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INTRODUCTION

There is a growing interest in the neuroscience of aging. Magnetic
resonance imaging (MRI) has become a promising and versatile
technique for non-invasive in vivo measurement of the morpho-
logical changes the brain undergoes in aging and dementia. The
fast emerging field of computational morphometry offers imaging
methods that quantify a variety of anatomical features of aging
brains (Toga and Thompson, 2003; Mietchen and Gaser, 2009).
In addition, semi-automated voxel- and surface-based processing
techniques afford developmental studies of large representative
samples of healthy or clinical populations with high economy of
time, no rater bias, and high sensitivity. The field of lifespan psy-
chology (LP) provides a conceptual framework to describe the
changes of brain and behavior during human ontogenesis (Baltes
et al., 1999). The core assumption is that the brain and behavior
keep on developing during the entire lifespan. Moreover, it empha-
sizes that development and aging can be studied with respect to the
following aspects: (1) multidimensionality, (2) multidirectionality,
and (3) inter-individual differences.

For our purposes, multidimensionality (1) states that exam-
ining brain structural development and aging using MR mor-
phometry is a high-dimensional problem in modalities and space
(i.e., brain regions). Application of different MR pulse sequences,

The aging brain’s structural development constitutes a spatiotemporal process that is acces-
sible by MR-based computational morphometry. Here we introduce basic concepts and
analytical approaches to quantify age-related differences and changes in neuroanatom-
ical images of the human brain. The presented models first address the estimation of
age trajectories, then we consider interindividual variations of structural decline, using a
repeated measures design. We concentrate our overview on preprocessed neuroanatom-
ical images of the human brain to facilitate practical applications to diverse voxel- and
surface-based structural markers. Together these methods afford analysis of aging brain
structure in relation to behavioral, health, or cognitive parameters.

Keywords: aging, brain morphometry, modeling, inter-individual differences, longitudinal analysis, multivariate

segmentation techniques, voxel- or surface-based processing, and
fiber tracking afford the acquisition of a large variety of structural
brain markers (Toga and Thompson, 2003; Assaf and Pasternak,
2008; Mietchen and Gaser, 2009). Thus, age effects can be stud-
ied in local gray matter volume using voxel-based morphometry
(VBM), cortical thickness by surface-based morphometry (SBM),
white matter properties by magnetization transfer (MT) imag-
ing and multi-echo T2-weighted sequences, and the integrity of
fiber connections by diffusion tensor imaging (DTIL; for review,
see Raz and Rodrigue, 2006; Gunning-Dixon et al., 2009; Fjell
and Walhovd, 2010). In addition, there is an increasing num-
ber of studies that aim at combining information from differ-
ent modalities in order to explore the underlying processes of
age-related brain structural changes (Westlye et al., 2010; Dra-
ganski et al., 2011). At the same time, most computational and
semi-automated methods provide anatomical markers in 3D
volume- or 2D surface space that obtain resolutions in the range
of millimeters. The advantage of this “quasi-continuous” mea-
surement is the sensitive detection of age-related effects with-
out the restriction of any a-priori assumptions regarding loca-
tion and spatial extent. The existing studies reveal a heteroge-
neous regional pattern of age effects over the lifespan (Raz and
Rodrigue, 2006; Raz and Kennedy, 2009; Walhovd et al., 2009;

Frontiers in Neuroinformatics

www.frontiersin.org

March 2012 | Volume 6 | Article 3 | 1


http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/about
http://www.frontiersin.org/Neuroinformatics/10.3389/fninf.2012.00003/abstract
http://www.frontiersin.org/Community/WhosWhoDetails.aspx?UID=43517&d=1&sname=GabrielZiegler&name=Science
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?UID=5039&sname=ChristianGaser
mailto:gabriel.ziegler@uni-jena.de
http://www.loni.ucla.edu/ADNI
http://adni.loni.ucla.edu/wp-content/uploads/how_to_apply/ADNI_Authorship_List.pdf
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Ziegler et al.

Models of brain aging

Fjell and Walhovd, 2010) indicating region-specific processes in
structural brain aging.

Modeling the trajectories of neuroanatomical markers’ growth
and/or decline as a function of age, studies have observed sub-
stantial variation in directions of change (Raz and Kennedy, 2009;
Fjell and Walhovd, 2010). This multidirectionality (2) of brain
aging is expressed by annual rates of decline in structural aspects
of aregion such as local gray matter volume, cortical thickness, etc.
In addition, the local rates of decline allow to estimate the extrap-
olated loss of brain structural integrity across the adult lifespan.
A related question is whether structural aging accelerates with
advancing ages. There is evidence that annual rates of decline
may exhibit substantial changes over decades (Ziegler et al., 2011).
Consequently, an age trajectory’s functional form could poten-
tially contain information about qualitatively different phases (e.g.,
increase, plateau, decline) and the timing of structural develop-
ment and degradation (Raz et al., 2005; Fjell and Walhovd, 2010).

The third aspect of development across the lifespan is related
to the ongoing reciprocal interaction between the individual
ontogeny and its surrounding biocultural context (for a concep-
tual framework, see Baltes et al., 2006). It is assumed that structure
and function of a subject’s brain (at a certain age) depends on the
individual genetic code, its unique learning experience, and the
past and currently prevailing inner- and extraorganismic envi-
ronment. As a consequence of cumulative effects over the lifespan,
one would expect substantial inter-individual differences (3) in the
micro- and macrostructural architecture in the brains of elderly
people even at the same age. Exploring these individual differ-
ences in healthy, prodromal, and pathological forms of age-related
change is a major challenge for neuroimaging studies.

An important research issue still is the identification of pro-
tective and risk-inducing factors. That is, which contributors and
modifiers do protect or harm integrity of brain structure, func-
tion, and cognitive abilities into an advanced age. This perspective
has motivated a large number of studies addressing the specific
role of structural brain markers for normative age-related cogni-
tive decline observed in healthy elderly people (Raz and Kennedy,
2009; Salthouse, 2011). However, there is still a lack of longitu-
dinal studies that relate intra-individual changes of whole brain
morphology at a local level to covariates and predictors, such as
cognitive abilities (Raz and Lindenberger, 2011; Salthouse, 2011).
There is also a potential for improvement by applying multivari-
ate models to analyze age differences and intra-individual change
(Bray et al., 2009; Salthouse, 2011).

In this paper we overview basic analytical approaches to study
core aspects of age-related differences and individual changes in
MR-based morphometry. This suggests practical application to a
multitude of voxel- and surface-based markers that reveal struc-
tural dynamics in the temporal range of months to several decades
of the lifespan. We close with a discussion of limitations and
opportunities for further improvement.

AGE-RELATED EFFECTS, TRAJECTORIES, AND REGRESSION

Much of the research on aging cognition and brain structure
uses a cross-sectional study design. Usually this refers to single
MRI acquisitions of individuals, covering a certain age range over
the lifespan. Organization, collection, preprocessing, and analysis

costs are comparably moderate, which makes it generally attractive
for many research settings and also substantially increases avail-
able sample sizes. In this section we further discuss analysis of a
single cross-sectionally sampled and preprocessed MR-based neu-
roanatomical marker (e.g., gray matter volume or cortical thick-
ness) that has been normalized (or warped) to either a voxel- or
surface-based reference template respectively and smoothed after-
ward (see Mietchen and Gaser, 2009). For making inferences about
age effects it is important to assume that all applied preprocess-
ing techniques are completely age-unbiased. We take m subjects’
morphometry datasets, each having # structural features that cor-
respond to voxels or vertices of a reference template. We arrange
this dataset to the m x n brain structure matrix ¥ with entries y;;
(using observations in rows and voxels- or vertices in columns)
and the corresponding subject ages in the m x 1 column vector
age = [age;, agey, . . ., agem] T Unless otherwise specified bold face
letters denote either matrices (e.g., M) or column vectors (e.g., m)
of observed or estimated deterministic data. The corresponding
non-boldface letters denote stochastic random vectors (e.g., Y) or
random variables (e.g., ¥).

