
NEUROINFORMATICS
ORIGINAL RESEARCH ARTICLE

published: 24 January 2012
doi: 10.3389/fninf.2011.00035

Meeting the memory challenges of brain-scale network
simulation
Susanne Kunkel 1,2*,Tobias C. Potjans3,4, Jochen M. Eppler 3, Hans Ekkehard Plesser 5,6, Abigail Morrison1,2,6

and Markus Diesmann3,4,6,7

1 Functional Neural Circuits Group, Albert-Ludwig University of Freiburg, Freiburg im Breisgau, Germany
2 Bernstein Center Freiburg, Albert-Ludwig University of Freiburg, Freiburg im Breisgau, Germany
3 Institute of Neuroscience and Medicine (INM-6), Computational and Systems Neuroscience, Research Center Jülich, Jülich, Germany
4 RIKEN Computational Science Research Program, Wako, Japan
5 Department of Mathematical Sciences and Technology, Norwegian University of Life Sciences, Ås, Norway
6 RIKEN Brain Science Institute, Wako, Japan
7 Medical Faculty, RWTH Aachen University, Aachen, Germany

Edited by:

Claus Hilgetag, Jacobs University
Bremen, Germany

Reviewed by:

Romain Brette, Ecole Normale
Supérieure, France
Fernando Perez, University of
California at Berkeley, USA

*Correspondence:

Susanne Kunkel , Bernstein Center
Freiburg, Hansastraße 9a, 79104
Freiburg im Breisgau, Germany.
e-mail: kunkel@bcf.uni-freiburg.de

The development of high-performance simulation software is crucial for studying the brain
connectome. Using connectome data to generate neurocomputational models requires
software capable of coping with models on a variety of scales: from the microscale, investi-
gating plasticity, and dynamics of circuits in local networks, to the macroscale, investigating
the interactions between distinct brain regions. Prior to any serious dynamical investiga-
tion, the first task of network simulations is to check the consistency of data integrated in
the connectome and constrain ranges for yet unknown parameters. Thanks to distributed
computing techniques, it is possible today to routinely simulate local cortical networks
of around 105 neurons with up to 109 synapses on clusters and multi-processor shared-
memory machines. However, brain-scale networks are orders of magnitude larger than
such local networks, in terms of numbers of neurons and synapses as well as in terms of
computational load. Such networks have been investigated in individual studies, but the
underlying simulation technologies have neither been described in sufficient detail to be
reproducible nor made publicly available. Here, we discover that as the network model
sizes approach the regime of meso- and macroscale simulations, memory consumption
on individual compute nodes becomes a critical bottleneck. This is especially relevant on
modern supercomputers such as the Blue Gene/P architecture where the available working
memory per CPU core is rather limited. We develop a simple linear model to analyze the
memory consumption of the constituent components of neuronal simulators as a function
of network size and the number of cores used. This approach has multiple benefits. The
model enables identification of key contributing components to memory saturation and pre-
diction of the effects of potential improvements to code before any implementation takes
place. As a consequence, development cycles can be shorter and less expensive. Applying
the model to our freely available Neural Simulation Tool (NEST), we identify the software
components dominant at different scales, and develop general strategies for reducing the
memory consumption, in particular by using data structures that exploit the sparseness
of the local representation of the network. We show that these adaptations enable our
simulation software to scale up to the order of 10,000 processors and beyond. As memory
consumption issues are likely to be relevant for any software dealing with complex con-
nectome data on such architectures, our approach and our findings should be useful for
researchers developing novel neuroinformatics solutions to the challenges posed by the
connectome project.

Keywords: brain-scale simulation, memory consumption, supercomputer

1. INTRODUCTION
There has been much development of the performance and func-
tionality of neuronal network simulators in the last decade. These
improvements have so far largely been aimed at investigating net-
work models that are at or below the size of a cubic millimeter of
cortex (approximately 105 neurons) and within the context of the

current dominant laboratory high-performance computing para-
digm, i.e., moderately sized clusters up to hundreds of nodes and
SMP machines (e.g., Lytton and Hines, 2005; Morrison et al., 2005;
Migliore et al., 2006; Plesser et al., 2007; Pecevski et al., 2009). How-
ever, there is a growing interest in performing simulations at the
scale of multiple brain areas or indeed the entire brain. Firstly, the

Frontiers in Neuroinformatics www.frontiersin.org January 2012 | Volume 5 | Article 35 | 1

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/about
http://www.frontiersin.org/Neuroinformatics/10.3389/fninf.2011.00035/abstract
http://www.frontiersin.org/Community/WhosWhoDetails.aspx?UID=8419&d=1&sname=SusanneKunkel&name=Science
http://www.frontiersin.org/Community/WhosWhoDetails.aspx?UID=18308&d=1&sname=TobiasPotjans&name=Science
http://www.frontiersin.org/Community/WhosWhoDetails.aspx?UID=2466&d=1&sname=JochenEppler&name=Science
http://www.frontiersin.org/Community/WhosWhoDetails.aspx?UID=2833&d=1&sname=Hans_EkkehardPlesser&name=Science
http://www.frontiersin.org/Community/WhosWhoDetails.aspx?UID=13504&d=0&sname=AbigailMorrison_1&name=all people
http://www.frontiersin.org/Community/WhosWhoDetails.aspx?UID=630&sname=markusdiesmann
mailto:kunkel@bcf.uni-freiburg.de
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Kunkel et al. Memory usage of brain-scale simulations

predictive power of models of the local cortical circuit is severely
limited. Such models can account for all the local synapses, but
each neuron receives 50% of its synapses from external sources.
Thus half of the inputs to the neurons remains unaccounted for,
and must be replaced by external currents or random spike input.
Secondly, such simulations are a necessary accompaniment to the
development of the brain connectome (Sporns et al., 2005), as
a structural description of the brain is by definition static. By
performing dynamic simulations of the meso- and macroscale
networks, we can check the consistency of the anatomical data,
integrate it into models, identify crucial missing parameters, and
constrain ranges for yet unknown parameters (Potjans and Dies-
mann, 2011). Thirdly, no part of the brain works in isolation;
functional circuits are only closed at the brain-scale. Simulation
studies of the interaction of multiple brain areas are necessary to
understand how they coordinate their activity to generate brain
function. Finally, experimentalists interested in brain function use
imaging techniques such as fMRI and MEG and mass record-
ings such as the LFP to identify the brain’s functional circuits and
uncover the dynamics of the interaction between bottom-up and
top-down processing. Models of corresponding size are required
to create predictions for such measurements.

Brain-scale simulations will necessarily be orders of magnitude
larger than the local network models discussed above, and will
exceed the capacity of the small-to-medium sized clusters avail-
able to researchers within their own research facilities. Fortunately,
massively parallel computing architectures installed at dedicated
high-performance computing centers are becoming ever more
available. In particular, the Blue Gene architectures, incorporat-
ing very large numbers of processors with moderate clock speed
and relatively small amounts of RAM, provide computational
power efficiently, and are consequently increasing in popularity.
To exploit these new possibilities for brain-scale simulations, we
need simulation software that will scale up to tens or hundreds
of thousands of processes. Although very large scale networks
have been previously investigated (e.g., Ananthanarayanan and
Modha, 2007; Izhikevich and Edelman, 2008; Ananthanarayanan
et al., 2009), the underlying simulation technologies have not been
described in sufficient detail to be reproducible by other research
groups, and so the value of these studies to the neuroscientific
community remains somewhat limited.

A major challenge to the scalability of neuronal simulators on
such architectures is the limited RAM available to each core. Data
structure designs that are reasonable and efficient in the context of
clusters of hundreds of processes may be insufficiently parallelized
with respect to architectures that are two or three orders of magni-
tude larger. Insufficient parallelization results in substantial serial
memory overhead, thus restricting the maximum network size that
is representable on the architecture. We therefore conclude that a
systematic approach to understanding memory consumption and
designing data structures will be of benefit to any research team
attempting to extend the scalability of a neuronal simulator, or
indeed any other application, from moderate to very large cluster
sizes.

In this manuscript we develop a technique for analyzing the
memory consumption of a neuronal simulator with respect to its
constituent components on the basis of a linear memory model,

extending the approach presented in Plesser et al. (2007). We apply
it here to the specific example of the freely available Neural Sim-
ulation Tool NEST (Gewaltig and Diesmann, 2007), however the
principles are sufficiently general to be applied to other simulators,
and with some adaptation to other distributed applications that
need to store large numbers of objects. In particular, although we
apply the model to a simulator designed for efficient calculation of
point neuron models, the technique is equally applicable to sim-
ulators optimized for anatomically detailed multi-compartment
neuron models. We demonstrate that the model allows the soft-
ware components that are most critical for the memory consump-
tion to be identified. Moreover, the consequences of alternative
modifications to the design can be predicted. As a result of these
features, development effort can be concentrated where it will have
the greatest effect, and a design approach can be selected from a
set of competing ideas in a principled fashion. Finally, we show
that this technique enables us to remove major limitations to the
scalability of NEST, and thereby increase the maximum network
size that can be represented on the JUGENE supercomputer by an
order of magnitude.

The conceptual and algorithmic work described here is a mod-
ule in our long-term collaborative project to provide the tech-
nology for neural systems simulations (Gewaltig and Diesmann,
2007). Preliminary results have been already presented in abstract
form (Kunkel et al., 2009).

