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This study introduces a new spike sorting method that classifies spike waveforms from
multiunit recordings into spike trains of individual neurons. In particular, we develop a
method to sort a spike mixture generated by a heterogeneous neural population. Such a
spike sorting has a significant practical value, but was previously difficult. The method
combines a feature extraction method, which we may term “multimodality-weighted
principal component analysis” (mPCA), and a clustering method by variational Bayes
for Student’s t mixture model (SVB). The performance of the proposed method was
compared with that of other conventional methods for simulated and experimental
data sets. We found that the mPCA efficiently extracts highly informative features as
clusters clearly separable in a relatively low-dimensional feature space. The SVB was
implemented explicitly without relying on Maximum-A-Posterior (MAP) inference for the
“degree of freedom” parameters. The explicit SVB is faster than the conventional SVB
derived with MAP inference and works more reliably over various data sets that include
spiking patterns difficult to sort. For instance, spikes of a single bursting neuron may be
separated incorrectly into multiple clusters, whereas those of a sparsely firing neuron
tend to be merged into clusters for other neurons. Our method showed significantly
improved performance in spike sorting of these “difficult” neurons. A parallelized
implementation of the proposed algorithm (EToS version 3) is available as open-source
code at http://etos.sourceforge.net/.
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INTRODUCTION
Since a vast number of neurons are simultaneously active in
the brain, the analyses of action potentials (spikes) of multiple
neurons are crucial for uncovering the principle of brain com-
putation. Electrical activity of multiple neurons can be recorded
with high temporal resolution using electrodes located out-
side of neural cell bodies (O’Keefe and Recce, 1993; Wilson
and McNaughton, 1993; Fynh et al., 2007). The extracellularly
recorded data contains spikes of many neurons surrounding the
tip of electrodes, and all spike-like signals belonging to a single
neuron have to be correctly labeled as activity of the same neu-
ron. This process, known as spike sorting (Lewicki, 1998; Brown
et al., 2004; Buzsáki, 2004), consists of three major steps: the first
step to detect spike candidates, the second step to extract the fea-
tures of spikes, and the third step to classify the extracted features
(Abeles, 1982; Csicsvari et al., 1998; Wood et al., 2004). Since the
classification of a redundant high-dimension data is generally dif-
ficult due to the “curse of dimensionality” (Bishop, 2006), we have
to extract the features of raw spike data in a low dimensional
space. Principal component analysis (PCA) finds the directions
of the maximum variance in the data distribution and has often
been used for the dimensional reduction. PCA can remove the
redundancy in the data since principal components are mutually

uncorrelated. However, there is no guarantee that the data is
classified into well-separated clusters in the directions of large
variances.

Rather, a component useful for the classification is the one
that exhibits multiple clusters in its distribution. Throughout this
paper we use the word “multimodality” to indicate the existence
of multiple peaks in data distributions. Several multimodality-
based feature extraction methods have been proposed. The orig-
inal waveforms were preprocessed by some means, for instance
by wavelet transform (WT) (Halata et al., 2000; Quian Quiroga
et al., 2004; Pavlov et al., 2007), and the multimodality of
the pre-processed components was evaluated by Kolmogorov–
Smirnov (KS) test (Quian Quiroga et al., 2004), model evidence
(Takekawa et al., 2010) or Shannon’s information (Yang et al.,
2010). Although these methods can reduce the data dimension by
picking up the multimodal components, the redundancy in the
data still remains.

Here, we introduce a novel method for feature extraction,
namely, multimodality-weighted PCA (mPCA). The mPCA is a
class of the weighted PCA (Câmara de Macedo et al., 2008) that
eliminates the redundant representation of features by empha-
sizing the informative components. Here, we rescale each com-
ponent of the data so that its variance may coincide with its
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multimodality and then apply PCA to the rescaled data. The
rescaling of the variances significantly reduces the influences of
such components as distribute unimodally with large variances
and enables PCA to obtain uncorrelated components of which
distributions are strongly multimodal. We evaluate the multi-
modality of the feature distribution by performing KS test to
measure the deviations from the normality. We compare the per-
formance of mPCA with that of PCA, an improved multimodality
pick-up algorithm (mPICK) and Graph Laplacian features (GLF),
which project a high-dimensional data onto a low-dimensional
space while preserving the topological (i.e., clustering) structure
of the original data (Belkin and Niyogi, 2003; He and Niyogi,
2004). GLF is a linear mapping, solves the difficulties arising from
the non-linearity of Laplacian eigen maps in a model-based clus-
tering (Chah et al., 2011), and exhibits an excellent performance
in spike sorting (Ghanbari et al., 2011). However, the computa-
tional cost of GLF increases drastically for larger data size. We
show that mPCA is computationally much cheaper.

Another difficulty we attempt to overcome is the inaccurate
spike sorting for bursting neurons and sparsely firing neurons.
The two patterns of firing make contradicting demands on spike
sorting. Spikes from a bursting neuron yield broad feature dis-
tributions with distorted shapes, which tend to be separated into
multiple clusters. In contrast, a sparse-firing neuron yields small
clusters in the feature space that may be mismerged into clusters
belonging to more active neurons. To overcome these difficul-
ties, we explicitly solve a variational Bayes algorithm for Student’s
t mixture models (SVB) for spike clustering. Namely, we introduce
a prior for the degree of freedom (DOF) parameters of Student’s
t distribution and explicitly evaluate this probability distribution
by numerical integrations. The conventional implementation of
SVB (MAP-SVB) treats the values of DOF parameters as constant
and estimates them by Maximum-A-Posterior (MAP) inference
(Svensén and Bishop, 2005; Archambeau and Verleysen, 2007).To
show the superiority of explicit SVB to MAP-SVB in the analysis
of real physiological data, we tested our spike-sorting method
also on the spike data obtained by simultaneous extracellular and
intracellular recordings (Harris et al., 2000; Henze et al., 2000).