GENERATIVE AND RECOGNITION MODELS OF AGE

Regarding the modeling of an aging brain structure, we would first
like to emphasize a valuable distinction of applied techniques into
generative and recognition models (see Figure 1; Friston and Ash-
burner, 2004; Friston et al., 2008). Both quantify how causes or
experimental factors (e.g., pathology, mental states, developmen-
tal stage etc.) can be related to differences in brain measures (e.g.,
MRI/fMRI). Importantly, they strongly differ in the directions of
prediction and inference, and modeling of errors. Thus generative
and recognition models yield to specific applications in structural
brain aging research.

Generative Models: A generative (or forward) model predicts
the brain structural differences Y as some parametric function G
of age, i.e., Y= G(age, B). We apply parameters p that perform
best in prediction of sample brain data based on subjects’ ages.

Y = G(age,p})

(e.g. parametric - polynomial, nonparametric - smoothing splines)

uni-/multivariate

developmental optimize f8 imaging data
status (e.g. age) (hyper-)parameter (e.g. MRI, DT, fMRI)

W

age = R(Y,B)
(e.g. SVR, RVR,GPR)

FIGURE 1 | Schematic illustration of generative and recognition
models of age. A generative model G predicts the brain structural
differences Y as a univariate or multivariate parametric function of age (top).
Conversely, recognition models R predict individual's age or age-group
based on brain differences Y (bottom). According to the multidirectionality,
age trajectories are not assumed to be strictly increasing or decreasing
functions of age, e.g., inverted-U shaped. Consequently, in case of
continuous age, these univariate recognition models are not reasonable
(see also Friston and Ashburner, 2004).
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Building a generative model of Y requires a-priori information
and assumptions regarding how the brain structure is explicitly
related to age. For instance one assumes whether G contains linear,
polynomial, or more complex functions of age. Then, by testing
significance of these parameters  and differences of model per-
formance one is able to infer about age effects and different shapes
of age trajectories, non-linear terms, etc.

Recognition Models: Conversely to generative models, by apply-
ing recognition models in neuroimaging we make inferences
regarding experimental factors (e.g., stimulus category, disease
groups, or subjects’ developmental status) from the brain differ-
ences. In the special case of aging research, a recognition model
uses some parametric function R of brain structural differences
Y to optimally predict subjects age-group (via classification) or
the exact biological age (via regression), i.e., age = R(Y, B). Such
an inference regarding brain age might be useful for diagnosis of
dementia and pathological aging. Alternatively, recognition mod-
els can be applied directly to separate healthy aging, prodromal
stages, and pathological changes in the aging brain.

Mass-univariate generative models of age
The application of generative models is valuable to obtain insights
into the multidirectionality of brain development and age-related
differences. At the same time, these models can provide informa-
tion about the regional variability of age effects. Both aims can
be achieved by arranging G in a “mass-univariate” manner, i.e.,
modeling the structural marker Y with independent functions for
each voxel- or vertex in the brain separately: G= (g (age, B1),
. .,g(")(age, BT (see also Friston et al., 1995). Although G pro-
vides more flexibility, the local age trajectories g'X)(age, Bx) (of
different voxels- or vertices k) are often chosen from the same
class of parametric functions, e.g., linear, quadratic, etc. Then
the general linear model (GLM) provides a powerful and flexi-
ble framework to implement various types of cross-sectional age
trajectories, which are linear in the parameters. Under the assump-
tions of the Gauss—Markov theorem, ordinary least squares (OLS)
minimization provides “optimal” unbiased estimators of voxel- or
vertex-wise statistical parametric maps (SPMs) for each parameter
(for review, see Monti, 2011). After estimation, the SPMs can be
easily tested against null hypothesis, which affords classical infer-
ence about region-specific effects of age. It is important to note that
generative models of age are not necessarily univariate and thus G
can also be implemented using a multivariate spatial model, e.g.,
using spatial prior modeling, canonical variates analysis (CVA),
etc.(Kherif et al., 2002).

Polynomial model of age. In order to explore multidirectional-
ity of brain development across the lifespan, many studies assume
a linear age trajectory due to its conceptual simplicity, straight-
forward interpretation, and robustness. However, this linearity
assumption may be questioned due to the complex interactions
taking place in the aging cellular systems that underlie neu-
roanatomy. It is therefore reasonable to suppose that the true struc-
tural age trajectories g(age) are arbitrarily continuous and differ-
entiable functions of age. Hence, the annual rate of decline is given
by its derivative, i.e., g’(age). Apparently, a linear approximation
(as applied in many studies) is not necessarily valid if the sampled

age range increases and g(age) is highly non-linear, e.g., inverted-U
shaped. This might have led to contradictory results in structural
aging literature (see Walhovd et al., 2009; Fjell and Walhovd, 2010)
and thus motivates the application of more flexible models. A
more general model for local age trajectories uses the p-th degree
polynomial expansion of age in all voxels- or vertices k:

p
yik =Y Bu(agei) +e€ins i ”N(O) 02k>

r=0

This can be easily rewritten in the GLM matrix form
Y= XB+ E, using the design matrix X=[age’, age!, ..., age”]
containing column-wise ascending powers of subject ages, the
parameter matrix B with entries B, , and matrix E with errors
&;k- We further suppose that Gaussian errors are independent of the
deterministic and pairwise linear independent predictors (Monti,
2011). For p =1, this results in a linear approximation of the age
trajectory. It is important to note that for higher degrees the GLM
model estimation would be seriously affected due to the prob-
lem of multicollinearity, i.e., substantial correlations of predictors
(Andrade et al., 1999). The multicollinearity of the design matrix
increases the variance of parameter estimates of all correlated pre-
dictors and thus reduces the sensitivity to identify and separate
specific age effects of degree p. It therefore is recommended to
orthogonalize the age predictors X using either Gram-Schmidt
algorithm or QR-decomposition.

A crucial point of the polynomial model is the a-priori selec-
tion of an appropriate degree for the age range and structural
marker of interest. Many studies report the existence of linear
and quadratic age effects while cubic effects are often not investi-
gated (Raz and Rodrigue, 2006; Raz and Kennedy, 2009; Walhovd
et al., 2009; Fjell and Walhovd, 2010). Using the GLM and a suf-
ficiently high degree, e.g., p =4, different models can be tested
via F-statistics comparing explained variances or f-statistics of a
particular parameter of interest (e.g., B for quadratic effects).
Therefore, the polynomial model allows addressing two aspects
of multidirectionality of structural brain aging. Firstly, it affords
inference about region-specific age effects and provides estimates
of local annual rates of decline using a linear approximation. Sec-
ondly, it enables the detection of changes in the annual rates of
decline by rejection of the linearity assumption via significant
terms of higher degrees. Figure 2 depicts the application of a sec-
ond degree polynomial age model to a large database of VBM
data!. Notably, there are severe limitations of using polynomial
models to represent brain structural trajectories as a function of

The cross-sectional database consisted of 1094 healthy subjects with ages 18-94.
We used three free accessible MR imaging sources: 547 images were taken from the
IXI database (http://fantail.doc.ic.ac.uk), 316 from the Open Access Series of Imag-
ing Studies (OASIS, http://www.oasis-brains.org/), and 231 healthy subjects from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI, http://www.adni-info.org/)
Data used in the preparation of this article were obtained from the Alzheimer’s Dis-
ease Neuroimaging Initiative (ADNI) database (adni.loni.ucla.edu). The ADNI was
launched in 2003 by the National Institute on Aging (NIA), the National Institute
of Biomedical Imaging and Bioengineering (NIBIB), the Food and Drug Admin-
istration (FDA), private pharmaceutical companies and non-profit organizations,
as a $60 million, 5-year public-private partnership. The primary goal of ADNI has
been to test whether serial magnetic resonance imaging (MRI), positron emission
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2nd degree age effects

