith et al., 2004) 
finally obtaining normalized (to the T1 2 mm MNI template) and 
spatially smoothed images (Gaussian filter with SD = 3 mm). The 
minimization of residual movement effects, though, was carried 
out through regression of independent components with clear 
edge effects extracted by individual ICA on the co-registered 
time series (instead of regressing out the time series of movement 
parameters).

The multivariate nature of the CMI rendered the inclusion of the 
time series of all voxels of the brain parenchyma computationally 
unfeasible. Although the CMI was calculated for each voxel, the 

joint time dynamics of each brain was summarized by the mean 
time series of the 90 regions in the AAL template (Tzourio-Mazoyer 
et al., 2002). Gross physiological noise was characterized as in 
Salvador et al. (2010) which was based on a selection of a set of noisy 
voxels with high variance but low redundancy. This set included 
five points placed outside the brain parenchyma (see Figure 2). 
These were located in (1) left middle cerebral artery [MNI: −34, 8, 
−22], (2) straight sinus [MNI: 0, −86, −16], (3) cisterna superior 
[MNI: 0, −44, 0], (4) anterior cerebral artery [MNI: 0, 30, 12] and 
(5) superior sagittal sinus [MNI: 0, 0, 68]. In summary, for each 
voxel of the brain we estimated its MI with the mean time series 
from all 90 AAL regions (i.e., a multivariate measure) partialling 
out (conditioning on) the common variability shared with the five 
time series characterizing the gross physiological noise.

The CMI images from the sample of 45 healthy individuals were 
used to derive mean maps of CMI of the healthy brain and to 
explore relations between the CMI and age. The CMI images from 
the sample of 40 chronic schizophrenics were used to explore pos-
sible relations between CMI and clinical symptoms. Liddle factors 
(Liddle, 1987) which in turn are based on values of the positive 
and negative syndrome scale (PANSS) (Kay et al., 1987) were used 
as clinical scores. In all individuals, averaged CMI were estimated 
for an interval of low frequencies (0.02–0.1 Hz) and an interval of 
higher frequencies (0.1–0.2 Hz).

definition of the conditional Mutual inforMation
In this work the CMI is used to relate the temporal dynamics of 
a voxel X

v
(t) with the dynamics of a set of other points or regions 

of the brain X
r
(t) (summarized here by the mean time series of 

the 90 AAL regions), discarding the common patterns linked 
to a set of physiological factors or processes X

n
(t) (character-

ized by the time series of the five high variance points shown in 
Figure 2). From a theoretical point of view, all three components 
can be considered as a finite realization of a joint multivariate 
stochastic process

X t X t X t X t t Zv r n( ) ( ), ( ), ( ) ; .= { } ∈
 

(1)

If a discrete Fourier transform (DFT) is applied to this finite real-
ization of, say, length 2q (which in our study equals the number of 
non-dummy scans [2q = 256]) it will deliver q Fourier coefficients. 
Under the assumption of multivariate normality, stationarity, and 
summable cross-covariances for X(t), any Fourier frequency (say 
ω

k
) will have now a multivariate vector of DFT coefficients

Figure 1 | The covariability or information shared between a site in the 
brain (gray circle) and other sites (remaining circles) may be equal or 
redundant (same information I1) or different or non-redundant 
(informations I1, I2, I3). In the simple case where all In have the same intensity, 
averages of bivariate measures of association will assign the same amount of 
connectivity in both redundant and non-redundant scenarios, and truly 
multivariate measures will be required to quantify non-redundant connectivity.

Figure 2 | Anatomical location of the five points selected to characterize major physiological noise in Salvador et al. (2010). The background image is an 
average of individual normalized and filtered standard deviation images. Left side of image is left side of brain. White numbers give the z MNI coordinate of each slice 
shown.
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(1) window tapering to reduce leakage, (2) a FFT on the tapered 
time series, (3) to calculate the cross-product of Fourier coefficients 
to obtain initial estimates of the cross-spectrums, and (4) filtering 
to reduce variance of the cross-periodograms.

The filtered cross-periodograms, though, cannot be directly 
plugged-in Eq. 6 as, rather frequently, high levels of redundancy 
between some of the time series in X

r
(t) will render the estimate of 

f
{Xr,Xn}

(ω
k
) nearly singular, making its inversion unreliable. To avoid 

such problems, we follow the approach proposed in Salvador et al. 
(2008) which is based on the diagonalization of f

{Xr,Xn}
(ω

k
)

f L LX X k k k kr n{ , }
*( ) ( ) ( ) ( ),ω ω ω ω= ∆

 
(8)

where L(ω
k
) and ∆(ω

k
) are the matrices containing the eigenvec-

tors and real positive eigenvalues of f
{Xr,Xn}

(ω
k
), and L*(ω

k
) is the 

transposed conjugate of L(ω
k
).