MATERIALS AND METHODS
Figure 1 summarizes the major steps of the algorithms tested
in this study: (1) detecting and clipping out spike candidates
via amplitude thresholding of a high-pass filtered signal and
a window function; (2) applying WT to the spike waveforms;
(3) extracting the features of the spike waveforms in the fea-
ture space spanned by the wavelet coefficients; (4) classifying the
extracted features to identify spikes belonging to single neurons.
For comparison, we also tested the methods that do not apply WT
and extract features directly from spike waveforms.

DETECTION OF SPIKE CANDIDATES AND CALCULATION OF
SPIKE WAVEFORMS
Spike detection was performed as in the previous study (Takekawa
et al., 2010). After high-pass filtering raw signals, spikes were
detected by amplitude thresholding. The high-pass filter was
designed to subtract Gaussian smoothed signals from the raw
signals. The threshold was set to μrobust[h(t)] − fthrσrobust[h(t)],

FIGURE 1 | Overview of the various spike-sorting algorithms compared

in this study. The algorithm proposed flows along thick arrows and
consists of spike detection, feature extraction by mPCA in the space of
wavelet coefficients, and spike sorting by explicit SVB.

where h(t) is the high-pass filtered signal, fthr is the threshold
factor and μrobust, σrobust are robust estimates of the average and
the standard deviation, respectively (Hoaglin et al., 1983; Quian
Quiroga et al., 2004; Takekawa et al., 2010).

μrobust[x] = median[x],

σrobust[x] = median[|x − μrobust[x]|]
0.6745

.

For each detected spike candidate, we interpolated the discrete
waveform around the peak with a quadratic spline and deter-
mined the precise spike timing as the peak of the interpolated line.
A spike in general exhibits slightly different peak times at differ-
ent channels. To avoid detecting the same spike more than once,
the waveforms detected within a time window of 0.5 msec were
regarded as the same spike. Then, we resampled the filtered sig-
nal at the same sampling rate as the filtered data in the range of
discrete times [−τ1 : τ2] with applying a window function, where
τ = 0 refers to the precise spike timing and a window function
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can be described as

W(τ) = N
(
τ

∣∣∣ s

5

)
,

where N (x|σ) ∝ exp(−x2/2σ2) is the normal distribution, and
s = τ1 if τ < 0 or otherwise s = τ2. We will determine adequate
values of these time constants later.

FEATURE EXTRACTION
We applied mPCA with KS test for normality to the wavelet
coefficients for feature extraction. The wavelet coefficients are
calculated by multi-resolution analysis with Chohen-Daubechies-
Feauveau 9/7 (CDF97) wavelet (Cohen et al., 1992; Daubechies,
1992; Takekawa et al., 2010). The multi-resolution analysis is
analogous to discrete Fourier transform and transforms data in
the time domain to those of time-frequency coefficients pre-
serving the data dimension. To evaluate the performance of the
method, we applied PCA, GLF, mPICK, and mPCA to the data
set of resampled waveforms or the wavelet coefficients of the
waveforms. Below we outline the frameworks of these feature
extraction algorithms.

Principle component analysis
The algorithm of PCA is well described in literature and is only
briefly reviewed (Bishop, 2006). The original D-dimensional data
X = {xn}N

n = 1 is reduced to a D′-dimensional data through the lin-
ear transformation VTXC, where XC = {xn − E[x]}N

n = 1, and the
projection matrix V is constructed from the eigenvectors corre-
sponding to the largest D′ eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λD′ of
the covariance matrix of XC. The data points exhibit the largest
D′ variances in thus obtained D′-dimensional subspace.

Graph Laplacian features
Below, the definition and derivations of GLF are briefly reviewed.
Details are found in (Ghanbari et al., 2011). As in the case of
PCA, the original D-dimensional data set X = {xn}N

n = 1 is reduced
to a D′-dimensional data set through the transformation Y =
ATX, where A = {ad}D′

d = 1 and ad is a D-dimensional vector. It is
desirable in classification if neighboring points in the original D-
dimensional space remain close to each other after a projection to
the low dimensional space (He and Niyogi, 2004).

Such a projection A can be obtained by solving the following
minimization problem:

min
A

N∑
i = 1

N∑
j = 1

|yi − yj|2Wij,

where W is a weight matrix and Y = {yn}N
n = 1 is reduced data set.

Data points i and j are connected by an edge if i is among the
K-nearest neighbors of j, or vice versa. The weight of the edge
connecting these points is set as Wij = exp

(−|xi − xj|2/t
)
. If the

two points are not among the K-nearest neighbors of one another,
Wij = 0. The scaling parameter t is defined as

t =
[

1

2

N∑
i = 1

σi

]2

, σi = |xi − �xi,K |,

where �xi,K is the most distant point amongst the K-nearest
neighbors of xi. We used K = 5 in this paper.

It is possible to rewrite the minimization problem as the
following eigenvalue problem (Ghanbari et al., 2011):

(
XRXT

)
a = λ

(
XLXT

)
a,

where L = B − W and R = B
tr B − Q, with B and Q being N × N

matrices defined as,

B = diag[Bii], Bii =
N∑

k = 1

Wik =
N∑

k = 1

Wki,

Q = [Qij], Qij = BiiBjj

(trB)2
.