15t degree age effects

FIGURE 2 | Application of a polynomial age model in a large
cross-sectional healthy subjects sample of voxel-based morphometry
data (n= 1094, 18-94 years, normalized gray matter volume segment).
Here we depict the estimates of first and second degree beta coefficients.
We applied a voxel threshold of t=5.097 p < 0.05, FWE corrected.

age (Fjell et al., 2010). Firstly, the shape, the extreme values, and
the inflection points of lower degree models are highly restric-
tive, imposing strong constraints on the unknown developmental
process. This might reveal biased estimates of characteristic points
(e.g., the maximum values) and the corresponding ages. Secondly,
the polynomial model is a global regression method, i.e., each part
of the trajectory strongly depends on all datapoints irrespective of
their age difference. For instance the estimated trajectory at the age
of 20 is also influenced by subjects with ages of 90 which is not a
desired behavior of the model. Finally, the parameter estimates
obtained by OLS minimization would be seriously affected by
uneven sample distributions, often observed in research practice.

Non-parametric regression methods. Alternatively, rather than
finding the parameters with respect to some fixed set of basis
functions, non-parametric regression techniques might provide a
more unbiased estimation of the true developmental trajectory.
Thus applied to a cross-sectional dataset they directly aim at find-
ing an “optimal” generative model that predicts the local structure
in voxel- or vertex k as a function of age:

yik = g0 (agei) + €, € ~ N (0,07)

After performing the non-parametric regression, the estimated
function g% itself contains the information about age-related
differences and thus we here leave out the parameters. Never-
theless, non-parametric regression methods often use parameters
or hyperparameters concerning priors. Notably, the optimization
takes place without forcing the age trajectories ¢'¥) into a rigidly

tomography (PET), other biological markers, and clinical and neuropsychological
assessment can be combined to measure the progression of mild cognitive impair-
ment (MCI) and early Alzheimer’s disease (AD). Determination of sensitive and
specific markers of very early AD progression is intended to aid researchers and
clinicians to develop new treatments and monitor their effectiveness, as well as
lessen the time and cost of clinical trials. The Principal Investigator of this initiative
is Michael W. Weiner, MD, VA Medical Center and University of California — San
Francisco. ADNI is the result of efforts of many co-investigators from a broad range
of academic institutions and private corporations, and subjects have been recruited
from over 50 sites across the U.S. and Canada. The initial goal of ADNI was to recruit
800 adults, ages 55-90, to participate in the research, approximately 200 cognitively
normal older individuals to be followed for 3 years, 400 people with MCI to be
followed for 3 years and 200 people with early AD to be followed for 2 years. For
up-to-date information, see www.adni-info.org.

defined parametric class of functions (Fox, 2008). The trajecto-
ries are only supposed to be smooth continuous functions of age.
Here, we briefly outline three methods to obtain age trajectories
non-parametrically, which are called linear smoothers.

Local regression. This non-parametric method provides a local
approximation of the age trajectory g'¥) using linear or quadratic
functions (Cleveland, 1979; Cleveland et al., 1988). It is local in
the sense that the estimated structural value at a specific age is
more strongly influenced by subjects with similar ages. In con-
trast to the above polynomial model, it uses weighted least squares
(WLS) optimization to estimate the trajectory at a certain age.
The smoothness of the resulting loess-fit strongly depends on the
bandwidth of the local weighting function which has to be chosen
in advance.

Smoothing spline regression. The idea of spline regression is to
determine an “optimal” age trajectory that maximizes its goodness
of fit and the smoothness at the same time (Craven and Wahba,
1978; Silverman, 1985; Wahba, 1990). In particular, it optimizes a
modified version of the sum of squares that additionally includes
a roughness penalty term and a smoothing parameter ) that
balances both desired properties of g(*:

m 2 a2 :
(6 =3 (- )+ [ [ a0

i=1

Then, the minimization of S specifies the age trajectory in the
form of a piecewise cubic spline. According to the choice of ), the
“optimal” trajectory can exhibit strong overfitting (i.e., . =0) or
even a linear approximation (i.e., A — 00) of the data. Favorably,
generalized cross-validation (GCV) has been suggested for auto-
matic determination of the smoothness parameter (Craven and
Wahba, 1978) using a tradeoft of goodness of fit and model com-
plexity (in terms of estimated degrees of freedom). For a further
discussion of model selection criteria see also Fjell et al. (2010).
Figure 3 depicts the application of a non-parametric smoothing
spline regression (SSR) to estimate local age trajectories in a large
sample of VBM data?.

Gaussian process regression. Non-parametric regression is also
discussed from the perspective of Bayesian inference (Silverman,

2The cross-sectional database consisted of 1094 healthy subjects with ages 18-94.
We used three free accessible MR imaging sources: 547 images were taken from the
IXI database (http://fantail.doc.ic.ac.uk), 316 from the Open Access Series of Imag-
ing Studies (OASIS, http://www.oasis-brains.org/), and 231 healthy subjects from
the Alzheimer’s Disease Neuroimaging Initiative (ADNTI, http://www.adni-info.org/)
Data used in the preparation of this article were obtained from the Alzheimer’s Dis-
ease Neuroimaging Initiative (ADNT) database (adni.loni.ucla.edu). The ADNI was
launched in 2003 by the National Institute on Aging (NIA), the National Institute
of Biomedical Imaging and Bioengineering (NIBIB), the Food and Drug Admin-
istration (FDA), private pharmaceutical companies and non-profit organizations,
as a $60 million, 5-year public-private partnership. The primary goal of ADNI has
been to test whether serial magnetic resonance imaging (MRI), positron emission
tomography (PET), other biological markers, and clinical and neuropsychological
assessment can be combined to measure the progression of mild cognitive impair-
ment (MCI) and early Alzheimer’s disease (AD). Determination of sensitive and
specific markers of very early AD progression is intended to aid researchers and
clinicians to develop new treatments and monitor their effectiveness, as well as
lessen the time and cost of clinical trials. The Principal Investigator of this initiative
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FIGURE 3 | Application of a non-parametric age model in a large
cross-sectional healthy subjects sample of voxel-based morphometry
data (n=1094, 18-94 years, normalized gray matter volume segment). The
voxel-wise age trajectories were achieved using a smoothing spline regression
technique with generalized cross-validation to identify the optimal smoothing
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parameter from the interval [1, 1.5]. The effective degrees of freedom of the
estimated local spline trajectories are depicted (left). The plot shows obtained
age trajectories in 10000 randomly selected gray matter voxels (middle). We
also show a normalized version of age trajectories using gray matter volume at
age 18 as a reference for further lifespan development (right).

1985). Thus it is reasonable to consider the whole structural age
trajectory as a probabilistic entity. Instead of focusing on fixed
estimates of age trajectories g(¥)(age), a probabilistic perspective
accounts for the substantial shape uncertainty of resulting fits
using cross-sectional MR data with between-subject variability
and errors. Gaussian process (GP) regression (GPR) is a frame-
work which directly allows modeling of trajectories as distribu-
tions with a mean and spread (Rasmussen and Williams, 2006). To
put it simply, one can think of GPR as an equivalent to regression
analysis using an infinite number of basis functions. In general,
a GP is a distribution of functions that is fully specified in terms
of a mean function and a covariance function (or kernel). For
our purpose, we define the mean and covariance function using
the expectation and the covariance of the unknown true local age
trajectory g(K) (age):

m® (age) = E [g(k)(age)]
covl® (age, age’) = E [(g(k) (age) — m® (age)) (g(k) (age’)

—m® (age/))]

Using this mean and covariance function allows us to consider
the local structural differences (of voxel- or vertex k) in terms
of Gaussian Processes (for details, see Rasmussen and Williams,
2006):

géé) ~GpP (m(k) (age), cov'® (age, age’))

is Michael W. Weiner, MD, VA Medical Center and University of California — San
Francisco. ADNI is the result of efforts of many co-investigators from a broad range
of academic institutions and private corporations, and subjects have been recruited
from over 50 sites across the U.S. and Canada. The initial goal of ADNI was to recruit
800 adults, ages 55-90, to participate in the research, approximately 200 cognitively
normal older individuals to be followed for 3 years, 400 people with MCI to be
followed for 3 years and 200 people with early AD to be followed for 2 years. For
up-to-date information, see www.adni-info.org.

