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High-resolution MRI of the mouse brain is gaining prominence in estimating changes in
neuroanatomy over time to understand both normal developmental as well as disease
processes and mechanisms. These types of experiments, where a change in time is to
be captured as accurately as possible using imaging, face multiple experimental design
choices. Chief amongst these choices is whether to image ex-vivo, where superior
resolution and contrast are available, or in-vivo, where resolution and contrast are lower but
the animal can be followed longitudinally. Here we explore this tradeoff by first estimating
the sources of variability in anatomical mouse MRI and then, using statistical simulations,
provide power analyses of these experiment design choices.
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1. INTRODUCTION
Imaging is a key tool for tracking changes in the anatomy of the
brain across time. In human studies, the aim is to assess alter-
ations that have occurred over periods ranging from hours to
years and test whether these differ by diagnosis, treatment group,
or outcome.

Tracking changes in neuroanatomy over time has been essen-
tial for neurodegenerative diseases. Hippocampal atrophy in
Alzheimer’s disease (Chetelat, 2003; Silbert et al., 2003; Zakzanis
et al., 2003) or striatal atrophy in Huntington’s (Montoya et al.,
2006; Paulsen et al., 2006) are respective hallmarks of disease pro-
gression or even prodromal indicators of likely future diagnosis
(Paulsen et al., 2008). Similarly, alterations in atrophic progres-
sion are potential biomarkers of treatment efficacy. Stopping
or slowing hippocampal or striatal atrophy may represent early
indicators of successful therapy. In addition to the disease or treat-
ment examples, changes in anatomy over time are increasingly
being used as an indicator of neuroplasticity. Naive subjects learn-
ing to juggle (Draganski et al., 2004; Boyke et al., 2008; Driemeyer
et al., 2008; Scholz et al., 2009) or play musical instruments (Gaser
and Schlaug, 2003; Hyde et al., 2009) are just two examples where
short term changes in gray and white matter have been detected.

To understand the mechanisms of this anatomical change in
the brain over time, it has become increasingly beneficial to study
the mouse, wherein observation of anatomical changes can be
coupled with both precise control of genetic and environmental
factors and with detailed measurements (histology and immuno-
histochemistry). This allows one to determine what causes the
brain to change and how it does so. In the case of brain plas-
ticity, for example, we have shown that 5 days of training mice
on a maze is sufficient to cause MR-detectable hippocampal and
striatal volume changes on the order of 2–4% that correlate with
expression of a marker of neuronal process remodeling (Lerch
et al., 2011). Similarly, multiple groups have been able to use
MR imaging of mouse models of Alzheimer’s or Huntington’s

to monitor progression of atrophy and relate these volumetric
changes to other biochemical markers (Lau et al., 2008; Lerch
et al., 2008; Badea et al., 2010; Sawiak et al., 2009; Carroll et al.,
2011).

MR imaging of the mouse involves tradeoffs due to the size
of the animal. To gain comparable information to the common
human anatomical imaging studies, voxel sizes on the order of
tens of microns to a hundred microns are required. Obtaining
such resolution is accomplished through higher field strengths,
custom-designed coils, optional use of contrast agents and signif-
icantly longer scan times. The duration of in vivo imaging sessions
is, however, limited by the approximately 3 h anesthesia toler-
ance of mice, resulting in isotropic voxel sizes of around 100 μm.
Another option is ex-vivo fixed-brain imaging, where the combi-
nation of much longer scan times, tighter fitting radiofrequency
coils, and high-dose gadolinium-based contrast agents allows for
improved image resolution and contrast.

There is, therefore, also a natural tradeoff between in-vivo and
ex-vivo imaging, with longitudinal capabilities in the case of the
former but the possibility of higher resolution and sensitivity in
the case of the latter. Naturally, the greatest phenotype detec-
tion sensitivity will always be achieved by performing as many
high-resolution fixed specimen scans as is feasible at the single
timepoint when anatomical change is the greatest. Rarely in aca-
demic research is there enough prior information available to
permit the design of a study of this kind. Rather more frequently,
one is interested in characterizing a process of change that has
only a vaguely defined timecourse and that may affect multiple—
probably as yet unidentified—structures. In this case, there is a
need for both temporal and spatial sensitivity and the tradeoff
between the two is entangled with the tradeoff in performance
between in-vivo and ex-vivo mouse imaging.