2. MATERIALS AND METHODS
Typically, memory consumption in a distributed application is
dependent not only on the size of the problem but also on the num-
ber of processes deployed. Moreover, the relative contributions
of the various components of an application to its total mem-
ory usage can be expected to vary with the number of processes.
To investigate this issue in a systematic way, in the following we
develop a model which captures the contributions of the main
software components of a neuronal network simulator to the total
memory usage (Sec. 2.1). We applied the model to the Neural Sim-
ulation Tool NEST. Specifically, the parameterization of the model
with theoretically determined parameters (Sec. 2.3) or empirically
determined values (Sec. 3.1) is based on version NEST2.0-rc4 using
Open MPI 1.4.3 on one core of a 12-core AMD Opteron 6174 run-
ning at 2.2 GHz under the operating system Scientific Linux release
6.0.

2.1. MODEL OF THE MEMORY USAGE OF A NEURONAL NETWORK
SIMULATOR

Our primary assumption is that the memory consumption on each
process is a function of M, the total number of processes:

M (M , N , K) = M0 (M) + Mn (M , N) + Mc (M , N , K) (1)

where M0(M) is the base memory consumption for an empty
network, Mn(M, N) is the memory consumed by N neurons
distributed over M processes, and Mc(M, N, K) denotes the
additional memory usage that accrues for K incoming synaptic
connections for each neuron.

The first term M0(M) is a serial overhead that consists of the
fundamental infrastructure required to run a neuronal network

Frontiers in Neuroinformatics www.frontiersin.org January 2012 | Volume 5 | Article 35 | 2

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Kunkel et al. Memory usage of brain-scale simulations

simulator, i.e., the data structures for each process that support the
essential tasks sustaining the simulation flow such as event sched-
uling and communication. It also includes the libraries and data
buffers of the message passing interface (MPI) which are necessary
for parallelization.

Assuming neurons are distributed evenly across processes and
each neuron receives K incoming synapses, NM = N /M neurons
and KM = NMK synapses are represented on each process. We
previously developed an approximation of the total memory con-
sumption of a neuronal simulator based on the consumption of
these objects (Plesser et al., 2007). However, additional data struc-
tures may be needed, for example to enable sanity checks during
network construction and efficient access to neurons and synapses
during simulation. In this manuscript, we will refer to the contri-
bution of these data structures to the memory consumption as
neuronal and connection infrastructure, respectively. These data
structures are maintained on each process and are a source of serial
overhead which increases proportionally with the network size N.
Taking into consideration not only neurons and synapses but also
the required infrastructures, the memory usage that accrues when
creating and connecting neurons is given by:

Mn (M , N) = Nm0
n + (N − NM) m∅

n + NM
(
m+

n + mn
)

(2)

Mc (M , N , K) = Nm0
c + N ∅

c m∅
c +

(
N − N ∅

c

)
m+

c + KM mc (3)

where mn is the memory consumed by one neuron and mc is the
memory consumed by one synapse. The neuronal infrastructure
causes m0

n serial overhead per neuron and, additionally, m+
n per

local neuron and m∅
n per non-local neuron. The connection infra-

structure causes m0
c serial overhead per neuron and, additionally,

m+
c per neuron with local targets and m∅

c per neuron without local
targets. Our model is based on the assumption of random connec-
tivity. Specifically, each neuron draws K inputs from N possible
sources, with repetition allowed. The probability that a neuron i
does not select a given neuron j as one of its inputs is (1 − 1/N)K.
Therefore, the probability that a given neuron has no local targets
on a specific process is given by p∅ = (1 − 1/N)KM which results
in an expected number of N ∅

c = p∅N neurons without local tar-
gets on each process. For a specific implementation of a neuronal
network simulator, these expressions could be somewhat simpli-
fied; for example, the smaller of m∅

n and m+
n could be absorbed into

m0
n. However, in this manuscript we will be evaluating alternative

designs with varying values for these components. We will thus
use the full forms of (2) and (3) at all times to ensure consistency.

Our model does not account for any network topology or
hierarchy, and it does not consider other types of nodes such as
stimulating and recording devices, as the contribution of such
devices to the total memory consumption is typically negligible.

2.2. IDENTIFICATION OF SIMULATOR COMPONENTS CONTRIBUTING
TO MEMORY CONSUMPTION TERMS

Although the aim of this manuscript is to present a general method
for analyzing the memory consumption of massively distributed
simulation software and planning design alterations, to demon-
strate the usefulness of the technique we apply it to the specific
example of NEST (Gewaltig and Diesmann, 2007). Figure 1 illus-
trates the key data structures in NEST that contribute to the

A B

FIGURE 1 | Neuronal and connection infrastructure. The color of
elements denotes which memory term they contribute to: m0

n (dark green),
m∅

n (mid green), mn (blue), m0
c (dark orange), m+

c (light orange), mc (pink). (A)

Neuronal infrastructure for M = 4. A vector of length N (dark green) is
maintained of pointers to either local nodes (blue squares) or Proxy nodes
(filled green squares). (B) Connection infrastructure. A vector of length N
(dark orange) is maintained of pointers to initially empty vectors (dark
orange boxes with single chevrons). If a node makes a synaptic connection
to a target on the local machine, the length of the vector is extended to
the number of synapse types available in the software (light orange boxes).
A GenericConnector object is initialized for the type of the synaptic
connection (large light orange box), and a pointer to it laid in the
corresponding entry of the vector. The new synaptic connection (pink
box) is stored in a deque (four chevrons) within the GenericConnector.

parameters of the memory consumption model (2) and (3). Many
other simulators are organized along similar lines (e.g., Migliore
et al., 2006; Pecevski et al., 2009), however the precise data struc-
tures used are not critical for the method. A different design will
simply result in different contributions to the memory model
parameters.

In NEST 2.0-rc4, from hereon referred to as the original imple-
mentation, the neuronal infrastructure is organized as a vector
of length N on each process of pointers to local nodes and
Proxy nodes which represent non-local neurons (see Figure 1A).
This structure allows access to neurons on the basis of their
unique global identifier, or GID. Access is required for function-
ality such as setting or querying their variables and connecting
neurons. Getting and setting variables does not require the exis-
tence of Proxy nodes; assuming the simulation is described by
a single serial instruction set, rather than a specific set for each
process, all that is required is that each process does nothing
when it reads the instruction to manipulate the variables of a
non-local neuron. These nodes become important when creat-
ing connections, as a Proxy node contains information about
the model of the non-local node it is representing. As not all
models support all possible types of connection, by querying
a Proxy node a process can determine whether a connection
specified in its instruction set is valid. In addition to the per-
sistent pointer to each node shown, a second persistent pointer
exists that allows a hierarchy of sub-networks to be maintained.
It is omitted from all diagrams in this manuscript for clarity.
Simulation of the network relies on an additional vector of
persistent pointers to local nodes. Thus m0

n comprises the two
persistent pointers used for access, mn and m∅

n consist of the

Frontiers in Neuroinformatics www.frontiersin.org January 2012 | Volume 5 | Article 35 | 3

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Kunkel et al. Memory usage of brain-scale simulations

size of a local node and the size of a Proxy node, respectively,
and m+

n is the persistent pointer to local nodes used during
simulation.

In NEST, synapses are stored on the same process as their post-
synaptic target. When a neuron spikes, its GID is communicated
at the next synchronization point to all processes, which activate
the corresponding synapses. Certainly for clusters on which the
number of machines is less than the average number of post-
synaptic targets, this structural organization reduces the bulk of
the data to be communicated (Morrison et al., 2005). In the origi-
nal implementation, the connection infrastructure which mediates
the local dispatch of spikes is provided by a vector of length
N on each process, as shown in Figure 1B. The contents of the
vector are pointers to further structures which contains the
synapses sorted by type. The inner structure is a vector which
is initially empty; the first time a neuron is connected to a local
target, the vector is extended to the length of the total number
of distinct built-in and user-defined synapse types. The contents
of the vector are pointers to GenericConnector objects
which contain deques of synapses of their respective types.
This vector of vectors allows the synapses of a particular
source neuron, and synapses of a particular type, to be located
very quickly. A GenericConnector object for a given synapse
type is only instantiated if a neuron actually has synapses of that
type. Consequently, the pointer to a vector and the empty inner
vector contribute to m0

c , mc is the size of a single synapse and
m+

c comprises the pointers to GenericConnector objects, the
objects themselves and their corresponding empty deques. As
there is no representation of non-local synapses, m∅

c is zero.
Naturally, other simulation software may not have the con-

straints described above, or may have additional ones. For exam-
ple, if all node types support all event types, there is no need to
perform validity checking of connections, and the data structures
chosen will reflect that. Similarly, if a simulation software has only
one type of synapse, no structures are needed to separate different
types. Independent of the similarity of the data structures of a spe-
cific application to those described above, a careful classification
of objects as contributory terms to the different model parameters
must be carried out.

2.3. THEORETICAL DETERMINATION OF THE MODEL PARAMETERS
We can determine the memory consumptions mn and mc directly
by counting the number and type of data they hold. This can
either be done by hand, for example by counting 7 variables of type
doublewith 8 B per double, or by using an inbuilt sizeof()
function. All neurons derive either directly from the base class
Node that takes up 56 B of memory or from the intermediate
class ArchivingNode that uses at least 184 B; the greater mem-
ory consumption in the latter case is mainly due to a deque
that stores a certain amount of the neuron’s spiking history in
order to efficiently implement spike-timing dependent plasticity
(Morrison et al., 2007).