In order to build non-parametric generative models of age,
GPs may be useful in the following ways: firstly, specific construc-
tions of mean and covariance functions allow the definition of
priors over neuroanatomically plausible age trajectories including
trends or smoothness constraints. Secondly, the priors can be con-
ditioned on Gaussian MR-based structural data. This results in
posterior distributions which characterize the local structural age
trajectories given observations. Similar to loess and spline regres-
sion, GPR also requires the estimation of free (hyper-) parameters
of the covariance and mean function.

In order to obtain estimates of the local age trajectories, the
non-parametric regression methods have some drawbacks. Firstly,
it is important to note that different non-parametric methods and
implementations may vary with respect to the applied criteria for
their optimization, i.e., what does “optimal” mean quantitatively?
This favors the application of free, publicly available tools with a
high level of transparency such as the statistical package R* and
the Gaussian Processes for machine learning package?. Secondly,
the optimization of the hyperparameters (e.g., smoothness para-
meter of smoothing splines and covariance parameters of GPs) is
computationally intensive and can be time consuming in a “mass-
univariate” application to local brain data. Alternatively, spatial
generative models of age using smoothness priors might provide
a promising alternative (Penny et al., 2005; Groves et al., 2009).
Thirdly, inferences about trajectory shape are not accessible by
simple test statistics. Thus, application studies often draw the non-
parametric estimates of age-related trajectories without measures
of confidence, irrespective of the substantial variability around
the mean. However, local regression (LOESS) and GPR also pro-
vide confidence intervals and variances, which might be useful
for trajectory plots and formal inference about regional variabil-
ity of age-related decline and comparisons of clinical groups in
future studies (Cleveland, 1991; Rasmussen and Williams, 2006).
A related issue is the inference about characteristic points of the

Shttp://www.r-project.org/
*http://www.gaussianprocess.org/gpml/
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timing of decline, e.g., ages of maximal acceleration of decline.
Permutation testing or bootstrap resampling might be used to
yield significance of regional differences and confidence intervals
on estimates.

Multivariate recognition model: pattern-based estimation of
individuals’ brain age

The recognition model class was predominantly motivated and
developed in the field of machine learning and pattern analy-
sis. Many approaches to classification and regression in high-
dimensional datasets have evolved, often using kernel methods
or Bayesian learning. Recognition models have also been success-
fully applied in developmental neuroimaging research (Bray et al.,
2009; Franke et al., 2010). Only a few studies have aimed at find-
ing a function that performs best in predicting the individual ages
given a MR-based morphological marker:

age; = R(y;,B) + €, € ~N(0, of)

Here we use y; to denote the whole preprocessed image of
subject i (i.e., the i-th row of Y) and f is a vector of hyperparame-
ters. In order to predict the age of individuals, we do not simply
invert the local generative age trajectories ¢ (age, i) because
of two reasons. Firstly, according to the multidirectionality age
trajectories are not assumed to be strictly increasing or decreas-
ing functions of age. Conversely, lifespan trajectories are often
expected to be three-phasic with increase, plateau, and decrease,
e.g.,inverted-U shape (Fjell and Walhovd, 2010). Secondly, accord-
ing to Davatzikos (2004) and Friston and Ashburner (2004) a
“mass-univariate” approach is advantageous for the analysis of
region-specific age effects, but it seems insufficient for predic-
tions and clinical classification tasks. In particular, to optimally
predict ages of individual subjects, the inter-regional dependen-
cies of the local age effects should be taken into account. Using a
“mass-univariate” approach, these dependencies are expressed by
correlated model errors over voxels- or vertices (Friston and Ash-
burner, 2004). In contrast, a multivariate model is able to account
for correlations and redundancies in the high-dimensional struc-
tural images. This suggests using the whole preprocessed image
as a multivariate input to a single prediction function R. In
addition to univariate regression, the framework of Gaussian
Processes is also capable of making predictions based on high-
dimensional input-spaces, e.g., morphological images (Rasmussen
and Williams, 2006). There is a large variety of covariance func-
tions that can be applied, e.g., the squared exponential or rational
quadratic, etc. In order to implement the age estimation model
including prediction errors, one might apply the GPR with the
following choice of a covariance function (see also Franke et al.,
2010):

cov (agej, agej) = k (J’i’J’j) +0¢8i,

/ = 1 /
kK(ny) = 2 0 iy,

i=1

1 2
di(y) = exp <_ﬁ|y_)’i| )

Due to its particular structure, performing regression with
kernel k is also called relevance vector regression (RVR; Tip-
ping, 2001). The fundamental idea of GPR age estimation with
relevance vector covariance is as follows: firstly, we place basis
functions ¢; on all m input images in the dataset. Secondly, we
optimize the hyperparameters f = (0t1,...,0m, I, cg) (via mar-
ginal likelihood) which increases some «; and therefore removes
the contribution of the corresponding basis function ¢; to the
covariance function. The remainders of the contributing images,
¥, are called relevance vectors which constitute a sparse repre-
sentation of the training images Y. The covariance function with
optimized hyperparameters § then specifies a Gaussian prior dis-
tribution. Third, if we condition the prior distribution on a given
dataset of images, we obtain the posterior and the predictive dis-
tribution including estimated ages. Finally, in order to estimate
the generalization error of the framework, the performance of the
age estimator R(y, ) can be tested in an independent dataset or
applying other cross-validation techniques (Scholkopf and Smola,
2002). Figure 4 depicts the application of the above presented
multivariate recognition model to perform MR-based age estima-
tion in healthy and clinical subjects (for details, see Franke et al.,
2010). A critical issue of multivariate recognition of age-related
differences is the “curse of dimensionality,” i.e., the necessity of
precedent feature selection or dimensionality reduction in the
image space. Apart from multivariate dimensionality reduction
techniques (van der Maaten et al., 2009) down sampling might
also be useful (Franke et al., 2010). Secondly, multivariate recog-
nition of the aging brain structure is restricted to comparable
large training samples obtained from semi-automated processing.
Thirdly, after training there is low transparency of the fitted age
model, i.e., it only contains implicit knowledge about the process
of structural aging. Consequently, the strength of this approach
lies in its ability to make predictions in unseen cases and applied
clinical research.
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FIGURE 4 | Application of a recognition model of age to cross-sectional
voxel-based morphometry (VBM) data (taken from Franke et al., 2010).
The recognition model was implemented using a relevance vector machine
(RVR) which afterward was trained on 410 healthy subject’s gray matter
segments after VBM preprocessing. Brain-based age estimation results in
an independent test sample of n=245 (left). The overall correlation between
estimated and the true age is r=0.92, and the overall mean absolute error
is 4.98 years. Box plots of estimation residuals, i.e., estimated age minus
true age is shown for two subsamples from the ADNI database (AD with
CDR =1, NO with CDR =0; right). The gray boxes contain the values
between the 25th and 75th percentiles of the samples, including the
median (dashed line). The width of the boxes depends on the sample size.
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LIMITATION OF CROSS-SECTIONAL METHODS

There are substantial limitations of cross-sectional designs in
brain aging research. Firstly, in order to analyze multidirection-
ality of local neuroanatomical development, one cannot exclude
the effects of different birth cohorts and secular trends. In addition,
the sampling may be age-biased resulting in an unrepresentative
composition over ages (Raz and Rodrigue, 2006). Secondly, the
sensitivity of detection of polynomial effects of age is expected
to vary substantially with the sample distribution (e.g., range and
size) and the true amount of between-subjects differences. Thirdly,
the major concern here is that the presented models do not explic-
itly account for inter-individual variability of brain structure for
fixed ages. All introduced generative models aim at estimating
the average population brain structure as a process of age. How-
ever, this “moving average” would simply overlook any subgroup
with a more successful structural aging pattern (see Fjell et al.,
2006). Consequently, by applying the above models, the obtained
residuals represent an unknown mixture of the measurement and
preprocessing errors and the true inter-individual variability of
local brain structure. At least in part, repeated measures MRI
allows these influences to be disentangled and provides valuable
measures of reliability of MR-based morphometry.