Taking the s biggest eigenvalues, accounting for a large portion 
of the variability (e.g., 99%), and their related eigenvectors, we can 
now calculate the multiple coherence between the voxel and the s 
principal component time series (see Appendix B in Salvador et al., 
2008), which is a non-collinear surrogate of the multiple coherence 
given in first formula of Eq. 5.

m W W fX X X k k
t

s k k X kv r n v
Coh ,{ , }( ) ( ) ( ( )) ( ) ( )ω ω ω ω ω= −∆ 1

 
(9)

with

W L Vk s k X X X kv r n
( ) ( ) ( ).*

,{ , }ω ω ω=
 

(10)

This leads to a modified version of Eq. 6
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where estimates of the spectral densities from their diagonaliza-
tion in Eq. 8 will be plugged-in to deliver the estimates of the MI. 
Finally, we use Eq. 7 to take averages over the two frequency bands 
(0.02–0.1 and 0.1–0.2 Hz).

results
The averaged (over the sample of 45 healthy controls) CMI map for 
the low frequencies is shown in Figure 3A. In this Figure the most 
evident pattern of differences is observed between a significant pro-
portion of gray matter and the rest of the brain, including all white 
matter regions, where the lowest values of connectivity are found. 
Within the cortex there are many local maxima, which appear as hot 
spots or connectivity hubs. Among others, these include, bilaterally, 
the orbitofrontal cortex, the lateral prefrontal cortex, the primary 
visual cortex, the primary auditory and neighboring cortex, and the 
main components of the default mode network (DMN) (the medial 
anterior node, the medial posterior nodes, and both lateral–parietal 
posterior nodes). Additionally, there are clear local maxima in sub-
cortical nuclei, including bilaterally the amygdala, the pallidum–
putamen, both caudate nuclei, and, with lower values, the thalami.

An alternative view of the cortical variation in CMI values at 
the low frequencies is given through a cortical overlay (Figure 4). 
High values of connectivity are present in a large portion of the 

Y Y Y Yk v k r k n k( ) ( ), ( ), ( ) ,ω ω ω ω= { }
 

(2)

which will follow a complex multivariate normal law (Brillinger, 
1981; Salvador et al., 2007). The CMI between Y

v
(ω

k
) and Y

r
(ω

k
), 

given Y
n
(ω

k
), may be given through the chain rule for MI (Cover 

and Thomas, 1991)
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And both individual MI on the right hand side of the equation 
can be written in terms of multiple coherences of components of 
the original stochastic process X(t) at frequency ω

k
 (see Eq. 2 in 

Salvador et al., 2008)

CMI CohY Y Y mv k r k n k X X X kv r n
( ); ( )| ( ) log ( )

l

; ,ω ω ω ω( ) = − −{ }
+

{ }
1

2
1

1

2
oog ( ) .;1−{ }m X X kv n

Coh ω  (4)

These two multiple coherences, in turn, are functions of subsets 
of the spectral density matrix of X(t) at ω

k
. Specifically, if we denote 

f
Xn

(ω
k
), f

{Xr,Xn}
(ω

k
), f

Xv
(ω

k
) as the spectral density matrices of X

n
, 

{X
r
,X

n
}, and X

v
 (the latter a scalar), and V

Xv,{Xr,Xn}
(ω

k
), V

Xv,Xn
(ω

k
) as 

the column vectors containing the spectral densities between X
v
 and 

each of the components of {X
r
,X

n
} and of X

n
, then (see Brillinger, 

1981 for a general formula for the multiple coherence)
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where superscript t indicates the transpose and superscript bar 
stands for the conjugate. Both Eqs. 4 and 5 can be combined to 
give an alternative formula for the CMI
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Now, Eq. 6 can be extended to give the CMI for the whole set 
of Fourier coefficients (k = 1, …, q) from the DFT. The asymptotic 
independence between Fourier coefficients at different frequencies 
(Shumway and Stoffer, 2000) allows giving the MI as a simple sum 
over frequencies. Alternatively, one can take averages over the q Fourier 
coefficients, to avoid the clear dependence of this sum on q

CMI MIY Y Y
q

Y Y Yv r n c v k r k n k
k

q

; | ( ); ( )| ( ) ,( ) = ( )
=

∑1

1

ω ω ω
 

(7)

which may be seen as a finite version of the MI rate for stochastic 
processes (Ihara, 1993).

inference on the conditional Mutual inforMation
Inference on the CMI is based on non-parametric estimates of the 
spectral density matrices and their components found in Eq. 6. This 
requires several operations on the extracted time series, including: 
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cortex following a clear inter-hemispheric symmetry. Midline 
views portray both medial anterior and posterior DMN nodes, 
but extending, as well, to the cuneus. The lateral views include high 
values in both left/right lateral–parietal nodes of the DMN, in the 
superior temporal gyri (including the primary auditory cortices), 
in the lateral frontal cortex (specially in the inferior parts), and 
in ventral occipital areas. With more moderate values of the CMI 
mainly restricted to the primary sensory cortices, to motor areas 
(primary and supplementary motor areas), the dorsal cingulate, 
middle and lower parts of the temporal lobes, and a fraction of 
the occipital cortex.