The projection matrix A = {ad}D′
d = 1 is constructed from

the eigenvectors corresponding to the largest D′ eigenvalues
λ1 ≥ λ2 ≥ · · · ≥ λD′ of the matrix B.

Multimodality pickup
If values of some components are distributed with multiple peaks,
we may use these components to separate a large number of clus-
ters in the data. In mPICK, we picked up the wavelet coefficients
that distribute with multiple peaks by employing KS test for the
normality (Press et al., 1992; Quian Quiroga et al., 2004), which
evaluates the deviation of given distribution from the normal
(unimodal) distribution. Namely, forgiven one-dimensional data
set x, KS test uses the maximum value of the absolute difference
between the cumulative distribution function CDF of the normal-
ized data x′ and that of a standard normal distribution for the
evaluation:

ML[x] = max
n

(∣∣∣∣ n

N + 1
− CDF

[
N
(
x′

sorted,n|1
)]∣∣∣∣
)

,

x′
n = xn − μrobust[x]

σrobust[x] .

We select the components corresponding to D′ largest values
of ML[x]. Note that we use the robust statistical estimation for the
mean and variance of the normalized data in order to minimize
the effect of outliers. When we use mPICK without WT, we apply
KS test to the distribution of the values at each time point of all
the detected spike waveforms and pick up the time points that
yield large multimodality. It is noted that the redundancy can be
generally large in the features extracted by mPICK.

Multimodality-weighted PCA
To reduce the redundancy, we scale data points in each com-
ponent dimension so that the variance of the scaled data along
the dimension may coincide with its multimodality. This scal-
ing emphasizes the multimodality of the data distribution and
dramatically increases the chance to detect components show-
ing strong multimodality among components with large vari-
ances. We define the procedure of mPCA explicitly as follows.

We scale the each component of data set as xM
d = ML[x′

d]
‖x′

d‖ × x′
d
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(d = 1, . . . , D) using the multimodality ML[x] defined in previ-
ous section and XM is reduced to a D′-dimensional data through
PTXM . The projection matrix P is constructed from the eigenvec-
tors corresponding to the largest D′ eigenvalues λ1 ≥ λ2 ≥ · · · ≥
λD′ of the covariance matrix of XM .

CLUSTERING WITH VARIATIONAL BAYES FOR STUDENT’S
t MIXTURE MODEL
The optimal number of components in a mixture model can
be determined by several criteria including Akaike’s infor-
mation criteria (Akaike, 1974), Bayesian information crite-
ria (Schwarz, 1978), minimum description length (Rissanen,
1978) or minimum message length (Wallace and Boulton, 1968;
Agusta and Dowe, 2002). Then, for a given number of compo-
nents, we may estimate the optimal values of model’s param-
eters by the maximum likelihood method implemented by
Expectation-Maximization (EM) algorithm (Dempster et al.,
1977). Alternatively, Bayesian inference treats model’s parameters
as probabilistic variables and calculates their probability distribu-
tions (Bernardo and Smith, 1994). Furthermore, variational Bayes
(VB) algorithms provide EM-like methods to calculate the lower
bound of the model evidence, i.e., the free energy, for Gaussian-
mixture models (Attias, 1999) and Student’s t mixture models
(Svensén and Bishop, 2005; Archambeau and Verleysen, 2007).
VB for Student’s t mixture models (SVB) exhibited an excellent
model selection performance in spike sorting (Takekawa et al.,
2010). Below, we outline the framework of our SVB method. The
mathematical details of the SVB algorithm are found in Takekawa
and Fukai (2009).

Statistical models and parameters
Student’s t distributions have long tails compared with Gaussian
distributions, and hence are used frequently for modeling data
containing outliers. This is actually the case for spike sorting since
multiunit recordings detect a number of noisy spikes from distant
neurons. Student’s t distribution T can be written in terms of
normal N and Gamma G distributions as follows:

T (x|ν,μ, S) =
∫ ∞

0
N (x|μ, uS)G

(
u|ν

2
,
ν

2

)
du,

where x is a D-dimension data point. The parameters ν, μ, and S
are the DOF parameter, the component mean vector and the com-
ponent precision matrix, i.e., the inverse of the covariance matrix,
respectively. Normal and Gamma distributions are defined in
Section “Distributions.” Student’s t distribution is thus a mix-
ture of infinitely many normal distributions with the same mean.
The scaling parameter u for the precision S depends on param-
eter ν through the gamma distribution, and a smaller value of ν

corresponds to a heaver tail of T .
Our mixture model is described as a weighted sum of Student’s

t distributions:

p(x|θ, M) =
M∑

m = 1

αmT (x|νm,μm, Sm),

M∑
m = 1

αm = 1,

where M is the number of clusters and θ = {αm, νm, μm, Sm}M
m = 1

represents the remaining model parameters. The weights αm are

non-negative, and the parameters νm, μm, and Sm stand for the
DOF, mean, and precision matrix of the m-th cluster, respec-
tively. Introducing the latent label variables z = {zm}M

m = 1 and the
latent scaling variables u = {um}M

m = 1, we can rewrite Student’s t
mixture model as a latent variable model:

p(x, z, u|θ, M) =
M∏

m = 1

[
αmN (x|μm, umSm)G

(
um|νm

2
,
νm

2

)]zm
.