ANALYSIS OF INTER-INDIVIDUAL VARIABILITY IN AGING
BRAIN STRUCTURE

There is an increasing interest in MR-based neuroimaging meth-
ods that allow measuring local neuroanatomical variability in
healthy populations (for review, see Ashburner and Kloppel,2010).
Studies using VBM (Ashburner and Friston, 2000) have success-
fully addressed these inter-individual differences of adult brain
structure and have given some insights into the complex relation
to behavior and cognitive processing (Eckert, 2011; Kanai and
Rees, 2011). Irrespective of their potential to separate age-related
change and inter-individual differences, there is still a lack of
studies addressing between-subjects neuroanatomical variability
in repeated measurement designs. Moreover, the existing longi-
tudinal designs are often restricted to a-priori selected regions
of interest (ROI). This section addresses the estimation of voxel-
or vertex-wise individual neuroanatomical age trajectories, their
variability across subjects and promising models to identify cor-
related changes between neuroanatomy and other levels of the
brain—-behavior—environment system, e.g., cognitive performance,
lifestyle, and health parameters, etc.

LONGITUDINAL DESIGN

In the field of neuroimaging, a longitudinal design refers to
repeated MRI acquisitions of people’s brain, covering a maxi-
mum of a few years of the lifespan. This within-subject (or intra-
individual) sampling can be more or less time-structured, often
taking place at a baseline measurement with one to four annual
follow-ups. However, most studies do not standardize the subjects’
ages at baseline and thus the between-subject (or inter-individual)
sampling also covers a certain age range. Owing to the number
of follow-ups, the effort to organize sampling and MRI acqui-
sitions increases enormously. In addition to the high costs and
efforts of longitudinal design, these studies often face selection bias
and late selective dropouts (Lindenberger et al., 2002; Raz et al,,

2005). As we intend to demonstrate only the analysis, we begin
with preprocessed images (e.g., cortical thickness or gray matter
volume) that have been normalized to either a voxel- or surface-
based reference template, respectively. Notably, the selection of
an appropriate data structure for spatially distributed (or “quasi-
continuous”) longitudinal measurements is not trivial. Although
the practical implementation of models presented below is much
more flexible, for reasons of simplicity, we assume time-structured
data with three annual follow-ups to be in the following form:
the Y(X) matrices contain the preprocessed MR-based markers for
brain locations k=1, .. ., n, e.g., voxels or vertices. The entries of
Y®) are denoted yi(jk) for subject i=1, ..., m at time point j=1,
...»5. The corresponding subject ages at baseline measurement are
represented by the column vector age. In addition, we use the vec-
tor time= [0, 1,2, 3, 4] to code the intra-individual measurement
timing, i.e., baseline, first follow-up, . . ., fourth follow-up.

MODELING CHANGE: THE INDIVIDUAL DECLINE MODEL

Compared to the cross-sectional analysis of age-related differ-
ences (i.e., expressed by age covariations) longitudinal data enables
analysis of age-related change of brain morphometry. Primarily,
this is reflected by taking a within-subject perspective in analysis,
modeling brain changes in each subject separately. More specifi-
cally, due to the expected between-subjects variations of change,

we are particularly interested in individual trajectories gi(k) (age, B)
of subject i. There are three reasons that justify the choice of a lin-

ear parametric decline model for gi(k) (age, B) : Firstly, most studies
with longitudinally MRI do not cover more than a few measure-
ments. Thus the low number of follow-ups restricts the complexity
(i.e., degrees of freedom) of the intra-individual change model.
Secondly, the covered age range of a few years makes the rejec-
tion of linearity rather unlikely, even if much more samples were
available. Thirdly, the individual MR-based measures on voxel-
or vertex level are prone to scanner inhomogeneities, segmenta-
tion, and normalization errors. This often results in large errors
and residual variance and favors the simplicity of the model
to provide robust estimates of change. Consequently, for many
longitudinal MR studies it is reasonable to apply the following
linear approximation of the individual decline curves:

yij = bio + biitime; + €5, € ~ N (0’ Gg)

Since longitudinal MR data intrinsically varies due to space,
time and persons, symbolic description requires triple indexing.
To avoid confusion, we omit the space index (indicating voxels-
and vertices k) in all models of intra-individual change though we
reintroduce the brain locations in the final prediction models of
brain change. Assuming the independence and homoscedasticity
of errors, the OLS minimization provides unbiased estimates of
the individual change parameters namely the initial status by and
the slope or annual rate of decline b;; for each subject (Singer
and Willet, 2003). The GLM facilitates the effective “whole brain”
implementation of the individual decline model. The resulting
images of determination coefficient R? and residual variance can
vary substantially over voxels or vertices and subjects, depending
on the success of morphometric preprocessing. Figure 5 depicts
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FIGURE 5 | Application of a linear decline model to a longitudinal sample
of voxel-based morphometry data. The individual gray matter intercept and
slope parameters were estimated using 572 MRI scans of 123 healthy
subjects with ages 70-90 at baseline. Number of follow-ups varied from two
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an application of the linear decline model to longitudinal VBM
data in a sample of healthy elderly’. Importantly, Willet (1989)
revealed the following relation about the reliability of the slope
estimates using the above individual decline model (for balanced
designs and i.i.d. errors):

0_2
TrueSlope

Rel (bl) = 2

o 4+ o
TrueSlope ' CSST

Thus the reliability of the slope estimates depends on the true
variation of the slopes GZTmeslo pe> the error variance 62, and the cor-
rected sum of squares of the time variable CSST (see illustration
in Figure 6). Moreover, this has substantial implications for future
studies using longitudinal designs. The keypoint is that the reli-
ability of estimated annual rates substantially increases with the
temporal spread of longitudinal measurements in terms of CSST.
Importantly, this can be achieved by adding follow-ups or plac-
ing them out of the center of the time variable. For instance with
ol = (1 /z)cszeSZope’ using three instead of one annual follow-
ups increases the reliability from 50 to 91%. However, the fitted
linear OLS trajectories are rather convenient for exploratory pur-
poses than for making inference about inter-individual differences
of age-related change (Singer and Willet, 2003). Using OLS, the
between-subject variations of the error variance are not taken into

>The longitudinal sample consisted of 572 scans of 123 healthy subjects
with ages 70-90 from the Alzheimer’s Disease Neuroimaging Initiative (ADNI,
http://www.adni-info.org)
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FIGURE 6 | lllustration of the reliability of ordinary least squares slope
parameter estimates and its dependency on the corrected sum of
squares of time variable (CSST). Non-linear functions depict the expected
increase of reliability with CSST for different ratios r= 1/h of (error
variance)/(true slope variance) for h=1, 2, ..., 10. The vertical lines indicate
values of CSST for one, two, three, and four annual follow-up
measurements in a longitudinal MRI design.

account. Instead of fitting the individual decline separately, multi-
level models of change have been suggested to estimate error-free
latent change parameters (McArdle, 2009).