Many types of neurons and synapses are available within
NEST. They vary in the number of state variables and parame-
ters that need to be stored. Hence, mn varies across models. In
this manuscript, we will use a leaky integrate-and-fire neuron
model with alpha-shaped post-synaptic currents (NEST model

name: iaf_neuron), which consumes mn = 424 B. On the 64-
bit architecture chosen for our investigations, a pointer consumes
8 B, therefore m0

n = 16 B (two persistent pointers) and m+
n = 8 B

(one persistent pointer). The Proxy class derives directly from
Node without specifying any further data, such that each Proxy
consumes m∅

n = 56 B.
Similarly, the amount of memory consumed by an individ-

ual synapse mc depends on the amount of data stored by the
model. We will assume a synapse type that implements spike-
timing dependent plasticity that stores variables common to
all synapses in a shared data structure (NEST model name:
stdp_synapse_hom), such that mc = 48 B. The memory over-
head for each potential source neuron is the pointer to a vector
(8 B) and the size of an empty vector (24 B), thus m0

c = 32 B.
For the sake of simplicity, in this manuscript we will only con-
sider the case that a neuron has exactly one type of outgoing
synapse. The additional memory consumption for a neuron with
local targets, once the vector has been expanded to be able to
store the nine built-in synapse types available, therefore consists
of 9 × 8 B for pointers to GenericConnector objects and one
GenericConnector object of size 104 B, including the empty
deque (80 B) that contains the synapses, i.e., m+

c = 176 B. No
additional overhead occurs for neurons that do not have local
targets, therefore m∅

c = 0 B.

3. RESULTS
3.1. EMPIRICAL PARAMETER ESTIMATION
Counting the number of bytes per element or using an inbuilt
sizeof() function as in Sec. 2.3 neglects any overhead that a
container or the operating system may introduce for the alloca-
tion of this memory. Therefore, in this section we measure the
actual memory consumption of NEST for a variety of networks
to determine the parameters of (2) and (3) empirically; the results
are shown in Figure 2.

To estimate the contribution of MPI to the total memory con-
sumption of NEST at start-up, we compare the measured mem-
ory usage when running NEST compiled with MPI support to
that used when NEST is compiled without MPI support. On the
JUGENE system, we determine that the memory usage of MPI is at
most 64 MB and that of NEST 30 MB (for an empty network). For
simplicity, we assume a base memory usage of M0(M) = 94 MB
throughout this paper.

To determine the parameters of (2), we create unconnected net-
works of neurons (type iaf_neuron) on a single process. We
increase the number of neurons from 100,000 to 500,000 in steps
of 100,000 and measure the memory consumption at each net-
work size. The slope of the linear fit to the data gives the memory
consumed by an iaf_neuron object plus the memory overhead
per node (local or remote), i.e., mn + m+

n + m0
n = 1090 B. As

the overhead per node consists of two persistent pointers and the
overhead per local node of one persistent pointer, in the follow-
ing we assume m0

n = 16 B, m+
n = 8 B and mn = 1072 B. Here,

we slightly increase the estimate of mn such that it is divisible by
eight. To determine the memory usage of Proxy representations
of non-local nodes, we repeat the measurements for M = 2, such
that half of the created nodes are local and half are non-local. Note
that memory measurements are still taken on a single process. As

Frontiers in Neuroinformatics www.frontiersin.org January 2012 | Volume 5 | Article 35 | 4

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Kunkel et al. Memory usage of brain-scale simulations

FIGURE 2 | Measured memory usage of simulator components as

functions of the number of elements. Memory usage on one process for
an unconnected network as a function of the number of nodes (blue
circles), an unconnected network distributed over two processes as a
function of the number of nodes (green circles), a network with exactly one
synaptic connection as a function of the number of nodes (dark orange
circles), a single neuron as a function of the number of autapses (pink
circles), and a network of 5 × 105 neurons as a function of the number of
autapses (light orange circles). The dashed lines indicate linear fits to the
respective data sets. All networks created on a single process unless
otherwise stated, with neurons of type iaf_neuron and synapses of type
stdp_synapse_hom.

mn, m+
n , and m0

n have already been determined as described above,
we can easily extract the amount of memory that is taken up by
one Proxy node m∅

n from the slope of the linear fit, resulting in
m∅

n = 56 B to the nearest multiple of eight.
To parameterize (3), we first repeat the measurements on a

single process for increasing network size, with exactly one synap-
tic connection included at each network size. The existence of a
single synapse ensures that the connection infrastructure is ini-
tialized but almost entirely empty, similar to Figure 1B. The slope
of the linear fit is therefore mn + m+

n + m0
n + m0

c = 1125 B,
resulting in m0

c = 32 B to the nearest multiple of eight. We then
measure the amount of memory consumed by a single synapse
of type stdp_synapse_hom by creating one iaf_neuron
on a single process with connections to itself. We increase the
number of autapses from 100,000 to 500,000 in steps of 100,000
and measure the memory consumption at each network size. The
slope of the linear fit to the data reveals mc = 48 B to the nearest
multiple of eight. Finally, we determine the additional memory
overhead for a neuron with local targets m+

c . We create a network
of 5 × 105 neurons and successively connect each neuron to itself
exactly once. We increase the number of autapses from 100,000 to
500,000 in steps of 100,000 and measure the memory consumption
at each network size. The slope of the linear fit to the measure-
ments comprises mc + m+

c = 748 B, resulting in m+
c = 704 B to

the nearest multiple of eight. In the original implementation there
is no additional overhead for nodes without local targets, therefore
m∅

c = 0 B.
Our results show that the theoretical considerations discussed

in Sec. 2.3 do not always accurately predict the true memory con-
sumption. Having made the assumption that the theoretical values

for m0
n and m+

n are correct, we determine a value for m∅
n which is

close to its theoretical value (i.e., 57 B compared to 56 B). How-
ever, the empirically measured value for mn is substantially larger
than its theoretical value (1074 B compared to 424 B). Similarly,
assuming that the theoretical value for m∅

c is correct, we mea-
sure values for m0

c and mc that are near to their theoretical values
(35 B compared to 32 B and 50 B compared to 48 B, respectively).
The empirically measured value for m+

c is markedly larger than
its theoretical value (700 B compared to 176 B). The fact that the
empirically determined values for m∅

n, m0
c , and mc are so close to

their theoretical values suggests that it was reasonable to make the
assumption that m0

n, m+
n , and m∅

c are correctly predicted by their
theoretical values.

The empirical values that are well predicted by their theoretical
values measure the memory consumption of objects contain-
ing only static data structures, whereas the two empirical val-
ues that are underestimated by their theoretical values, mn and
m+

c , measure the memory consumption of objects that also con-
tain dynamic data structures, specifically deque containers. The
underestimation is due to the fact that dynamic data structures
can be allocated more memory when they are initialized than
the results of the sizeof() function reveal. In the case of the
deque, memory is pre-allocated in anticipation of the first few
entries. Increasing the number of autapses for each neuron from
one to two does not cause the memory consumption to increase
by 48 B per neuron, because the synapses are stored in this pre-
allocated memory; a new section of memory is only allocated when
the originally allocated memory is full (data not shown). However,
this is exactly the extreme case we need to be concerned with for
large scale networks/clusters: each neuron having either zero or a
very small number of local targets on any given machine. There-
fore in the following we will use the empirically determined values,
at the risk of a certain inaccuracy for small networks/clusters.

3.2. ANALYSIS OF MEMORY CONSUMPTION
On the basis of our model for the memory consumption of a
neuronal simulator (Sec. 2.1) with empirically determined para-
meters (Sec. 3.1), we calculated the usage of memory by NEST
for the individual components and in total. Here and in the rest
of the manuscript, we assume K = 10,000 synapses per neuron,
representing a worst-case connectivity at least for cortical network
models. The results for the cases of strong scaling (i.e., fixed net-
work size on an increasing number of processes) and of weak
scaling (i.e., network size increases proportionally to the num-
ber of processes) are displayed in Figure 3. The strong scaling
results demonstrate that although the memory that is consumed
by one neuron (mn = 1072 B) is two orders of magnitude greater
than the memory that is consumed by one synapse (mc = 24 B),
neurons contribute far less to the overall memory consumption.
As the number of synapses is four orders of magnitude greater
than the number of neurons, the contribution of neurons to the
total memory consumption is negligible, whereas the contribu-
tion of synapses dominates the total memory consumption for
less than around 300–700 processes. At these small-to-moderate
cluster sizes, the size of an individual synapse plays a substantial
role in determining the maximum neuronal network size that will
fit on a given cluster. As the number of processes increases, the

Frontiers in Neuroinformatics www.frontiersin.org January 2012 | Volume 5 | Article 35 | 5

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Kunkel et al. Memory usage of brain-scale simulations

FIGURE 3 | Prediction of component and total memory usage per

process as a function of the number of processes. Upper panel: Memory
usage for a network containing N = 9.5 × 106 neurons and K = 10,000
synapses per neuron: memory consumed by neurons (blue, mn = 1072 B),
neuronal infrastructure (turquoise, m0

n = 16 B, m+
n = 8 B, m∅

n = 56 B),
synapses (pink), connection infrastructure (orange, m0

c = 32 B,
m+

c = 704 B, m∅
c = 0 B), and total memory (gray). Dashed lines show

memory consumption using a light-weight static synapse with mc = 24 B,
solid lines using a more complex plastic synapse model with mc = 48 B. The
gray area indicates a regime that lies beyond the memory capacity of the
JUGENE Blue Gene/P machine. Lower panel: Memory usage for a network
with NM = 129 neurons on each machine and K = 10,000, such that
N = 9.5 × 106 just fits on M = 73,728 processes with 2 GB RAM each. Line
colors and shaded area as in upper panel.

relative contribution of the size of synapse objects decreases and
the curves for total memory consumption converge.