The variable zm is unity if the data point belongs to the m-th
cluster and is zero otherwise. Therefore, zm ∈ {0, 1} and only a
single component of z can take a non-vanishing value. The vari-
able um is necessary to analytically treat Student’s t distribution in
VB clustering. For a set of observations X = {xn}N

n = 1, the sets of
variables Z = {zn}N

n = 1 and U = {un}N
n = 1 are called “latent vari-

ables”, where N represents the number of data points and the m-th
component of zn (un), i.e., znm (unm), stands for zm (um) for the
n-th data point. The latent variables are not direct observables
but are inferred through a statistical model from other observed
variables. The latent variables generally represent the degree to
which variables move together. Hence, they play a crucial role in
clustering of statistical data.

VB calculations for Student’s t mixture models
The VB is a general technique to solve for the posterior probability
distribution of continuous variables. It calculates an approxi-
mate distribution of the posterior, assuming that the parame-
ter variables and the latent variables are mutually independent.
This assumption significantly reduces the cost of computations.
Thus, in VB, we alternately renew the probability distributions of
parameters and latent variables independently for a given prior
distribution. In this study, we employ the factorized distributions
for the priors as:

p(θ|M) = D
({αm}M

m = 1|{κ0}M
m = 1

) M∏
m = 1

E(νm|ξ0)

×NW(μm, Sm|η0, γ0,μ0, �0),

where, D, E , and NW represent Dirichlet, an exponential
and a normal-Wishart distribution, respectively, with {κ0, ξ0,

η0, γ0, μ0,�0} being the hyper parameters of the prior function
(see Section “Distribution”).

Introducing a test distribution function qM(Z, U, θ) to
approximate the posterior p(Z, U, θ|X, M) and assuming a
factorization approximation qM(Z, U, θ) = qM(Z, U)qM(θ), we
can describe the test function for model parameters qM(θ)

and latent variables qM(Z, U) by hyper parameters {κ̃m, ξ̃m,

η̃m, γ̃m, μ̃m, �̃m} and {z̄nm, am, bnm}, respectively:

qM(Z, U) =
N∏

n = 1

M∏
m = 1

[z̄nmG(unm|am, bnm)]znm,

qM(θ) = D
({αm}M

m = 1|{κ̃m}M
m = 1

) M∏
m = 1

V
(
νm|ξ̃m

)
×NW(μm, Sm|η̃m, γ̃m, μ̃m, �̃m),
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where

V(ν|ξ) =
(

ν
2

) ν
2 exp(−ξν)

CV (ξ)�
(

ν
2

) , CV (ξ) =
∫ ∞

0

(
ν
2

) ν
2 exp (−ξν)

�
(

ν
2

) dν.

And we can update these test functions by using an EM like
iterative procedure.

In the M-step, the hyper parameters for model parameters
{κ̃m, ξ̃m, η̃m, γ̃m, μ̃m, �̃m} are updated using the data X and the
current fixed hyper parameters for latent variables {z̄nm, am, bnm}:

κ̃m = κ0 + N̄m, ξ̃m = ξ0 + Ūm − Ûm

2N̄m
,

η̃m = η0 + Ūm, γ̃m = γ0 + N̄m,

μ̃m = η0μ0 + Ūmμ̄m

η0 + Ūm
,

�̃m = 1

γ0 + N̄m

{
γ0�0 + Ūm�̄m

+ η0Ūm

η0 + Ūm
(μ̄m − μ0) (μ̄m − μ0)

T
}

,

where

N̄m =
N∑

n = 1

z̄nm, Ūm =
N∑

n = 1

z̄nmūnm,

Ûm =
N∑

n = 1

z̄nm log ûnm,

μ̄m = 1

Ūm

N∑
n = 1

z̄nmūnmxn,

�̄m = 1

Ūk

N∑
n = 1

z̄nmūnm(xn − μ̄m)(xn − μ̄m)T,

and

ūnm = am

bnm
, log ûnm = �(am) − log bnm.

In the E-step, {z̄nm, am, bnm} are updated using fixed
{κ̃m, ξ̃m, η̃m, γ̃m, μ̃m, �̃m} obtained in the previous M-step.

z̄nm = ρnm∑M
m′ = 1 ρnm′

, am = 1

2

(
V̄m

(
ξ̃m

)
+ D

)
,

bnm = 1

2

{
V̄m

(
ξ̃m

)
+ D

η̃m
+ tr �̃−1

m (xn − μ̃m) (xn − μ̃m)T
}

,

where

log ρnm = −D

2
log 2π + log α̂m + V̂

(
ξ̃m

)
+ 1

2
log Ŝm

+ log � (am) − am log bnm,

log α̂m = � (κ̃m) − �

(
M∑

m′ = 1

κ̃m′

)
,

log Ŝm =
D−1∑
i = 0

�

(
γ̃m − i

2

)
− log

∣∣∣∣ γ̃m

2
�̃m

∣∣∣∣ ,
V̄ (ξ) =

∫ ∞

0
V (ν|ξ) ν dν,

V̂ (ξ) =
∫ ∞

0
V (ν|ξ)

{ν

2
log

ν

2
− log �

(ν

2

)}
dν.

Since the range of the integrations is from zero to infinity, on-
demand calculations of the functional values of CV(ξ), V̄(ξ), and
V̂(ξ) at every step of the EM algorithm are quite time consuming.
To avoid the heavy calculations, we may fix νm at the constant val-
ues estimated by MAP inference. Alternatively, here we explicitly
treat νm as probabilistic variables and calculate the integrations by

interpolating the values of CV(ξ), V̄(ξ), and V̂(ξ) from a numer-
ical table calculated priori by Mathematica version 7 (Wolfram
Research, Inc., Champaign, IL, 2008).