Figure 3B shows, for the low frequencies, the mutual informa-
tion between each voxel and the five points selected as descriptors 
of gross physiological noise (see Figure 2). This MI of the noise is 
used in Eq. 3 (see second term at right hand side of this equation) 
to partial out the effect of physiology through a subtraction. As 
may be expected, many of the patterns observed in Figure 3B are 
similar to those seen in the image of standard deviations included 
as background of Figure 2, suggesting a proper characterization 
of noise by the five selected points. While in the ventral brain 
there are high values in CSF and in vascular structures such as 
the circle of Willis or both middle cerebral arteries, more dor-
sally we see other maxima in the anterior cerebral artery and in 
several venous sinuses like the superior sagittal sinus and the 
straight sinus.

Figure 3 | Averages, over the sample of 45 healthy controls, of the conditional mutual information (Mi) for the low frequencies (A) and the high frequencies 
(C). Averages of the MI of the noise (MI with the five points of high variance shown in Figure 2) for the low (B) and high (D) frequencies. Left side of image is left 
side of brain. White numbers give the z MNI coordinate of each slice shown.

Figure 4 | Overlay of the conditional mutual information at the low 
frequencies on a 3D representation of the brain based on the T1 MNi 
template. There is a clear symmetrical pattern between both hemispheres, 
with a large portion of the cortex having high levels of connectivity, and lower 
values mostly restricted to central areas (e.g., somatosensory cortex, motor 
related areas, middle and ventral parts of temporal lobes).
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Finally, in the analysis of psychotic symptom scores (Liddle 
factors) and functional connectivity in schizophrenia, clearest 
results were obtained between CMI and positive factor scores; 
positive factor scores account for what are known as positive 
symptoms, such as delusions or hallucinations, that are present 
in schizophrenic patients but not usually in healthy subjects. 
Figure 6 shows the set of clusters that are significantly related 
to the Positive factor scores (with p < 0.05 corrected). If the 
direction of the relation is taken into account, this set can be 
split in two groups. There is a group of clusters located near the 
medial line of the frontal cortex that shows a positive relation 
between CMI and positive symptoms (increased connectivity 
with symptoms). This group includes all significant clusters 
at high frequencies and one cluster from the low frequencies. 
The remaining three significant clusters from the low frequency 
band (one in the right posterior cingulate, another in the right 
frontal cortex, and the later in the right parietal cortex), all 
show a decrease in connectivity with positive symptoms. An 
additional analysis comparing neuroleptic dose (quantified in 

Figure 3C portraits the CMI map at higher frequencies. Here, 
the contrast between gray and white matter is much less intense 
than at low frequencies, and local connectivity maxima are limited 
to the primary auditory cortex and neighboring insula, ventrome-
dial frontal cortex, a local peak in the posterior cingulated cortex, 
and amygdala, putamen/pallidum, and thalamus bilaterally (the 
latter with less intensity). Figure 3D shows the MI of the noise for 
this frequency band, which has a clear resemblance to the image 
of the MI of the noise at low frequencies (Figure 3B) but with 
less extended maxima. When CMI and MI of the noise maps are 
compared some overlap between local maxima in both images 
becomes evident.

In the analysis of linear trends between age and CMI in the 
sample of healthy controls, some areas of the brain showed signifi-
cant associations (using a p < 0.05 corrected threshold). As seen in 
Figure 5, while a cluster of voxels located posteriorly in the cingulate 
showed a negative relation (reduction in connectivity) in the low 
frequencies, two orbitofrontal clusters presented an increase in CMI 
with age at high frequencies.

Figure 5 | Areas of the brain having a significant linear relation (at p < 0.05 corrected) between the conditional mutual information and age, for the 
sample of 45 healthy individuals (ages from 18 to 65). While in the low frequencies a single area (in the cingulate) was found having a decrease in connectivity 
with age, in the high frequencies two orbitofrontal clusters had the opposite pattern (increase of CMI with age).
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as individuals where instructed to keep the eyes open), while the 
well-known levels of connectivity observed in the different nodes 
of the DMN agree with the relevant role of this network in the 
resting brain (Raichle et al., 2001). Indeed, the DMN has previ-
ously shown high connectivity in similar analyses like the maps of 
cortical hubs of Buckner et al. (2009) or the global connectivity 
maps by Cole et al. (2010).