For cluster sizes greater than 700, the dominant component
of memory consumption is the connection infrastructure; for
greater than 3000–7000 processes, the neuronal infrastructure also
consumes more memory than the synapses. The neuronal infra-
structure is proportional to N for all but very small values of M (2);
the connection infrastructure memory consumption is propor-
tional to N up to around M = 10,000 (3). This results in constant
terms in the case of strong scaling (Figure 3, upper panel) and
linearly increasing terms in the case of weak scaling (Figure 3,
lower panel). For M > 10,000 the increase in memory of the con-
nection structure is sub-linear with respect to N, because the
number of neurons with no local targets N ∅

c increases. However,
the absolute value of the memory consumption of the connection
infrastructure remains very high, and is only overtaken by the con-
sumption of the neuronal infrastructure at around M = 200,000.

We can therefore conclude that the serial terms in the memory
consumption of neuronal and connection infrastructures repre-
sent major limiting factors on the simulation of brain-scale models
in NEST.

3.3. EVALUATION OF DESIGN STRATEGIES
In the previous section we determined that infrastructures, rather
than the actual objects of interest in a simulation, are the most
memory consuming components for large numbers of processes.
In this section we demonstrate that, having identified a prob-
lem, the memory modeling approach can be used to predict the
effects of design alterations, and thus provide a foundation for
deciding on which optimization to focus resources. The common-
ality between the issues of neuronal infrastructure and connection
infrastructure is that as network and machine sizes increase, the
infrastructures become increasingly sparse. For a network con-
taining N = 9.5 × 106 neurons on M = 73,728 processes with
2 GB RAM each, there are only 129 neurons on each machine
(see Figure 3) and thus almost 9.5 × 106 entries in the neuronal
infrastructure to account for non-local neurons. Similarly, under
the assumption of random connectivity, around 87% of neurons
will not have any local targets on a given machine. Thus, tak-
ing this sparseness into consideration will help to avoid serial
overheads that grow with the network size. Note that for smaller
clusters and network sizes, sparseness is not a major consider-
ation. For less than around 700 processes, the serial overheads
are dominated by the memory consumption of synapses. In this
regime, it is reasonable to use data structures that do not exploit
sparseness.

There are two requirements on data structures to replace the
neuronal and connection infrastructure. The first requirement is
that memory overheads for non-present items are extremely low,
so that sparseness is effectively exploited. The second requirement
is that the data structures enable efficient search routines. This
requirement is based on the assumptions that a distributed sim-
ulation described by a single serial instruction set, or script, and
that a pre-synaptic spike is delivered to all processes and then
dispatched to the local targets. If the former assumption is false,
then it is not necessary to search the neuronal infrastructure for
neurons that may be located on other machines. If the latter is
false, it is not necessary to search the connection infrastructure
for local targets of a neuron that may not have any on that spe-
cific process. If the assumptions are true, the requirement is that
a search routine exists for the candidate data structure that termi-
nates rapidly, both when a searched-for item is present and when it
is not present. The original implementation of the neuronal infra-
structure, consisting of a vector of pointers to local neurons
and proxies of non-local neurons, fulfills the second requirement
but not the first. A well-loaded hash map fulfills the first require-
ment but not the second, as the worst-case look-up time (which
can be expected to occur frequently for high degrees of sparse-
ness) is O(n) for typical implementations, where n is the number
of items stored. The worst-case look-up time has been improved
to O(log n) and even O(1) but at the cost of higher memory
consumption (Dietzfelbinger et al., 1994). Two candidates which
fulfill both requirements are sparse tables (Silverstein, 2005) and
cuckoo hash maps (Pagh and Rodler, 2004).

Frontiers in Neuroinformatics www.frontiersin.org January 2012 | Volume 5 | Article 35 | 6

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Kunkel et al. Memory usage of brain-scale simulations

Sparse tables store entries in groups of equally sized succes-
sive index ranges; by default sgr = 48 entries per group with an
overhead of mgr = 10 B per group; each group contains a con-
tiguous block of entries and a bitmap of size sgr, which indicates
whether there is an entry for the given index or not; to store entries
with maximum index n the total overhead of the sparse table (i.e.,
not including the memory consumption of the stored items) is
n(mtest + mgr/sgr) where mtest = 1 bit.

Cuckoo hashing is an interesting alternative to standard hash-
ing as it provides a look-up time that is constant in the worst-case
(Pagh and Rodler, 2004). In its original formulation it consists of
two hash functions and two hash tables. To store an item x, the
first hash function is used to generate a location. If the location is
already occupied by an item y, the new item x replaces the stored
item y, and the second hash function is used to generate a location
for item y in the second hash table. Should this location also be
occupied by an item z, the items are swapped, and then the first
hash function is used to generate a location for the displaced item
z in the first hash table. The process continues, alternating hash
functions and tables, until an empty location is found or a pre-
defined maximum number of iterations is reached. In the latter
case, a rehash is performed. This concept was later extended to
d-ary cuckoo hashing, i.e., d hash functions that code for alterna-
tive positions in one hash table, where the capacity threshold ch

depends on the number of hash functions: ch = 0.49, 0.91, 0.97,
0.99 for d = 2, 3, 4, 5 (Fotakis et al., 2003). In common with other
imperfect hashing schemes, i.e., where there is no guarantee that
the hash function will generate a unique location for each key, the
keys need to be stored with the items to allow identification at
look-up time. This results in an overhead of mkey per entry. To
store n entries the hash size should be at least n/ch, which entails a
total memory usage (i.e., including the memory consumption of
the stored items) of n(mkey + mval)/ch, where mval is the memory
consumption of payload per entry. In the rest of the manuscript,
we will consider tertiary cuckoo hashing schemes (ch = 0.91).

3.3.1. Neuron infrastructure
Let us first consider an alternative approach to implementing the
neuronal infrastructure. The infrastructure has two critical func-
tions, related to access and connection, respectively. Firstly, it has
to enable a rapid determination of whether a given global index
(GID) refers to a local or remote node, and return a pointer to
the node if it is local. In the original implementation of the neu-
ronal infrastructure, this functionality is ensured by a vector of
pointers to local neurons and proxies for the non-local neurons
(Figure 4A). The locality of a node with a given GID can be deter-
mined very quickly, as the GID of a node determines which index
of the vector to examine. If following the pointer results in a
non-proxy node, then by definition the node with that GID is local.
Conversely, if following the pointer results in a Proxy node, then
the node is non-local. Similarly, returning a valid pointer once a
node has been determined to be local is trivial.

Secondly, as not all neuron models support all possible con-
nection types, the neuronal infrastructure must allow the model
of a node with a given GID to be determined, independent of
whether it is local or remote. In NEST a model is a separate object
from the nodes it creates. Local nodes and Proxy nodes explicitly
store a model index (MID), which can be used to access a local
model object. Therefore, Proxy nodes can uniquely identify the
model of their remote counterparts. With access to this informa-
tion, a process can check whether a connection described in the
instruction set is valid.

One strategy to exploit the sparseness in the neuronal infra-
structure is to use look-up tables. A vector of size NM that
stores pointers to local neurons is maintained, see Figure 4B. This
is supplemented by a look-up table of size N that maps a node’s
GID to its local index in the node vector if it is local, and to
a special value if it is remote. This enables a swifter determina-
tion of node locality, as fewer indirections are involved. Returning
a valid pointer to a local neuron is also trivial in this design. To
access the type information of a non-local neuron, an additional

A B C D

FIGURE 4 | Alternative designs for the neuronal infrastructure. In all
panels M = 4, and the color of elements denotes which memory term they
contribute to: m0

n (dark green), m∅
n (mid green), m+

n (light green), mn (blue). (A)

Original implementation. A vector of length N (dark green) is maintained of
pointers to either local nodes (blue squares) or Proxy nodes (filled green
squares). (B) Look-up tables implementation. A vector of length N (dark
green) is maintained that contains the local indices in a vector of length NM

(light green) for local nodes and a special value (here ∅) for remote nodes. The
shorter vector contains pointers to the local nodes. (C) Sparse table

implementation. A vector of length ngr (dark green) is maintained of pointers
to sparse groups, that is ngr = N /sgr denotes the number of sparse groups. A
sparse group has an overhead of mgr (vertical dark green boxes) and sgr bits
(tiny dark green squares) that are set to 1 if an item is present at the given
index and 0 if it is absent. The NM/ngr local items in each group (light green
squares) are pointers to local nodes. (D) Cuckoo hashing implementation. A
hash table of size NM/ch (light green squares) is maintained that contains
pointers to local neurons as payload and also the keys of the items (i.e., the
global indices of the stored nodes).

Frontiers in Neuroinformatics www.frontiersin.org January 2012 | Volume 5 | Article 35 | 7

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Kunkel et al. Memory usage of brain-scale simulations

look-up table can be used that maps ranges of GIDs to their MID.
Usually ranges for a given MID can be expected to be quite large,
as it is substantially more convenient to create blocks of neurons
of the same model than to create them individually whilst varying
models. Thus the MID for a given GID can be obtained by per-
forming a divide-and-conquer search of a table that is expected
to be several orders of magnitude smaller than N. As the memory
consumed by the model look-up table is negligible, the memory
usage of the neuron infrastructure when using look-up tables is
given by (2) where m0

n = 4 B now accounts for the size of the data
type that stores the local index of nodes in the node look-up table,
and m+

n = 24 B accounts for the two persistent pointers to local
neurons used for access and the one persistent pointer used during
simulation. As there are no proxies, m∅

n = 0 B.
An alternative strategy is to replace the vector of pointers

to nodes and proxies with a sparse table that stores pointers to
local neurons, and represents with one extra bit whether an item is
present (local) or absent (remote). This is depicted in Figure 4C.
As with the previous strategy, this enables a swift determination
of locality and return of valid pointers to local neurons. Similarly,
this data structure must be supplemented with a model look-up
table to provide access to the models of remote nodes. The mem-
ory usage for this design is as in (2) with m0

n = mtest + mgr/sgr

where mtest = 1 bit, and sgr = 48 and mgr = 10 B are the sparse table
group size and memory overhead per group as discussed above,
m+

n = 24 B and m∅
n = 0 B.