Model evidence and iterative algorithm
Using the ρnm calculated in the E-step, we can evaluate the model
evidence as

F[qM(Z, U, θ)] =
N∑

n = 1

log
M∑

m = 1

ρnm − Penalty
[{αm}M

m = 1

]

−
M∑

m = 1

(Penalty[νm] + Penalty[μm, Sm]).

The variable ρnm represents the likelihood that the n-th data
point belongs to the m-th cluster. Therefore, the sum

∑M
m = 1 ρnm

represents the degree to which the data point is described by the
mixture model.

The reduced D’-dimensional data was decorrelated and renor-
malized before VB clustering so that μrobust and σrobust may be
given as zero and unity, respectively. In order to reduce the effect
of initial conditions, we preprocessed the data by k-means clus-
tering (MacQueen, 1967) with sufficient large number of clusters
and used the resultant clusters as initial conditions for VB clus-
tering. Then we calculated E and M steps iteratively until (Fnew −
Fold)/N < 10−6 was satisfied and eliminate a cluster if its size or
its variance was small or if it yielded a negative contribution to F.
We can calculate the contribution to F of cluster m as

−
N∑

n = 1

log(1 − z̄nm) − Penalty[αm] − Penalty[νm]

−Penalty[μm, Sm].

Many of the initial clusters were rapidly eliminated accord-
ing to the criteria. Since most of the terms necessary for these
evaluations appear in the calculations at E-step, no additional
computational cost arises.
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Each penalty term can be further calculated as

Penalty
[{αm}M

m = 1

] = − log �(Mκ0) + M log �(κ0)

+ log �(K) −
M∑

m = 1

log �(κ̃m)

− K′�(K) +
M∑

m = 1

κ̃′
m�(κ̃m),

Penalty[αm] = − log �(Mκ0) + log �((M − 1)κ0) + log �(κ0)

+ log �(K) − log �(K − κm) − log �(κm)

− K′�(K) + (K′ − κ′
m)�(K − κm) + κ′

m�(κm).

Penalty[νm] = V̂(ξ̃m) − (ξ̃m − ξ0)V̄(ξ̃m) − log(ξ0CV (ξ̃m)),

Penalty[μm,�m] = −D
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2
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�

(
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log
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+γ0

2
tr�̃−1
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2
+ η̃m

2
tr�̃−1

m (μ̃m − μ0) (μ̃m − μ0)
T ,

where K = ∑M
m = 1 κ̃m, κ̃′

m = κ̃m − κ0 and K′ = ∑M
m = 1 κ̃′

m.

Distributions
The normal, Gamma, Dirichlet, exponential, Wishart and
normal-Wishart distributions used in the text are defined as
follows, respectively:

N (x|μ, S) = |S| 1
2

(2π)
D
2

exp

{
−1

2
tr S (x − μ) (x − μ)T

}
,

G (u|a, b) = ba

�(a)
ua−1exp(−bu),

D
({αm}M

m = 1|{κm}M
m = 1

) =
�

(
M∑

m = 1
κm

)
∏

m � (κm)

∏
m

α−1+κm
m ,

E (ν|ξ) = ξexp (−ξν) ,

W (S|γ,�) =
∣∣ γ

2 �
∣∣ γ

2

�D
( γ

2

) |S| γ−D−1
2 exp

(
−γ

2
tr �S

)
,

NW
(
μ′, S|η, γ,μ, �

) = N
(
μ′|μ,ηS

)
W (S|γ,�) .

DATA SET AND NUMERICAL METHODS
We compared the performance of the proposed algorithm
with that of other methods. To this end, we use a pub-
licly available data sets of numerically simulated multiunit
spike trains (Quian Quiroga et al., 2004; data sets are avail-
able at http://www2.le.ac.uk/departments/engineering/research/
bioengineering/neuroengineering-lab/spike-sorting). The merit
of this data base is that correct answers to spike sorting and the
levels of difficulties are known for all the data sets. We employed
the most difficult data sets, C_Easy2_noise20 [Ex2(0.20)],
C_Difficult1_noise20 [Ex3(0.20)], and C_Difficult2_noise20
[Ex4(0.20)] in this study. All data sets contain spikes from three
simulated neurons (see Figure 2). To obtain noisy signals, aver-
aged spike waveforms with various amplitudes were added to each
spike train at random times. In each data set, the standard devi-
ation of noise was varied between 5 and 20% of the peak spike
amplitudes. The simulated neural activity exhibits a firing rate of
20 Hz and a refractory period of 2 msec. The sampling rate of the
all simulated data was assumed to 24 kHz.

We also use the experimental data obtained by simultane-
ous extracellular and intracellular recordings (Harris et al., 2000;
Henze et al., 2000; data sets are available at http://crcns.org/data-
sets/hc/hc-1). In these data, the correct sequence of spikes is
known at least for a single neuron recorded intracellularly, which
implies that the correct answers to spike sorting are already par-
tially known. We employed two different data sets, d11222.001
and d14521.001, in this study since an intracellularly recorded
neuron exhibited burst firing in d11222.001 or it generated only
181 spikes during the whole period of recordings in d14521.001.
The data sets were recorded at 20 kHz.