SEPARATING VARIABILITY IN ELDERLY USING MULTI-LEVEL MODELS
The within-subject structural decline and the between-subject vari-
ations can also be combined in a single statistical model. In
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general the aim is achieved by hierarchical modeling that includes
both levels of variation (see also Friston et al., 2002). We here
apply a multi-level (or mixed-effects) model (Bryk and Rauden-
bush, 1987) to local neuroanatomical changes in elderly people.
The first level sub-model embodies the linear approximation of
intra-individual brain change ggk) (age, ) similar to the fitted OLS
trajectories:

yij = doj + ayjtime; + €

In addition, there is a second level sub-model that further spec-
ifies the inter-individual relations of the first level change parame-
ters. For our purpose, the second level simply models the subject’s
deviation from the initial status Bop and slope 19 parameters in
the population:

aoi = Boo + Loi
ay; = PBro + L1

Furthermore, the multi-level model assumes zero mean Gauss-
ian distributions for the first level residual e;; and second level
residuals gop; and ¢y

e 2y | Boi | 0 o ool
e i3 30

The first level residuals ¢;; account for erroneous variations
around the individual linear decline model. Age effects and mul-
tidirectionality can be tested via parameters Boo and 9, that are
often called fixed effects. However, the idea here is to study inter-
individual differences of aging morphology by analysis of the ran-
dom effects ap; and ay;, i.e., the variation of the individual decline
parameters around the population means. According to the sec-
ond level sub-model, this deviation is explicitly represented by the
residuals go; (for the initial status) and ¢;; (for the slopes). In order
to estimate the fixed and random effects, many implementations
apply maximum likelihood (ML), generalized least squares (GLS;
Raudenbush and Bryk, 2002; Singer and Willet, 2003), or Bayesian
methods with expectation maximization (Friston et al., 2002;
Schmid et al., 2009). We denote the local second level residuals (or
centered random effects) with §g;) and §Y;) for subject i and voxel or
vertex k. For reasons of simplicity, we arrange the centered random
effects to the following matrices for initial status Iy and slope S:

Io = {ty}, tix = Cf)];)> S = {si}, s = CY?,
i=1L....,mk=1,...,n

In particular, rows of S include the subjects’ images of annual
rates of decline during the study period. In conclusion, the lin-
ear approximation of local individual trajectories g,-(k) (age, ) and
multi-level modeling condenses the whole longitudinal dataset to
two matrices containing the intra-individual change parameters.

Notably, there are some limitations and caveats of repeated
measures MRI data in general and multi-level modeling in par-
ticular. Firstly, longitudinal MR-based morphometry is prone to
artifacts due to scanner inhomogeneities, registration inconsis-
tency, and subtle age-related deformations of the brains. Thus

it needs highly sophisticated preprocessing pipelines in order to
detect the changes of interest and achieve unbiased results (Reuter
etal.,2010; Reuter and Fischl, 2011). Secondly, a related issue is that
the multi-level analysis of longitudinal changes in voxel- or vertex-
wise neuroanatomical markers requires high retest-reliability of
local structural measures. A few existing evaluation studies on
this topic provide promising results for VBM and cortical thick-
ness (Dickerson et al., 2008; Schnack et al., 2010). Thirdly, on the
one hand, multi-level modeling is capable of missing scans and
unbalanced designs (i.e., between-subject variations of the follow-
up times). On the other hand, it is a large sample procedure,
which is limited by enormous costs and efforts of this particu-
lar study design. Fourthly, the intra-individual change models are
seriously affected by correlated residuals due to repeated prepro-
cessing errors over follow-ups (Singer and Willet, 2003). One can
account for this by explicit modeling of autocorrelations in the
first level residual covariances (see Friston et al., 2002). Finally, the
application of multi-level models in a “mass-univariate” manner,
i.e., for voxel- or vertex-wise analysis of age-related decline, can
be computationally expensive. This limitation can be overcome
by using efficient implementations and algorithms (Pinheiro and
Bates, 2000).

EXPLAINING INTER-INDIVIDUAL VARIABILITY IN STRUCTURAL AGING
A large variety of studies address potential modifiers of struc-
tural decline in older ages. On one hand there is evidence that
hypertension (Raz and Rodrigue, 2006), obesity and diabetes
(Luchsinger and Gustafson, 2009), and high plasma homocysteine
concentrations (Oulhaj et al., 2010) increase the individual risk
for brain deterioration and dementia. In addition, the lifestyle fac-
tors such as vascular and aerobic fitness (Erickson et al., 2009),
and healthy nutrition (Frisardi et al., 2010; Féart et al., 2010) are
discussed as promising protective factors in order to maintain the
structural integrity in old age. On the other hand, psychometric
tests of cognitive abilities and intelligence are also potential covari-
ates of structural change (Fjell and Walhovd, 2010). However,
the complex interactions of aging brain structure with cognitive
functioning are still not completely resolved (Raz and Kennedy,
2009; Salthouse, 2011).

Predictor models: past differences vs. present changes

Studying the aging brain structure in relation to covariates
from other levels of the brain—behavior—environment system is a
methodologically challenging task (Lindenberger et al., 2006). At
first, we assume a set of multiple predictors (e.g., memory perfor-
mance subscales) that were acquired at baseline MR measurement
Xp and again at the last follow-up X; (containing predictor sub-
scales in columns and observation in rows). The predictors can
be twofold (a) person-specific attributes that are highly stable,
e.g., genes, total brain intracranial volume, etc. (i.e., Xp =~ X;) or
(b) variables that exhibit developmental changes during the study
period, e.g., depression symptoms (i.e., AX=X; — Xp). Figure 7
illustrates the situation faced in a typically MR longitudinal setting
with predictors. It depicts three hypothesized regional age trajec-
tories g-(k)(age) from a single subject before, during, and after
the study. Moreover, it embodies this particular subject’s linear
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FIGURE 7 | lllustration of analysis of inter-individual variability in
longitudinal structural brain imaging studies. Brain level (top): we show
the individual subject’s local lifespan trajectories and the longitudinal sampling
with baseline MRI and four annual follow-ups. A linear approximation of the
trajectories reveals individual change parameters, namely the initial status /o

present

and slope/annual rate of decline S. Predictor level (bottom): here we depict
hypothetical trajectories of predictors and covariates for structural brain
changes. The baseline predictors are called X, and predictor change across
the study is AX. (a), (b), and (c) are suggested linear prediction models for
individual change parameters (right).

decline model including the initial status Iy, the slopes S, and the
interpolation to the age with the last MRI follow-up I;.

In order to identify potential modifiers and correlates of brain
aging we briefly review three models that afford testing their local
effects on aging and age-related differences in brain structure (see
also Salthouse, 2011):

Predicting the initial status. In this first model we use the base-
line predictors X to predict the inter-individual differences in
the estimated baseline brain structure Iy. The model is similar
to a typical cross-sectional analysis of effects of the covariates.
However, the initial status does not reflect the intra-individual
changes during the study period. Thus predicting the initial sta-
tus equals the analysis of brain development and aging before
the study onset. In particular, correlations of Xy and I charac-
terize the cumulative effects of all predictor—brain interactions
during the subject’s past including gestation. For instance signif-
icant effects of lifestyle predictors on the initial status can reflect
lifestyle-brain interactions that occurred at 1, 10, or even 60 years
before the first MR measurement. Thus because these effects are
not necessarily related to the process of aging, the conclusions
derived from this model are strongly restricted by its lack of
specificity.