A third strategy is to use cuckoo hashing to store the pointers
for local nodes, as shown in Figure 4D, which reduces the over-
head per neuron to m0

n = 0 B. The memory usage for this design is
therefore given by (2) with m+

n = (mkey + mval)/ch + 16 B. Here,
mkey = 4 B is the data type of the key, i.e., the GID of a node (for
ranges up to 109), mval = 8 B is the payload, i.e., the size of a per-
sistent pointer to a node, and ch = 0.91 is the capacity threshold of
the hash map as discussed above. The final term of 16 B accounts
for the two additional persistent pointers to each local neuron.
Also in this design, the total removal of proxies results in m∅

n = 0.
All three strategies remove the need for the concept of a

Proxy node which stands in for its remote counterpart to ful-
fill various roles in the simulator functionality. The ideal memory
usage for neurons would be (2) with m0

n = m+
n = m∅

n = 0,
i.e., no neuronal infrastructure to account for non-local neu-
rons and no persistent pointers required for local neurons. By
calculating the memory usage as a function of the number of
processes assuming the three strategies above, we can see to what
extent these strategies deviate from the ideal case. This is dis-
played in Figure 5. All three strategies result in reduced mem-
ory consumption with respect to the original design described
in Sec. 2.3, for all values of M. For M < 1000 both the look-
up table and the sparse table design are close to ideal. For
M > 1000, the sparse table design results in a greater reduction
of memory consumption with respect to the original implemen-
tation, and is in fact very close to optimal. The cuckoo hashing
design gives very similar results to the sparse tables design for
M < 100,000, but marginally improved results for greater num-
bers of processes (data not shown). As sparse tables and cuckoo
hashing result in a more substantial improvement in memory
consumption than look-up tables for M > 1000, we can discard
look-up tables as a design candidate. We can further conclude that

FIGURE 5 | Prediction of change in memory usage per process for

infrastructure components for different design choices with respect to

the memory usage of the original design. Percentage change of the total
memory usage for a network of NM = 1000 neurons on each process
predicted as a function of the number of processes when implementing
neuronal infrastructure as a look-up table (dark green) or a sparse table (light
green) and when implementing connection infrastructure as a hash map
with capacity threshold ch = 0.91 (solid dark orange) or a sparse table (solid
light orange). The dotted black curves show the ideal cases that there is no
memory overhead for neuronal infrastructure, m0

n = m+
n = m∅

n = 0, and no
memory overhead for connection infrastructure, m0

c + m∅
c = 0. Assuming no

optimizations to exploit sparseness are carried out, the dashed light orange
curve shows predicted change to memory usage for synapses stored in
vectors instead of deques, and the dashed dark orange curve indicates
the predicted change for synapses stored in deques, for a reduced size of
the vector containing pointers to GenericConnector objects.

the improvements to memory consumption obtained by cuckoo
hashing compared to sparse tables do not compensate for their
greater complexity. Thus, we conclude that a sparse table com-
bined with a light-weight model look-up table is the best of the
three strategies to reduce the memory footprint of the neuronal
infrastructure.

3.3.2. Connection infrastructure
The functionality that any implementation of the connection
infrastructure must deliver is as follows. Firstly, it must be able
to mediate spikes that are communicated to the process. Assum-
ing that each arriving spike event knows the GID of the neuron
that produced it (Morrison et al., 2005), the connection infra-
structure must be able to determine rapidly whether the node
corresponding to that GID has local targets. If so, it must provide
access to the synapses that communicate the spiking information
from the node to its targets. If communication between processes
is implemented such that spikes are guaranteed to be sent only to
processes on which they have targets, rather than to all processes,
this requirement can be relaxed to swift access to the local synapses
of a given node GID, without the initial determination of their
existence.

As synapses can be of heterogeneous types, in order to
allow the user to query the state of the network it must also
be possible to locate all synapses of a given type for a given
pre-synaptic node GID. The original implementation of the
connection infrastructure, as shown in Figure 6A, consists of
a vector of length N of pointers to vectors of pointers

Frontiers in Neuroinformatics www.frontiersin.org January 2012 | Volume 5 | Article 35 | 8

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Kunkel et al. Memory usage of brain-scale simulations

to GenericConnectors, one per type of synapse that the
node makes to local targets. The GenericConnectors con-
tain deques of synapses of their respective types. Therefore the
existence of local targets for a node with a given GID can easily
be determined by testing whether the pointer in the vector of
length N at index GID points to a non-empty vector. Allow-
ing access to the relevant synapses is then trivial. As the synapses
are sorted into vectors according to their types, searching
for particular synapses of a particular type for a given node is
straightforward.

Figure 5 shows that improvements in memory consumption
can be obtained by reducing the additional memory overhead
for nodes with local targets, m+

c . Storing synapses in vectors
instead of deques reduces memory consumption substantially
up to a maximum of 46% at around M = 7000, after which the
amount of improvement reduces for larger M. For M < 50,000,
this adaptation results in greater improvements to the memory
consumption than exploitation of sparseness in the neuronal or
connection infrastructure. To make this prediction, we estimated
m+

c for the case that a GenericConnector object contains
its synapses in a vector. An empty vector consumes 24 B in
comparison to 80 B for an empty deque, therefore the theoretical
value for m+

c reduces from 176 B to 120 B. However, as discussed
in Sec. 3.1, the theoretical values can substantially underestimate
the actual values; we measured m+

c = 704 B which implies that
the deque is approximately seven times larger than its theoretical
value. This is likely to be less problematic for vectors than for
deques, as the memory allocation of vectors is more straight-
forward. We therefore make a pessimistic estimate of m+

c = 264 B,
assuming that a vector also consumes seven times more mem-
ory. However, any reasonable estimate would produce qualitatively
similar results. We therefore conclude that implementing synapse
containers as vectors rather than deques is a useful step to
improve the memory consumption. A lesser degree of improve-
ment can be achieved by reducing the size of the vector of
pointers to GenericConnector objects. Instead of one entry
for each available synapse type, the length of the vector can be
reduced to the number of synapse types the source neuron actu-
ally has on the local machine. This necessitates increasing the size
of the GenericConnector object to include a synapse type
index. This adaptation results in a maximum of 6% improvement
for 7000 processes. Figure 6B illustrates the strategies for reducing
m+

c which are described above.
Disregarding potential improvements to the m+

c component,
we can also consider how to exploit the sparseness of the distri-
bution of synapses over the machine network. One possibility to
account for the increasing number of neurons without local tar-
gets is to replace the vector of length N with a sparse table,
as shown in Figure 6C. This allows very rapid determination of
whether a node has local targets; if local targets exist, access to the
corresponding synaptic connections is also swift. For nodes with
local targets, the internal structure of a vector of pointers to
GenericConnectors is maintained, to allow per-type storage
of synapses. The memory usage for this design is as in (3) with
m0

c = mtest + mgr/sgr = 2.67 bits, m+
c = 736 B, and m∅

c = 0 B.
Note that m+

c has absorbed 32 B from m0
c in the original imple-

mentation. This accounts for an empty vector (and pointer to

A B

C

D

FIGURE 6 | Alternative designs for the connection infrastructure. The
color of elements denotes which memory term they contribute to: m0

c (dark
orange), m+

c (light orange), mc (pink). (A) Original implementation. A
vector of length N (dark orange) is maintained of pointers to initially
empty vectors (dark orange boxes with single chevrons). If a node makes
a synaptic connection to a target on the local machine, the length of the
vector is extended to the number of synapse types available in the
software (light orange boxes). A GenericConnector object is initialized
for the type of the synaptic connection (large light orange box), and a
pointer to it laid at the corresponding index of the vector. The new
synaptic connection (pink box) is stored in a deque (four chevrons) within
the GenericConnector. (B) Light-weight internal structure
implementation. As in (A), but the vector of synapse types is only as long
as the number of synapse types a node actually has on the local machine,
and synapses are stored in a vector (single chevron) rather than a deque,
which decreases the size of the GenericConnector. (C) Sparse table
implementation. A vector of length ngr (dark orange) is maintained of
pointers to sparse groups, that is ngr = N /sgr denotes the number of sparse
groups. A sparse group has an overhead of mgr (vertical dark orange boxes)
and sgr bits (tiny dark orange squares) that are set to 1 if an item is present
at the given index and 0 if it is absent. The local items in each group (light
orange squares) are pointers to vectors of GenericConnector objects
and their respective deques of synapses (light orange/pink), as in (A). (D)

Cuckoo hashing implementation. A hash table of size (N − N∅
c)/ch (light

orange squares) is maintained that contains the keys of the items (i.e., the
global indices of the pre-synaptic nodes) and as payload, pointers to
vectors of GenericConnector objects and their respective deques of
synapses (light orange/pink), as in (A).

it) which is now only initialized for nodes which have local targets,
rather than all nodes.