We implemented our spike sorting algorithms in C++
code with linear algebra routines in Lapack library (http://
www.netlib.org/lapack/) and OpenMP parallelization
(http://www.openmp.org/). The program was compiled by

S FP

FIGURE 2 | Simulated raw data [Ex4(0.20), upper] and high-pass

filtered data (lower). The simulated raw data contains signals from three
neurons, which are marked with circles, squares, and diamonds,
respectively. The horizontal line shown for the filtered data is the threshold
for spike detection, and crosses represent the detected spikes. The data
contains a false negative spike (FP) and synchronized spikes that were
detected as a single spike (S).
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Intel Compiler with Lapack implementation of Math Kernel
Library (Intel Corp.) and executed on Mac OS X environment
(Mac Pro; 2 × 2.93 GHz Quad-Core Intel Xeon; Apple Inc.).

RESULTS
The proposed method was tested on simulated and experimen-
tal data, and the results were compared with those of other
methods.

DETECTION OF SPIKE CANDIDATES
In spike detection, we used fthr = 3 in thresholding for simu-
lated data and fthr = 4 for simultaneous intracellular-extracellular
recording data. Figure 2 shows examples of the spikes detected
in the simulated data, in which spikes belonging to three dif-
ferent neurons are marked by different symbols. Note that the
correct answers are known for the artificial spike data. Spikes from
different neurons were sometimes detected as a single spike (syn-
chronized spikes) if their temporal locations were close to each
other (see S in Figure 2). While true spikes were rarely missed
(i.e., almost no false negative), noisy signals were sometimes
detected as spurious spikes (false positive: see FP in Figure 2).

Each simulated data contains spike trains of three neurons and
noisy spikes, and we used the artificial spike data simulated at
the highest noise level. Our method detected 3973 (Ex2), 3883
(Ex3), and 3916 (Ex4) candidate spikes in each artificial data set,
while they should contain 3526, 3414, and 3493 correct spikes,
respectively. The numbers of false positive, false negative, and
synchronized spikes were 530, 6, and 77 (Ex2), 540, 0 and 72
(Ex3), and 496, 1 and 70 (Ex4), respectively, in these data sets.
We obtained about 14,000 spike candidates in each data set of the
simultaneous intracellular-extracellular recordings.

FEATURE EXTRACTION
We applied PCA, GLF, mPICK, and mPCA to the three simulated
data sets with or without the preprocessing by WT. Figure 3 shows

the first two components of the extracted features. The range of
parameters for clipping out the spike waveform was set as τ1 = 24
and τ2 = 36. To see the degree of separation between spike clus-
ters belonging to different neurons, we display the distribution
of the features extracted by four different methods for each data
set in Figure 3. Spikes belonging to three neurons and noisy clus-
ters were labeled with different colors: spikes of the three neurons
are shown in red, green, and blue, while false positive spikes and
synchronized spikes are shown in gray and black, respectively. A
visual inspection indicates that mPCA with WT ensures a high
quality of separation compared with the other methods.

In order to quantify the quality of feature extraction, we calcu-
lated the smallest isolation distance and the largest Lratio (defined
below) for the clusters corresponding to the three neurons. If clus-
ter c contains Nc spikes, the isolation distance of the cluster is the
Mahalanobis square distance value tr�−1

c (x − μc) (x − μc)
T of

the Nc-th closest noise spike x outside the cluster (Harris et al.,
2001; Schmitzer-Torbert et al., 2005), where μc and �c are the
center and variance of the cluster, respectively. Thus, the isolation
distance estimates the average distance expected between a spike
cluster and an equally large ensemble of spikes existing outside of
the cluster. Lratio measures the degree of noise contamination of a
cluster and is calculated as

Lratio = 1

Nc

∑
x/∈c

(
1 − CDFχ2

[
tr�−1

c (x − μc) (x − μc)
T
])

,

where CDFχ2 is the cumulative distribution function of the χ2

distribution. Noise spikes close to the center of the cluster con-
tribute significantly to the above sum, while noise spikes far from
the center contribute little. Thus, smaller Lratio implies a lower
degree of noise contamination.

In Figure 4, we compared the performance of the different
methods for feature extraction in the presence and absence of
pre-processing by WT. To evaluate the robustness of each method

FIGURE 3 | The features extracted from three data sets by PCA, GLF,

WT + mPICK, and WT + mPCA. Red, blue, and green dots represent spikes
belonging to three neurons. Gray dots stand for noisy spikes (false positives)

and black dots for synchronized spikes. The clusters are shown in the
two-dimensional feature space spanned by the first and second components.
Top row shows the spike waveforms obtained for the individual clusters.
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FIGURE 4 | Minimum isolation distances and maximum L-ratios

of the two-dimensional extracted features in three data sets.

The worst cases (the minimum of the isolation distance and the
maximum of the L-ratio) are shown for eight different methods:

PCA, GLF, mPICK, and mPCA with or without the pre-processing
by wavelet transform. In each method, results are shown for
16 different value sets of the two parameters for clipping out the
spike waveform.

against details of spike detection, we chose the clipping range
of spike waveforms from all possible 16 combinations of the
following values: τ1, τ2 ∈ {24, 36, 48, 60}. The dimension of the
waveform data depends on the values chosen. For instance, if
τ1 = τ2 = 24, the dimension is 24 + 24 + 1 (time origin) = 49.
As in Figure 3, the dimension of the extracted features D′ was
reduced to 2. Both isolation distance and Lratio indicate that only

mPCA with WT exhibited an excellent performance robustly in
all the cases tested. Other methods, for instance GLF and mPICK,
are sensitive to the choice of the clipping parameters. Wavelet
transform did not improve the results of PCA and GLF, while
it significantly improved the results of mPICK and mPCA. For
mPCA, the robust estimation of the mean and variance also
significantly improved the performance and the robustness.
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We evaluated the error rate in spike sorting also in a 3-
dimensional feature space. Since the correct number of clusters
is known to be four including a noise cluster, we employed a
mixture of four Student’s t distributions for spike clustering and
the EM method for determining parameters of the model. The
primary purpose here was to evaluate the best-expected perfor-
mance of the different feature extraction methods. The total error
ratio (false positive + false negative) was very large for the features
extracted by PCA, WT + PCA, mPICK, and mPCA (Figure 5). By
contrast, the error ratio was always very small for WT + mPCA
compared with other methods. The robustness of the resultant
clusters was degraded if the window function was not applied to
spike waveforms (data not shown).