A similar agreement is found, as well, for some of the areas with 
low CMI like the primary and supplementary motor areas and the 
somatosensory cortices, as these have low connectivity levels in 
both Buckner et al. (2009) and Cole et al. (2010) maps, probably 
as a consequence of their inactivity under the resting condition. 
Yet another relevant pattern in our maps is the neat symmetrical 
distribution of high values in some subcortical nuclei such as the 
amygdala and the basal ganglia, which may be explained by their 
known integrative role and for being part of well described brain 
networks (Kandel et al., 2000).

 chlorpromazine equivalents) and CMI values was performed to 
check for potential confounding effects due to medication, but 
no significant relations were found.

discussion
We propose an alternative way of calculating maps of net levels of 
connectivity in the brain based on resting-state fMRI images. The 
benefit of the proposed method over similar approaches relies on its 
truly multivariate nature, on its ability to quantify both synchronous 
and asynchronous relations, and on its capacity to minimize the con-
founding effect of gross physiological noise. When applied to a sample 
of healthy controls, most informative CMI maps were obtained for 
the low frequency band (0.02–0.1 Hz) where high values of the CMI 
were found in cortical and subcortical gray matter structures.

The local maxima in MI observed in both auditory and vis-
ual primary cortices may be explained, in a parsimonious way, 
by direct external stimulation (aliased scanner noise and vision, 

Figure 6 | Areas of the brain having a significant linear relation (at p < 0.05 
corrected) between the Liddle’s positive factor scores and the conditional 
mutual information, in the sample of 40 chronic schizophrenic patients. 
While there is a set of clusters located near and in the medial frontal cortex (all 

clusters at high frequencies and Cluster 1 at low frequencies) that show a 
positive relation between positive symptoms and connectivity, there are three 
clusters (Clusters 2–4 at low frequencies) which have the opposite pattern 
(decreased connectivity with positive scores).
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The proposed method minimizes the confounding effect of 
physiology by conditioning on a set of points which characterize 
the gross physiological noise in the images. However, when maps 
of MI of the noise are compared with maps of CMI there is overlap 
in some of the maxima (more noticeable in the high frequencies). 
Such agreement, though, does not necessarily have to be attrib-
uted to residual noise. Some of the areas of overlap, like the cortex 
around both insulae and orbitofrontal midline, have been reported 
to have both high levels of blood flow and of oxygen consumption 
in a resting-state PET study (Raichle et al., 2001). This high oxygen 
consumption may, in turn, be related to higher brain activity and 
higher connectivity levels.

Results from the correlations between age and the CMI can 
also be linked to previous studies. While the observed increased 
connectivity with age in the high frequencies is a new finding, the 
age-related reduction of connectivity in the posterior cingulate is 
one of the most consistent age-related patterns (see Koch et al., 2010 
and references within) and which has been recently replicated in a 
multicentric fMRI study based on 1414 resting-state fMRI datasets 
(Biswal et al., 2010).

We find, as well, a reasonable agreement between results from 
correlations with clinical scores (in the sample of schizophrenics) 
and previous published work. Most notably, the positive relation 
with symptoms found in frontomedial areas can be related to sev-
eral studies which have found abnormalities in this same region. 
On the one hand, there is the multimodal study by Pomarol-Clotet 
et al. (2010) that combining structural, diffusion and functional 
MRI, points to that region as the primary area of alteration in 

 schizophrenia. This result is complemented by the resting-state 
connectivity study by Salvador et al. (2010) which finds a single 
primary focus of abnormal hyper-connectivity in this same area.

In turn, such hyper-connectivity, in both clinical symptoms 
and disease, may be underlying the “failure-to-deactivate” of the 
anterior node of the DMN, observed in schizophrenics while 
performing working memory tasks (Pomarol-Clotet et al., 2008; 
Whitfield-Gabrieli et al., 2009). In this last study they also found 
abnormal connectivity in very similar areas to those described here 
(in the anterior and posterior cingulate) reinforcing this conver-
gence in results.

Finally, although the evidence presented through the examples 
points to reasonable levels of reliability for the proposed method, 
there are some aspects of it that may be improved. Among them, 
there is the characterization of both physiological noise and of 
the joint temporal dynamics of the brain. Due to computational 
constraints, some sort of data reduction had to be applied to char-
acterize the dynamics of the brain (here we used mean time series 
of regions in the AAL brain parcellation), and results, to some 
extent, will depend on the specific choice of the data reduction 
method used.
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