Frontiers in Neuroinformatics www.frontiersin.org January 2012 | Volume 5 | Article 35 | 9

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Kunkel et al. Memory usage of brain-scale simulations

As with the neuronal infrastructure, an alternative design strat-
egy is cuckoo hashing. The hash table contains N − N ∅

c items,
where N ∅

c is the number of nodes with local targets, therefore
a table of size (N − N ∅

c)/ch is required. Each item consists of
a pointer to a vector of pointers to GenericConnector
objects, i.e., the same internal structure as in the original imple-
mentation. As for the neuronal infrastructure in Sec. 3.3.1, the
keys of the items, in this case the GIDs of the pre-synaptic
neurons, must be stored with the items. This is illustrated in
Figure 6D. In this case, total memory consumed by synapses
and connection infrastructure is given by (2) with m0

c = m∅
c =

0 B, m+
c = (mkey +mval)/ch +736 B where mkey = 4 B, mval = 8 B,

and ch = 0.91.
The ideal memory usage would be for the case that there was

no infrastructure overhead for neurons without local targets, i.e.,
as in (3) with m0

c = 0, m+
c = 736 B, and m∅

c = 0 B. Figure 5
shows the predicted deviations of the sparse tables and cuckoo
hashing strategies from the ideal case as a function of the number
of processes M. For M < 4000 neither strategy improves memory
consumption with respect to the original implementation; sparse
tables require approximately the same amount of memory, and
cuckoo hashing requires slightly more. This is because, unlike the
situation with the neuronal infrastructure, there is no sparseness to
be exploited on small numbers of processes. Assuming each node
selects K pre-synaptic source nodes from a total of N nodes dis-
tributed evenly on M machines, the probability that a given node
has no targets on a given machine is p∅ = (1 − 1/N)NK/M . With
K = 10,000 and N ranging between 105 and 3 × 108 as in Figure 5,
5% of the connection infrastructure is empty for M = 3338, 50%
of the connection infrastructure is empty for M = 14,427,and 95%
of the connection infrastructure is empty for M = 194,957. For
M < 350,000 the sparse table design results in a greater improve-
ment to the overall memory consumption with respect to the
original implementation than the cuckoo hashing design, and is in
fact close to ideal. For larger values of M, the cuckoo hashing design
results in marginally better memory consumption. Due to the
better performance of the sparse table implementation for num-
bers of processes in the relevant range and the greater complexity
of cuckoo hashing, we conclude that a sparse table is the better
of the two designs for exploiting sparseness in the connection
infrastructure for M > 3000.

3.4. ANALYSIS OF LIMITS ON NETWORK SIZE
In this section, we investigate to what extent the improvements to
the memory consumption identified in Sec. 3.3.1 and Sec. 3.3.2
increase the maximum problem size that can be represented on a
given machine. Table 1 summarizes the parameters of the mem-
ory consumption model for the original implementation (see Sec.
2.2) and the parameters after adaptation of the data structures.
The adapted values are for the case that sparse tables are used
to implement neuronal and connection infrastructure. Moreover,
synapses are contained in vectors rather than deques, and
the length of the vector of pointers to GenericConnector
objects has been reduced as suggested in Sec. 3.3.2. The empirical
memory measurements for the adapted data structures are car-
ried out as described in Sec. 3.1. The memory consumption for a
neuron and synapse remain constant, mn = 1072 B and mc = 48 B.

Once again, we see that the empirical value for m+
c (136 B) exceeds

the theoretical value (96 B) due to the presence of a dynamic data
structure, but the discrepancy for a vector is not as large as that
for a deque in the original implementation. The empirical value
for m0

n is less than the theoretical value whereas the empirical value
for m0

c is greater, although they are measuring the overhead of the
same type of data structure. This is likely to be due to the limits of
measurement accuracy, as the expected value is so small.

Figure 7A shows the predicted memory required for the infra-
structure components and the total memory consumption as a
function of the number of processes M for two networks. With
1056 neurons on each process, the maximum network size is
7.8 × 107, which just fits on 73,728 processes with 2 GB RAM each,
i.e., using one core per machine node of JUGENE. Using the origi-
nal implementation, the largest network that could be represented
with 1056 neurons per process would be 1.7 × 106 neurons on
1642 processes with 2 GB RAM each. With a load of 129 neurons
on each machine, a maximum network size of N = 9.5 × 106 is
predicted (see Figure 3). Thus, the maximum network size that
can be represented on the available machine has increased by
an order of magnitude. In addition, the improved infrastructures
allow a much more effective use of the entire machine. A network
of 5.9 × 107 neurons can be distributed over all 294,912 cores
of JUGENE (0.5 GB RAM each) with a load of 201 neurons per
core (Figure 7). For the original implementation, the maximum
network size that could be represented on the entire machine is
3.1 × 106 neurons with a load of 10 neurons per core, thus the
adaptations have increased the size of the network representable
on the entire machine by a factor of nearly twenty.

The memory consumption model accurately predicts the actual
memory usage of NEST. Figure 7B shows the memory required per
process for a simulation in which each neuron receives 10,000 ran-
domly chosen inputs. As predicted, the largest network that could
be represented on JUGENE using the original implementation
contains 9.5 × 106 neurons distributed over 73,728 processes with
2 GB RAM each. The measured memory consumption for the cor-
responding weak scaling experiment with 129 neurons per process
is well fitted by the theoretical prediction. As for the previous mea-
surements, these results are obtained on a single core by falsely
instructing the application that it is one of M processes. Thus,
it only creates the desired N /M local neurons, but all infrastruc-
tures are initialized on the assumption that there are an additional
N − N /M neurons on remote processes. When using the adapted
implementation, the maximum network size on 73,728 processes
increases to 7.8 × 107 neurons. The memory consumption for the
corresponding weak scaling experiment with 1056 neurons per
process is well fitted by the theoretical prediction for M > 2000.
For smaller numbers of processes, the model underestimates the
true memory consumption. This is due to the vectors con-
taining the synapses doubling their size when they are filled past
capacity, thus allocating more memory than is strictly needed. As
the number of local synapses per source neuron decreases, the
vectors are more optimally filled, leading to a convergence of
the measured memory consumption to the theoretical prediction.
A better fit can be obtained by accounting for the sub-optimal fill-
ing of vectors in the model, but as we are more concerned with
correct prediction of the model for large numbers of processes, we

Frontiers in Neuroinformatics www.frontiersin.org January 2012 | Volume 5 | Article 35 | 10

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Kunkel et al. Memory usage of brain-scale simulations

Table 1 | Parameters of the memory model. The theoretically and empirically determined parameters of (2) and (3) for the original implementation and

the adapted implementation. All empirical values in bytes given to the nearest multiple of eight; empty entries indicate that the corresponding theoretical

value was assumed to be accurate to enable determination of other parameters in that row.

m0
n m∅

n m+
n m0

c m∅
c m+

c

ORIGINAL

Theory 16 B 56 B 8 B 32 B 0 B 176 B

Actual – 56 B – 32 B – 704 B

ADAPTED

Theory 2.67 bits 0 B 24 B 2.67 bits 0 B 96 B

Actual 1.38 bits – – 1.38 B – 136 B

omit this extension of the model for the sake of simplicity. Note
that this effect does not occur for the original implementation,
as the synapses are stored in deques, which allocate memory in
constant-sized blocks.

The shallow slope of the memory consumption curve for the
adapted implementation means that doubling the number of avail-
able processes will approximately double the size of the network
that can be represented to 1.5 × 108. In sharp contrast, the steep
slope of the memory consumption curve for the original imple-
mentation means that doubling the machine size would only
increase the size of the maximum network to 1.2 × 107, a factor of
1.3.

The adaptations to the data structures alter not only the
absolute memory usage of the various components of NEST, but
also the relative usage. Figure 8 shows the proportion of the total
memory consumed by each of the components in the original and
the adapted implementation. The cross-over point at which the
neuronal infrastructure requires more memory than the synapses
is eliminated in the adapted implementation; the memory con-
sumption for the neuronal infrastructure is essentially negligible
for a large range of processes, having been reduced to under 3 bits
per node. The point at which the memory usage of the connection
infrastructure is greater than that of the synapses is shifted from
M = 700 for the original implementation to M = 4000 for the
adapted implementation. However, even this shifted value is com-
paratively low with respect to the number of processes available
on a large Blue Gene machine. At M = 200,000, the connection
infrastructure accounts for nearly 70% of the total memory usage,
synapses for just over 20%, and neurons approximately 5%. It is
therefore clear that any further increases to the maximum net-
work size that can be simulated on a machine with in the order
of 100,000 processes can only be achieved by further reducing
the overhead for the connection infrastructure. Given that the
connection infrastructure also exploits the sparseness of the dis-
tribution of synapses over the processes, the question arises of
why it is still the dominant memory component for large M. The
answer is that although the first term of (3) has also been reduced
to less than 3 bits per node and so is negligible, the third term
(N − N ∅

c)m+
c is not. This term expresses the memory consump-

tion of the data structure containing the synapses with local targets,
which is comparatively large, m+

c = 136 B.
The potential benefits of reducing m+

c are illustrated in
Figure 9, which shows the largest network size that could be rep-
resented as a function of the number of processes. The original

implementation shows a saturating behavior, whilst the adapted
implementation shows an approximately linear relationship. The
ideal case is that there is no memory overhead for neuronal or
connection infrastructure. By reducing the overhead for neurons
with local targets from m+

c = 136 B to 16 B, a close to optimal per-
formance could be achieved. Therefore we can conclude that the
next priority for reducing memory consumption should be opti-
mizing this aspect of the connection infrastructure, rather than
reducing the sizes of the neuron and synapse objects themselves,
or attempting to further exploit sparseness in the data structures.

4. DISCUSSION
Saturation of speed-up at distressingly low numbers of processes
is a very common experience when parallelizing an initially serial
application, occurring when the contribution of the serial compo-
nent of an algorithm to the total computation time outweighs that
of the parallel component. Here, we consider the analogous prob-
lem of saturation of the available memory, which occurs when
serial components of data structures consume all the memory
available for each process, such that increasing the number of
processes available does not increase the size of the problem that
can be represented. The shift from saturation in computation time
to saturation in problem size may be a characteristic of technologi-
cal progression: an algorithm that performs perfectly well in a serial
program may be poorly designed with respect to later paralleliza-
tion, i.e., has large serial computational overhead. Re-designing
algorithms with the previously un-dreamed-of parallelization in
mind results in better parallel algorithms and extends the realm of
scalability to much higher numbers of processes. When trying to
extend the realm of scalability to ever larger problems and cluster
sizes, a data structure design that performs perfectly well on the
moderate scale may turn out to be poorly designed with respect to
massive parallelization, i.e., it contributes a substantial serial term
as well as a parallel term to the total memory usage. The serial
overhead is not noticeable or problematic on moderate scales, but
becomes dominant on large scales, resulting in a constant term
in strong scaling investigations and a linear term in weak scaling
investigations.