SPIKE CLUSTERING AND OVERALL SORTING QUALITY ON
PHYSIOLOGICAL DATA
Generally we need to repeat clustering of each data for different
initial conditions to obtain stable results because of the conver-
sion to local optima. However, we found that the error ratio and
the free energy converged on almost identical values for differ-
ent initial conditions if we used the initial condition calculated
by k-means clustering (data not shown). Making an advantage
of this robustness, we avoided the heavy averaging over ini-
tial conditions to significantly reduce the overall computational
cost. We note that k-means clustering per se is much faster than
VB clustering. However, whether our method produces accu-
rate results without the averaging procedure should be examined
with real physiology data. Below, we demonstrate this is actually
the case.

In Figure 6, we applied MAP-SVB and explicit SVB to the
features extracted from the spike data obtained by simultane-
ous intracellular-extracellular recordings. The clipping range of
spike waveforms was varied across all possible combinations of
τ1, τ2 ∈ {10, 15, 20, 25} and the dimension of the feature space
was set equal to a realistic value of 12. The hyper parameters of
prior distributions were set as κ0 = 1 and η0 = 1, and μ0 and �0

were set as a zero vector and a unit matrix, respectively. Then,
we investigated the effect of γ0 for MAP- and explicit SVB. Since
γ0 represents a confidence factor of �0 in the Wishart distri-
bution and �0 is a unit matrix, the variances of the estimated
spike clusters become large for large values of γ0. This implies
that the estimated number of clusters tends to be small for large
γ0. On the contrary, spikes will be classified into many small
clusters when γ0 is small. Accordingly, in the case of MAP-SVB
a large γ0 value (γ0 = 60) yielded excellent results for burst-
ing neurons (d11222.001), but it failed to give acceptable results
for sparse-firing neurons (d14521.001). On the contrary, a small
value (γ0 = 12) was suitable for sparse-firing neurons, but it did
not work for bursting neurons. In fact for MAP-SVB, we could not
find any intermediate value that ensures reasonably good results
for both neuron types. In striking contrast, explicit SVB yields γ0

values that correctly separate the majority of spikes belonging to
both neuron types in a wide range of the hyper-parameter value
for the DOF parameter ν0 = 1/ξ0 (Figure 6). The noise level of
experimental data was relatively small, and accordingly the differ-
ence in the performance between PCA and WT + mPCA was also
small as compared with the case of artificial data. The results of
WT + PCA and WT + GLF were similar to these of PCA and GLF,

FIGURE 5 | Evaluation of extracted features using optimal solution of

clustering. Results are shown for eight different methods: PCA, GLF, mPICK,
and mPCA with or without wavelet transform. Empty and filled bars

represent the ratios of false negative and positive to the total spike number,
respectively. The crosses in the diagrams mean that the bars do not fit into
the chosen vertical limits.
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FIGURE 6 | Error ratios in spike sorting in intra-extra data sets

(d11222.001 and d14521.001). Empty and filled bars represent the ratios of
false negative and positive to the total spike number, respectively. MAP-SVB

cannot correctly classify both data at same hyper parameter value. On the
other hand, explicit SVB can correctly classify both data with same setting of
hyper parameter.

0 50 100 150 200

0 50 100 150 200

MAP-SVB

explicit SVB

FIGURE 7 | Typical examples of the posterior distributions of the DOF

parameters for the clusters estimated by MAP-SVB and explicit SVB.

For MAP-SVB, the vertical lines indicate the values that maximize the
distributions. These values are used for the model estimation. For explicit
SVB, the vertical lines indicate the average values of the distributions, and
explicit SVB takes into account the shapes of the posterior distributions for
the model estimation.

respectively, whereas the results of mPICK and mPCA were worse
than those of WT + mPICK and WT + mPCA (data not shown).

To explain why explicit SVB is advantageous over MAP-SVB,
in Figure 7 we display the posterior distributions of the DOF

parameters for the clusters estimated by the two methods. The
DOF parameters estimated by MAP-SVB tend to distribute very
broadly, implying that the estimated values may not be so reli-
able. Moreover, the values of the DOF parameters adopted in
MAP-SVB, i.e., the values corresponding to the peak values of
the posteriors, tend to be rather small. This results in very heavy
tails in Student’s t distributions of spike clusters. Therefore,
MAP-SVB cannot always be a good method for estimating clus-
tered distributions. In contrast, explicit SVB takes into account
the shape of each posterior distribution in the cluster estima-
tion and maintains the size of each distribution in a reasonably
narrow range. This means that the confidence level for the esti-
mation is expected to be high. Thus, the estimated clusters
tend to show similar shapes and sizes without having extremely
heavy tails.