Partial correlated change. In contrast, this model predicts sub-
jects’ intra-individual change parameters S using the baseline

predictors Xy. Thus the between-subjects differences are used to
forecast the within-subject structural brain decline during the
study. For instance subjects with higher memory capacity at study
onset may reveal a less negative annual rate of change. Practically,
this is often applied if the predictors are not expected to change,
e.g., genetic information or if predictor follow-ups are not avail-
able. Notably, because the baseline predictors may be similar to ear-
lier ages in life, the predictor-brain interaction could have started
long before the study (Salthouse, 2011). However, the partial cor-
related change model gives evidence about the brain changes that
take place during the particular study period. Therefore it might
provide specific insights about the modifiers and correlates of
structural brain aging.

Correlated change. This model additionally requires (at least)
one follow-up measurement of the predictors and accounts for
their change AX during the study. Then, the predictor change is
tested for correlations with brain change in terms of slope differ-
ences S. For instance Murphy et al. (2010) found that elderly sub-
jects with stronger longitudinal decline in fusiform gyrus thickness
also exhibited stronger decline in memory tests. In contrast to the
partial correlated change model, this model additionally exploits
temporal specificity of the ongoing age-related changes on the pre-
dictor level. However, it is often unknown which (latent) processes
underlie the interactions of the brain—behavior—environment sys-
tem. This is especially true for exact time lags and delays of
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this interaction. Therefore, the conclusions from the above pre-
dictor models are restricted to correlations and do not afford
causal inferences (for details, see Gollob and Reichardt, 1987;
Salthouse, 2011). Otherwise, studying these temporal aspects is a
promising approach to disentangle the mechanisms of structural
decline in changing contexts of lifestyle, nutrition, and “cognitive
environment”.

The majority of the recent studies that have explored inter-
individual differences and modifiers of age-related brain struc-
tural changes have either focused on global brain parameters
(Schmidt et al., 2005; Charlton et al., 2010) or an a-priori selec-
tion of ROI (Du et al., 2006; Kramer et al., 2007; Raz et al.,
2008, 2010; Murphy et al., 2010). Therefore, the (partial) corre-
lated change models are often separately applied to global- or
local ROI measures (e.g., hippocampus volume). On one hand,
this univariate approach is advantageous because it affords the
application of sophisticated structural equation models (SEM)
for the purpose of intra-individual change analysis (for review,
see McArdle, 2009). For instance recent studies by Raz et al.
(2005, 2008, 2010) successfully applied latent difference mod-
els (LDM) to explore contributors to ROI-based intra-individual
decline of brain volume. However, the univariate ROI-based
approach (1) does not fully account for regional variability of
age-related differences and (2) often neglects the inter-regional
dependencies of age-related effects in terms of distributed struc-
tural patterns of change. Therefore, we address the implemen-
tation of the (partial) correlated change for voxel- or surface-
based analysis taking the advantage of univariate and multivariate
approaches.

Univariate generative model: local prediction of decline

Due to its computational efficiency, usability, and straightfor-
ward statistics the GLM is a predestined approach to analyze
local change parameters. It enables assessment of linear effects
of predictors Xo or AX on individual local rates of decline
S. A straightforward GLM implementation of the above slope
prediction models is:

»
Sik = inrﬁrk +ei, €k ~ N (0,07),

r=1

i.e., S= XB+ E using a design matrix X containing p predictors in
columns, the parameter matrix B with entries 4, and the matrix
E with errors g;. In order to implement the “partial correlated
change” model we detect the effects of baseline predictors (i.e.,
X = X)) and for a “correlated change” model the effects of the pre-
dictor change (i.e., X= AX). Notably, if the longitudinal design
includes subjects from different ages (at baseline measurement),
the individual change parameters Iy and S are not supposed to
be free of age effects. In particular, testing for age effects on sub-
jects’ slopes can reveal age dependent differences in the rates of
decline, e.g., due to non-linear local age trajectories g'¥) (age, B).
Thus the subjects’ ages can be included in the design matrix as
well as other covariates, e.g., X=[AX, age, ticv]. If the predictors
are supposed to show multicollinearity, the confidence of parame-
ter estimates is improved by precedent orthogonalization of the

design matrix. Unfortunately, strong correlations of the predictors
might also limit the interpretability of effects. This is especially true
for collections of psychometric tests which often show substantial
intercorrelations.

Asrecently pointed out by Salthouse (2011), multivariate analy-
sis techniques might improve the analysis of aging structure in rela-
tion to covariates and predictors such as cognitive abilities. On one
hand, studies have successfully demonstrated the inter-regional
dependencies of age effects in brain structure using multivariate
methods (Alexander et al., 2006; Brickman et al., 2007, 2008; Ecker
et al., 2009; Bergfield et al., 2010). On the other hand, the shared
variance of predictors can be used to define composite scores or
latent factors that improve reliability (Penke and Deary, 2010).
Moreover, in a recent study this “aggregation” on the brain- and
the predictor side revealed sophisticated insights in the relation of
brain structure and information processing in elderly (Penke et al.,
2010).

Multivariate generative model: predictive patterns of decline

The partial least squares correlation (PLSC) technique was ini-
tially introduced into the field of functional neuroimaging to relate
brain activity data to experimental design matrices and it evolved
to a powerful tool for various applications (Krishnan et al., 2011).
To account for the above mentioned caveats of GLM we apply a
PLSC to identify more general commonalities of individual struc-
tural decline S and the set of predictors X (i.e., Xy or AX). We
suppose matrices S and X to be centered and normalized (e.g.,
z-scores). Then, the idea of PLSC is to detect “important” patterns
in the correlations of local slopes and predictors, i.e., R= XTS. In
particular, this is performed by a singular value decomposition
(SVD) of the correlation matrix:

r
R=X"s=UAV" =) oupv|
=1

Formally, the SVD results in pairs of left and right singular vec-
tors u; and v}, also called saliences. The saliences u; and v; represent
weighting patterns of the predictors- and the slopes respectively.
For instance, if X contains elderly subjects’ health parameters we
can think of u; as a specific health profile. The v; saliences for
slopes S represent voxel- or vertex-wise brain images. Technically,
PLSC determines the saliences that maximize the covariance of
weighted predictors and slopes (for exact constraints, see Krishnan
etal., 2011):

max Cov(Xu,Sv)
u,v

The resulting covariance of salience-weighted predictors Xu;
and slopes Sv; is given by the singular values ; indicating the mag-
nitude of explained covariation in the data. Finally, the obtained
pairs of brain regional patterns and predictor profiles in a sample
can be generalized to population level by the use of permutation
tests (McIntosh and Lobaugh, 2004). In addition, bootstrapping
techniques allow assessment of confidence intervals for patterns
and profiles. In conclusion, PLSC provides a multivariate approach
to simultaneously analyze multiple contributing factors (or pre-
dictors) to local intra-individual rates of structural decline. Its
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FIGURE 8 | Partial least squares correlation (PLSC) approach for
analysis of inter-individual variability of decline parameters. PLSC
decomposes the correlation structure of change parameters S and
predictors X using singular value decomposition (SVD). This reveals pairs of
spatial weighting patterns and predictor profiles.

implicit search for weighting patterns and profiles accounts for
inter-regional and inter-predictor correlations. Figure 8 illus-
trates the partial least squares approach to analyze inter-individual
variability in change parameters. Alternatively, other multivari-
ate models, e.g., canonical variates analysis (CVA), have been
suggested to analyze distributed patterns of brain parameters in
relation to experimental designs and predictors (Worsley et al.,
1997).