To analyze this problem in a systematic fashion, we developed
a model for the memory consumption of a neuronal simulator
which allows us to separate serial and parallel contributions. In
this manuscript we apply the model to understanding and improv-
ing the memory consumption of NEST (Gewaltig and Diesmann,
2007). This entails taking the constraints of NEST’s fundamental

Frontiers in Neuroinformatics www.frontiersin.org January 2012 | Volume 5 | Article 35 | 11

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Kunkel et al. Memory usage of brain-scale simulations

A

B

FIGURE 7 | Prediction and measurement of total memory usage per

process. (A) Predicted memory usage as a function of the number of
processes for a network of NM = 1056 neurons on each machine such that
N = 7.8 × 107 just fits on M = 73,728 processes with 2 GB RAM each. Solid
curves indicate the memory usage for the adapted implementation, and
dashed curves the original implementation. Usage shown for neuronal
infrastructure (dark green), connection infrastructure (dark orange), and total
memory (black). Dashed curves indicate memory consumption predicted
using the original data structures to implement infrastructure. The light
orange curve indicates the memory consumption of the connection
infrastructure and the light gray curve indicates the total memory
consumption for a network with NM = 201 neurons such that N = 5.9 × 107

just fits on M = 294,912 processes with 0.5 GB RAM each. (B) Measured
memory usage as a function of the number of processes. Original
implementation: memory consumption for a network of NM = 129 neurons
on each machine such that N = 9.5 × 106 just fits on 73,728 processes
(open circles). Adapted implementation: memory consumption for a
network of NM = 1056 neurons on each machine such that N = 7.8 × 107 just
fits on 73,728 processes each (filled circles). The theoretical predictions of
memory consumption for these networks are given by the dashed and solid
curves, respectively.

design into consideration, for example that it must be possible
to determine the model of every node, regardless of locality, and
that spikes are distributed to all processes and then dispatched by
the local synapses. However, the expressions are general enough
to be used for any neuronal simulator, in particular those devel-
oped to simulate networks of complex compartmental neuron
models. For a given simulator, the data structures of the simulator
must be analyzed to determine which objects contribute to which
parameters of the memory model. If a simulator has different

FIGURE 8 | Relative memory consumption per process as

a function of the number of processes. Fraction of total memory
consumption predicted for the following components: NEST and MPI (gray),
synapses (pink), connection infrastructure (orange), neuron infrastructure
(green) for the case that the number of neurons per process is set to
NM = 1000. Upper panel: original implementation. Lower panel: adapted
implementation.

FIGURE 9 | Prediction of maximum network size as a function of the

number of processes. Original implementation (dashed curve), adapted
implementation with m+

c = 136 B (solid dark gray curve), adapted
implementation assuming m+

c = 16 B (solid light gray curve). The dotted
curve indicates the predicted maximum network size for the ideal case, i.e.,
no overhead for neuronal or connection infrastructure (m0

n = m∅
n = m+

n =
m0

c = m∅
c = m+

c = 0). Curves are based on the assumptions of 2 GB RAM
per process and 10,000 incoming connections per neuron.

Frontiers in Neuroinformatics www.frontiersin.org January 2012 | Volume 5 | Article 35 | 12

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Kunkel et al. Memory usage of brain-scale simulations

underlying constraints from NEST, this will reduce or expand the
range of possible data structures that can be considered as alterna-
tive designs. The role of the model is to evaluate the consequences
of potential design choices in terms of memory consumption, not
to identify the range of possible solutions. Moreover, the principles
are applicable to any distributed application that needs to main-
tain a large number of objects, although in such cases the terms of
the memory model would have to be adapted.

By empirically determining the parameters of the model, we
found that the theoretical values for the memory consumption
of some data structures underestimate their actual memory con-
sumption. In particular, dynamic data structures typically use
more memory than would be predicted by the sum of the size
of the empty structure and the size of their contents, due to the
dynamic allocation of memory. The additional memory overhead
of dynamic data structures depends on their type and size. A
deque from the C++ standard template library typically allo-
cates a section of memory that is substantially bigger than that
needed to store a single element. As further elements are stored, the
total memory consumed does not increase until all that memory
is filled. It then allocates another section of the same size. There-
fore, deques are not a good choice for storing small numbers of
elements if conserving memory is important. The typical strategy
for a vector from the standard template library is to initially
allocate little or no memory for storage. When the capacity of
the vector is exceeded, the memory allocation is doubled. As a
result, vectors are memory efficient for storing small numbers
of items, but for large numbers the difference between the allo-
cated memory and the desired memory can be quite substantial.
This discrepancy can be eliminated if the number of items to be
stored is known in advance. At present, network models tend to
be expressed in terms of connection probabilities or distributions
of the number of incoming or outgoing synapses. Consequently,
whereas it is generally possible to predict the number of neurons in
a network model, the same is not true for the number of synaptic
connections a neuron makes to targets on a specific machine.

Using the empirically parameterized model, we found that the
ranking of components of the simulator with respect to their mem-
ory consumption varied with the numbers of processes. For tens to
hundreds of processes, synaptic connections account for most of
the memory consumption in a fixed size problem. At around 700
processes, the connection infrastructure that allows the synapses
to be stored and accessed becomes the most dominant component,
followed by the neuronal infrastructure at around 7000 processes.
This analysis revealed that serial terms of the infrastructure com-
ponents cause a saturation in the scalability of the simulator with
respect to memory consumption.

As well as analyzing the memory consumption for the imple-
mented data structures, we showed that the technique can also
be applied to predicting memory consumption for alternative
designs. These two features enable us to determine, in a princi-
pled fashion, which components are the highest priority to be
improved, and which of multiple competing design strategies will
be most effective. By comparing the memory consumption of
potential designs to ideal cases, i.e., where there is no overhead for
infrastructure, it is also possible to determine if there is anything
more to be gained by improving a given data structure.

Whereas this approach would be useful for any range of
processes, it is particularly helpful for large values of M. With-
out a principled approach to analyzing memory consumption as
described here, developers are reduced to assumptions and intu-
ition. These can both be misleading, especially for extremely large
numbers of objects with a high degree of sparseness, resulting in
long development cycles and wasting precious time allocations on
supercomputers.

In the case of NEST, we discovered that exploiting sparse-
ness in the neuronal and connection infrastructures was the most
promising way to reduce memory usage, rather than, for exam-
ple, reducing the size of neurons or synapses. It turned out that
a design based on sparse tables results in greater improvements
to the memory consumption than one based on look-up tables.
A design based on cuckoo hashing consumes a similar amount of
memory to a sparse table design, but is more complex. Therefore,
we selected sparse tables as the most memory efficient strategy to
exploit sparseness. Reducing the memory overhead for neurons
with local synapses m+

c was also useful, indeed for architectures
with a number of processes less than 50,000, this is the single most
effective way to reduce memory consumption. Taken together,
these adaptations increased the maximum network size that can be
represented on the JUGENE supercomputer by an order of magni-
tude. This is assuming a high number of synapses per neuron – our
calculations are based on K = 10,000 throughout. Clearly, a lower
value would allow larger networks to be represented. Similarly,
the assumption of random connectivity represents a worst-case,
as it results in neurons typically having zero or one synapses on a
given process. Topological considerations that result in fewer and
longer lists of outgoing synapses for a given source neuron will also
decrease the memory consumption, and so allow larger problems
to be represented.

Meso- and macroscale simulations will for the next 10 years
be bound to very large scale hardware, where scientists depend
on using the architectures they have access to at computer cen-
ters. To be a useful tool, freely available simulators such as NEST
need to work efficiently across a range of such architectures, as
opposed to being optimized for a given architecture (e.g., Anan-
thanarayanan and Modha, 2007). This requires them to have a
design that allows infrastructure optimizations without affecting
user- and model-developer interfaces, models of the software, e.g.,
its memory consumption as developed here, to provide an under-
standing of bottlenecks and help in prioritizing optimizations, and
a modular design that separates concerns as much as possible. The
benefit of such a modular design is adequately demonstrated by
the fact that we could perform all the described adaptations with-
out requiring any changes at the user or model-developer level.
Ultimately, the increasing range of hardware sizes may demand
greater flexibility in the design of data structures, such that the
size of the hardware determines which data structures are used
at either compile or run-time. In the absence of the constraint
of flexibility across architectures, a further use of the memory
model is to help prioritize development resources with respect to
a particular intended problem or machine. For example, for max-
imum cluster sizes below 10,000, exploiting sparseness could be
considered a priority for the neuronal infrastructure but not for
the connection infrastructure (see Figure 5).