A major finding from the application of our method is that
using mPCA on wavelet coefficients yields the most relevant fea-
tures for clustering spikes by explicit SVB. Our results indicated
that the KS test on wavelet coefficients is crucial for this improve-
ment in feature extraction. We noticed that the method efficiently
solves difficulties arising from outliers in the analysis of the mul-
timodal distributions of wavelet coefficients (Figure 8A). Even a
small amount of outliers affected the performance of the KS test
if the conventional mean and variance are used (Figures 8B,C,
left). Therefore, previous methods employed a special treatment
to remove the influences of outliers in the KS test (Quian Quiroga
et al., 2004). In contrast, the proposed KS test with the robust
estimation of the mean and variance could evaluate various mul-
timodal distributions with a surprising accuracy in the presence
of outliers (Figures 8B,C right). More elaboration is necessary to
clarify why the present KS test is so effective for the nature of spike
signals. The wide repertoire of this KS test, which covers variety
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0.158 0.148 0.110 0.095 0.087 0.082

0.059 0.013 0.058 0.077

A

B C

FIGURE 8 | Comparison of the standard and proposed KS test on

multimodality analysis. (A) The distributions of wavelet coefficients
(upper) and the corresponding cumulative distributions (lower) are
shown for the coefficients ranked in the top six of the multimodality
ranking by the proposed KS test. In each panel, gray curve shows
the Gaussian distribution compared with each multimodal

distribution, and numbers indicate the values of the multimodality.
(B, C) Unimodal and multimodal distributions with outliers were
evaluated by the KS test with (right panel) and without (left panel) the robust
estimation. Gray curves show the Gaussian distributions used in the
evaluation. In B, the tails of the distributions are magnified by 20 to show
outliers.

of multimodal distributions, may emerge partly from the inherent
virtue of non-parametric estimation methods.

COMPUTATIONAL TIME
Computation time is another practically important measure in
spike sorting. For simultaneous intracellular and extracellular
recording data, the average computational cost of PCA, GLF,
WT + mPICK, and WT + mPCA were about 2.4 s, 57.1 s, 2.1 s,
and 2.9 s, respectively. The average computation time of explicit
SVB was about 43.7 s. For comparison, the average computa-
tional cost was 46.0 s for a non-parallelized implementation of
classification EM algorithms (KlustaKwik version 2.0.1 available
at http://klustakwik.sourceforge.net).

DISCUSSION
In order to improve the accuracy and speed of spike sorting, we
have proposed a new algorithm based on mPCA and explicit
SVB and compared the performance with several other spike-
sorting methods on artificial and experimental spike data. We
have demonstrated that the proposed method robustly yields the
smallest error ratio to the total spike number among the meth-
ods tested. These improvements of the overall performance result
from the multiple component mechanisms implemented in our
method. First, the Gaussian window function applied to spike
waveforms significantly improves the robustness and accuracy
of the features extracted from spike waveforms. Second, mPCA
enables us to extract informative features of spikes in a relatively
low-dimensional feature space without sacrificing the computa-
tion speed of PCA. Third, the explicit numerical implementa-
tion of SVB significantly improves the robustness of clustering

results, and the preprocessing by k-means clustering significantly
reduces the overall computational cost of spike clustering by
explicit SVB.

In particular, owing to explicit SVB our method successfully
classified multi-neuron spikes even when the data contains spikes
from both bursting neurons and sparse-firing neurons. Spike
clustering of these neuron types was possible by several conven-
tional methods if the spike data contains only one of these neuron
types. However, when they coexist, we should initially introduce
more clusters than actually needed so that we may manually
combine the resultant spike clusters that likely belong to the same
neurons. By this procedure, we may reduce the chance of the
contamination of spikes from sparse-firing neurons. However,
the manual inspection significantly decreases the efficacy of spike
sorting, and possibly introduces human biases. Cortical neurons,
especially those in the superficial cortical layers, fire very sparsely
and some neurons in the deep cortical layer generate bursts of
spikes. Therefore, explicit SVB employed by our method produces
a significant practical merit.

The robustness of KS test is particularly important in mPCA
as it weighs each feature dimension by the multimodality evalu-
ated by the test. We may introduce some procedure, for instance
the conventional normalization by the mean and variance, to sup-
press the influences of outliers on the evaluation of the normality.
In practical spike sorting, however, we found that such a con-
ventional method often did not work in the evaluation of the
multimodality. In the present study, we have demonstrated that
the robust estimation of the mean and variance enables us to cor-
rectly evaluate the multimodality and stabilizes the performance
of mPCA. We have also tested other methods for mPCA based on
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SVB and Shannon’s information criteria (Takekawa et al., 2010;
Yang et al., 2010). However, none of these methods improved the
accuracy of spike sorting compared with the present mPCA com-
bined with KS test. In fact, they just created more parameters and
heavier computational load.

Finally, the non-stationarity of extracellular recordings is
another potential source of difficulty in spike sorting of real data.
Drifts of recording electrodes or changes in the vital condition
of cells may induce non-stationarity in the recorded signals. This
problem has been addressed by several authors using different
models (Pouzat et al., 2004; Bar-Hillel et al., 2006; Gasthaus et al.,
2009). Recently, a clustering method that uses Kalman-filter mix-
ture models for extracted features was proposed to overcome the
difficulty (Calabrese and Paninski, 2011). Because the algorithm

of VB for Kalman-filter mixture models is related to VB for lin-
ear Gaussian state-space models (Barber and Chiappa, 2007), we
can in principle implement the method within the framework
shown in this paper. However, since Kalman-filter mixture mod-
els require huge memory storage for large data sets, the method
may not suit for sorting the spike data of long-term recordings.
We examined the explicit SVB clustering method to obtain a
computationally cheap method applicable to such data (data not
shown), although the usability should be further validated.
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