LIMITATIONS

Some caveats of the presented framework have to be mentioned.
Firstly, a general issue for all presented modeling approaches is
the assumption of an age-unbiased preprocessing, in particu-
lar for samples including higher ages, i.e., in which there will
inevitably be higher levels of atrophy. Age-bias in segmentation,
registration, and normalization could be misleadingly identified
as region-specific age effects in subsequent analyses. In part, this
limitation might be overcome by applying prior-free segmenta-
tion approaches in studies with a large age range. In addition,
the normalization might be optimized by generation of average
shaped tissue templates (Ashburner and Friston, 2009). Secondly,
a main limitation of the above models is that they are based upon
an observational design, which does not conform to a random-
ized experimental design. The former does not allow inference
about causality of potential interactions between predictors and
brain levels. Thirdly, the approaches do not explicitly address mul-
tidimensionality of aging brain structure in terms of multiple
MR-based modalities obtained from the same brain region. How-
ever, a recent unsupervised learning method called Link ICA was
suggested to jointly analyze their covariations (Groves et al., 2011).
Fourthly, most of the generative models of age were presented
from a classical “mass-univariate” statistical perspective allowing
voxel-wise inference. This often requires Gaussian smoothing with
a-priori chosen filter width and decorrelation of noise terms in
advance. Notably, Bayesian modeling has become a promising
alternative for multivariate analysis of neuroimaging data (Fris-
ton et al., 2008). It provides a flexible approach to multi-level

and hierarchical models (Friston et al., 2002) including biophysi-
cal priors on age-related processes, adaptive spatial regularization
(Penny et al., 2005; Groves et al., 2009), and model comparisons
(Penny et al., 2007).

There is an ongoing discussion about limitations of cross-
sectional and longitudinal design to study aging brain structure
(Fjell and Walhovd, 2010; Raz and Lindenberger, 2011). One crit-
ical issue is that cross-sectional studies in principle merge age
independent inter-individual differences and age-related effects
risking a biased sample composition over ages with unknown hid-
den covariates. In addition, the sensitivity for the detection of
age-related effects varies with the amount of inter-individual dif-
ferences of brain structure and sample size. Some studies observe
deviations in the estimated annual decline rates derived by either
a cross-sectional or a longitudinal approach (e.g., see Raz et al,,
2005). As recently reviewed, cross-sectional decline estimators
sometimes underestimate the longitudinal decline (Fjell and Wal-
hovd, 2010). However, apart from artifacts due to cohort effects,
secular trends, and age-biased sampling, there are other factors
that also contribute to deviating results obtained from different
study designs. There are substantial differences in the preprocess-
ing pipelines of cross-sectional and longitudinal brain structural
images, which are either optimized for accurate intra-individual
registration or inter-individual normalization, respectively. The
statistical models that define the estimators for local change rates
often vary across studies and designs. In addition, if the true
lifespan trajectories of aging brain structure are expected to be
non-linear, differences in the age range of the sample, the mean age,
and the age distribution influence the estimated annual decline
rates obtained from either longitudinal or cross-sectional studies.
Thus in order to estimate age effects on brain structure, the dif-
ferences due to study design should be interpreted with caution.
As also reviewed by Fjell and Walhovd (2010), the cross-sectional
age effects on brain structure in large sample studies using semi-
automated methods were similar to those obtained in longitudinal
studies.

A related issue is that longitudinal studies seldom span more
than 5years, limited by routine scanner upgrades or replace-
ment. Being aware of the immense methodological advantages
of longitudinal designs, the analysis of pure intra-individual age
variations in MR-based markers does not allow exploring lifes-
pan brain differences and accelerated aging over decades. For
this particular purpose, longitudinal and cross-sectional studies
require the analysis of effects due to age variations on the between-
subjects level which are susceptible to sampling-bias and trends.
As pointed out by Raz et al. (2005) in an important longitudi-
nal study, by using only a restricted age range (at baseline) the
observed non-linear age effects on brain structure would simply
be missed. Thus under careful inspection of sample characteristics,
the inter-individual age variations in cross-sectional and longitu-
dinal designs can provide insights in long term age differences
not accessible with repeated measures MRI. In addition, the avail-
ability of cross-sectional compared to longitudinal MR data in
research practice is expected to stay much higher. Further studies
on methods and structural aging should account for this asym-
metry and emphasize valid and critical aspects of cross-sectional
analysis.
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Notably, our framework did not address the issue of cross-
sectional mediation models (for introduction, see Baron and
Kenny, 1986). In contrast to the typical cross-sectional analysis
of age-structure covariation, a mediation model is more complex
because it additionally introduces a covariate, e.g., cognitive abili-
ties. Then, a mediation analysis aims at testing alternative scenarios
of indirect statistical effects between age, brain structure, and
the covariate, e.g., whether normative age-related brain struc-
tural decline mediates cognitive decline (for review, see Salthouse,
2011). Some studies point out that cross-sectional sampling (i.e.,
observing only inter-individual differences) of subjects’ ages, brain
structure, and cognitive abilities is inappropriate to solve com-
plex questions regarding their mutual interaction as a process
of aging (Shrout and Bolger, 2002; Penke and Deary, 2010; Raz
and Lindenberger, 2011). In particular, recent statistical modeling
revealed the fact that substantial indirect effects in cross-sectional
studies might be observed even if the true longitudinal media-
tion is completely absent (Maxwell and Cole, 2007; Maxwell et al.,
2011). Thus, longitudinal designs observing both intra- and inter-
individual variations of structure and cognition seem to be more
promising to disentangle different hypotheses about mediation of
cognitive decline (Salthouse, 2011).

SUMMARY AND PERSPECTIVES

Here we presented analytical approaches to age-related differ-
ences and aging in MR-based markers of brain morphometry. All
reviewed models afford whole brain analysis of voxel- or surface-
based neuroimaging data. We focused on the detection of age
effects, the estimation of population mean trajectories and indi-
vidual decline. In particular, we assumed that aging might vary
across brain regions (i.e., space), lifespan phases (i.e., time), and
subjects. Accounting for these sources of variability would have
increased model complexity in terms of numbers of parameters
and degrees of freedom. Each of these “extensions” might provide
sophisticated insights into the process of structural development
and aging in future studies.

EMERGENT PROPERTIES IN REGIONAL PATTERNS

Recent studies have emphasized that there is a consistent pattern of
inter-regional covariance of brain structure (Mechelli et al., 2005;
Lerch et al., 2006; Colibazzi et al., 2008; Nosarti et al., 2010; Eyler
et al., 2011). Other studies have explicitly related these covari-
ance patterns to age differences (Alexander et al., 2006; Brickman
etal.,2007; Bergfield et al., 2010). The joint variation of local neu-
roanatomy across subjects raises the question, which latent factors
“orchestrate” regional structural development and aging? More-
over, these covariations define structural developmental networks
with potentially differential age-related trajectories and specific
modifiers or contributors.

AGE TRAJECTORIES AND STRUCTURAL PLASTICITY

The reviewed parametric and non-parametric models allow the
detection and estimation of region-specific non-linearities of
lifespan brain structural trajectories (Ziegler et al., 2011). Inter-
estingly, studies on learning-induced structural plasticity have

revealed localized brain changes after intense training of motor
skills or acquisition of abstract knowledge (Draganski et al., 2004,
2006; Boyke et al., 2008; Scholz et al., 2009; Engvig et al., 2010).
Then the concept of structural plasticity can be embedded in the
above framework of development and aging. Plasticity can be
thought of as event-related, short-term disturbances of the struc-
tural age trajectories g(age). As a consequence of the training,
the directions of local trajectories exhibit changes (e.g., quadratic
g’ (age)#0) during a comparable short period of weeks or a
few months (see also Taubert et al., 2010). However, it is still
unknown how the local age trajectories and change parameters
(e.g., Ip and S) before and after the training period are related to
the quantitative characteristics of induced short-term structural
change.

INDIVIDUAL PREDICTION OF STRUCTURAL CHANGE

In order to estimate the structural trajectories in cross-sectional
samples, we supposed smooth functions of age. Interestingly, the
supposed temporal smoothness (or autocorrelation) of trajec-

tories gi(k)(age) applied to the within-subject level might allows
individual predictions of prospective brain changes.
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