Frontiers in Neuroinformatics www.frontiersin.org January 2012 | Volume 5 | Article 35 | 13

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Kunkel et al. Memory usage of brain-scale simulations

Irrespective of the range of M for which the application should
exhibit good performance, in general, trade-offs must be nego-
tiated between memory consumption and computation time.
Current trends indicate that hardware will move to increasingly
multicore designs with massive processing power and limited and
slow memory. Our adaptations here reflect this trend, as we replace
algorithmically simple but memory-demanding representations
with compact, but algorithmically more complex representations.
For example, storing data in a hash table rather than a vector
requires applying the hash function to the item key to determine
its location in the table, which is computationally more expen-
sive. Similarly, one can imagine a design where synapses are not
addressable by the index of the pre-synaptic neuron, as in all
potential designs considered here, but in a contiguous block of
all synapses of the same type. This would reduce the memory
overhead for neurons with local targets substantially, but would
necessitate additional indirections or a searching strategy to locate
the outgoing synapses for a given neuron and thus may increase the
run-time. On the other hand, reducing the memory footprint can
increase cache efficiency and thus decrease the run-time, despite
additional indirections. The model we have proposed here does
not account for computation time, and thus cannot predict these
effects.

In Morrison et al. (2005) we presented the data structures and
algorithms that allow networks in the order of 105 neurons with
109 synapses to be routinely simulated on small clusters. As a result,
local cortical networks with realistic connectivity and sparseness
could be studied for the first time. Here, we develop adapta-
tions to those data structures that allow networks of the order
of 107 neurons and 1011 synapses to be simulated on a popular
modern supercomputer architecture, the Blue Gene, whose char-
acteristics are a very large number of processors and a modest
amount of RAM per core. These advances allow networks with
macroscopic connectivity to be studied, in which some functional
circuits are closed and the majority of synapses are accounted
for. Networks of 108 neurons and 1012 synapses are also real-
izable, by either increasing the number of cores available, or
reducing the overhead for neurons with local targets m+

c , see
Figure 9.

However, we are then still about three orders of magnitude away
from the human brain. What are the next challenges, assuming the
trends of increasing number of cores but low RAM per core con-
tinue? If 1 GB per core is a reasonable prediction of the amount
of memory available for each core, the next decisive barrier is at
109. Although we have reduced the serial overhead in the neu-
ronal and connection infrastructure to a matter of a few bits by
using sparse tables, when the number of neurons approaches the
number of bytes available in a core’s RAM, these serial terms will
dominate the total memory consumption and cause the maximum
network size to saturate. Therefore, data structures must be imple-
mented that eradicate any serial overhead, at the cost of a greater
number of computational operations required to test whether neu-
rons are local or have local targets, and also to access the objects
that are stored locally. By this size the degree of sparseness is so
great that all-to-all communication would be extremely inefficient.
A more sophisticated approach to route the exchange of spikes
between neurons on different processes will be necessary, for exam-
ple by mapping the topology of the model network to that of the
underlying machine architecture (see Kozloski and Wagner, 2011).

Between 109 and 1011 neurons, the full size of the human brain,
no decisive barrier is expected according to our model; greater net-
work sizes should be realizable by increasing the machine size. In
this regime the communication mechanisms are likely to become
the cause of saturation, analogous to the serial terms in the mem-
ory consumption of data structures between 105 and 107 neurons
and the parallelizability of simulation algorithms between 103 and
105 neurons.

ACKNOWLEDGMENTS
This study was conceived with our late colleague and friend
Rolf Kötter. We dedicate this work to him. Partially funded
by JUGENE Grant JINB33, BMBF Grant 01GQ0420 to BCCN
Freiburg, EU Grant 15879 (FACETS), EU Grant 269921 (Brain-
ScaleS), DIP F1.2, the Helmholtz Alliance on Systems Biol-
ogy (Germany), the Next-Generation Supercomputer Project of
MEXT (Japan), the Research Council of Norway under grant
178892/V30 (eNeuro), Neurex, and the Junior Professor Program
of Baden-Württemberg.

REFERENCES
Ananthanarayanan, R., Esser, S. K.,

Simon, H. D., and Modha, D. S.
(2009). “The cat is out of the bag:
cortical simulations with 109 neu-
rons and 1013 synapses,” in Super-
computing 09: Proceedings of the
ACM/IEEE SC2009 Conference on
High Performance Networking and
Computing, Portland, OR.

Ananthanarayanan, R., and Modha, D.
S. (2007). “Anatomy of a corti-
cal simulator,” in Supercomputing
2007: Proceedings of the ACM/IEEE
SC2007 Conference on High Per-
formance Networking and Comput-
ing (New York, NY: Association for
Computing Machinery).

Dietzfelbinger, M., Karlin, A.,
Mehlhorn, K., Meyer auf der

Heide, F., Rohnert, H., and Tarjan,
R. E. (1994). Dynamic perfect
hashing: upper and lower bounds.
SIAM J. Comput. 23, 738–761.

Fotakis, D., Pagh, R., Sanders, P., and
Spirakis, P. (2003). “Space effi-
cient hash tables with worst case
constant access time,” in STACS
2003, Vol. 2607 of Lecture Notes
in Computer Science, eds H. Alt
and M. Habib (Berlin: Springer),
271–282.

Gewaltig, M.-O., and Diesmann, M.
(2007). NEST (Neural Simulation
Tool). Scholarpedia 2, 1430.

Izhikevich, E. M., and Edelman, G. M.
(2008). Large-scale model of mam-
malian thalamocortical systems.
Proc. Natl. Acad. Sci. U.S.A. 105,
3593–3598.

Kozloski, J., and Wagner, J. (2011).
An ultrascalable solution to large-
scale neural tissue simulation.
Front. Neuroinform. 5:15. doi:
10.3389/fninf.2011.00015

Kunkel, S., Potjans, T. C., Abi-
gail, M., and Markus, D. (2009).
“Simulating macroscale brain cir-
cuits with microscale resolution,”
in Frontiers in Neuroscience Confer-
ence Abstract: Neuroinformatics 2009.
doi: 10.3389/conf.neuro.11.2009.08.
044.

Lytton, W. W., and Hines, M. L. (2005).
Independent variable time-step inte-
gration of individual neurons for
network simulations. Neural Com-
put. 17, 903–921.

Migliore, M., Cannia, C., Lytton, W. W.,
Markram, H., and Hines, M. (2006).

Parallel network simulations with
NEURON. J. Comput. Neurosci. 21,
119–223.

Morrison, A., Aertsen, A., and Dies-
mann, M. (2007). Spike-timing
dependent plasticity in balanced
random networks. Neural Comput.
19, 1437–1467.

Morrison, A., Mehring, C., Geisel,
T., Aertsen, A., and Diesmann,
M. (2005). Advancing the bound-
aries of high connectivity net-
work simulation with distributed
computing. Neural Comput. 17,
1776–1801.

Pagh, R., and Rodler, F. F. (2004).
Cuckoo hashing. J. Algorithms 51,
122–144.

Pecevski, D., Natschläger, T., and
Schuch, K. (2009). PCSIM: a

Frontiers in Neuroinformatics www.frontiersin.org January 2012 | Volume 5 | Article 35 | 14

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Kunkel et al. Memory usage of brain-scale simulations

parallel simulation environment for
neural circuits fully integrated with
python. Front. Neuroinform. 3:11.
doi:10.3389/neuro.11.011.2009

Plesser, H. E., Eppler, J. M., Mor-
rison, A., Diesmann, M., and
Gewaltig, M.-O. (2007). “Efficient
parallel simulation of large-scale
neuronal networks on clusters of
multiprocessor computers,” in Euro-
Par 2007: Parallel Processing, Vol-
ume 4641 of Lecture Notes in Com-
puter Science, eds A.-M. Kermar-
rec, L. Bougé, and T. Priol (Berlin:
Springer-Verlag), 672–681.

Potjans, T. C., and Diesmann, M.
(2011). The cell-type specific
connectivity of the local cortical
network explains prominent
features of neuronal activ-
ity. Neurons Cogn. arXiv:1106.
5678.

Silverstein, C. (2005). Implemen-
tation of sparse_hash_map,
dense_hash_map, and sparsetable.
Available at: http://google-sparse
hash.googlecode.com/svn/trunk/
doc/implementation.html

Sporns, O., Tononi, G., and Kötter,
R. (2005). The human connectome:

a structural description of the
human brain. PLoS Comput. Biol.
1, e42. doi:10.1371/journal.pcbi.
0010042

Conflict of Interest Statement: The
authors declare that the research was
conducted in the absence of any
commercial or financial relationships
that could be construed as a potential
conflict of interest.

Received: 28 July 2011; accepted: 09
December 2011; published online: 24 Jan-
uary 2012.

Citation: Kunkel S, Potjans TC, Eppler
JM, Plesser HE, Morrison A and Dies-
mann M (2012) Meeting the mem-
ory challenges of brain-scale network
simulation. Front. Neuroinform. 5:35.
doi: 10.3389/fninf.2011.00035
Copyright © 2012 Kunkel, Potjans,
Eppler , Plesser , Morrison and Diesmann.
This is an open-access article distributed
under the terms of the Creative Commons
Attribution Non Commercial License,
which permits non-commercial use, dis-
tribution, and reproduction in other
forums, provided the original authors and
source are credited.

Frontiers in Neuroinformatics www.frontiersin.org January 2012 | Volume 5 | Article 35 | 15

http://dx.doi.org/10.3389/neuro.11.011.2009
http://google-sparsehash.googlecode.com/svn/trunk/doc/implementation.html
http://dx.doi.org/10.1371/journal.pcbi.{\penalty -\@M }0010042
http://dx.doi.org/10.3389/fninf.2011.00035
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive
http://creativecommons.org/licenses/by-nc/3.0/

	Meeting the memory challenges of brain-scale network simulation
	Introduction
	Materials and methods
	Model of the memory usage of a neuronal network simulator
	Identification of simulator components contributing to memory consumption terms
	Theoretical determination of the model parameters

	Results
	Empirical parameter estimation
	Analysis of memory consumption
	Evaluation of design strategies
	Neuron infrastructure
	Connection infrastructure

	Analysis of limits on network size

	Discussion
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