The goal of this manuscript is to provide a statistical explo-
ration of the tradeoffs between in-vivo and ex-vivo mouse imag-
ing in this context. For the sake of simplicity, and to provide

Frontiers in Neuroinformatics www.frontiersin.org March 2012 | Volume 6 | Article 6 | 1

NEUROINFORMATICS

http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/about
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org/Neuroinformatics/10.3389/fninf.2012.00006/abstract
http://www.frontiersin.org/Community/WhosWhoDetails.aspx?UID=5101&d=1&sname=JasonLerch&name=Science
http://www.frontiersin.org/Community/WhosWhoDetails.aspx?UID=47945&d=1&sname=MarkHenkelman&name=Science
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


Lerch et al. Wanted dead or alive?

a concrete example, we focused the statistical study on a hypo-
thetical experiment in which we seek to recover a 3% change
in the volume of the hippocampus. First, we characterize the
relative contributions of different sources of variance to our esti-
mate of hippocampal volumes. Second, we use these measures
to simulate a timecourse experiment and determine phenotype
detection sensitivity while changing the number of subjects, the
number of time points and the measurement variance. Finally,
we consider the characterization of rate of change over time with
both a longitudinal, in-vivo imaging experiment and a purely

Table 1 | The key parameters in simulating change over a short period

of time.

Item Description

Volume_Baseline The tissue volume at baseline of the study

σpopulation The inter-subject standard deviation

σsubject The within-subject standard deviation

μβ The volume difference between baseline and final

measure

N The number of subjects per group

Ntimepoints The number of scans per subject for longitudinal data

cross-sectional, ex-vivo experiment. We expect that this analysis
will provide guidelines helpful in planning mouse imaging exper-
iments and provide rules of thumb for selection of in-vivo vs.
ex-vivo study designs.

2. METHODS
We explore the trade-offs involved in designing mouse imaging
experiments by first estimating variance in hippocampal volumes
in:

• eight 12-week-old C57Bl/6 mice imaged using a high-
resolution fixed-brain sequence to estimate population vari-
ability in volume;

• the same mice imaged using a lower-resolution sequence to
estimate the effects of resolution on variance;

• each of the above two studies repeated three times on the same
specimens to measure pure imaging and algorithmic noise; and

• eight mice imaged in-vivo at 24, 42, and 63 days of age to
estimate variability in repeatedly imaging the same animal.

2.1. DATA ACQUISITION
2.1.1. Ex-vivo high-resolution
Animals were prepared for ex-vivo imaging by perfusion fixa-
tion. For this purpose, animals were deeply anesthetized with

FIGURE 1 | The data simulation, shown under three conditions of no

noise, only population noise, and both population and subject noise.

The population noise is representative of biological variability. Subject noise
includes a combination of factors including imaging method and registration
algorithm noise that affects the ability to produce the same result on

repeated scans. In all cases we start with hippocampal volume at 100%, and
by the end of the study that volume is to increase by 3%. The second group,
not shown, is a control group with no hippocampal volume changes. The
simulation shown in this figure includes eight subjects per group and four
scans per subject.
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FIGURE 2 | Sample images from the three acquisitions used in this

study are shown here.

Table 2 | Standard deviations (expressed as percent of hippocampal

volume) across three datasets.

Dataset Absolute volume Relative to

brain volume

σpopulation σsubject σpopulation σsubject

Ex-vivo high-resolution 5.0% 1.1% 1.7% 0.99%

Ex-vivo low-resolution 4.8% 1.3% 3.0% 1.0%

In-vivo 4.8% 3.1% 2.2% 1.7%

The σsubject for the ex-vivo datasets represent variability when scanning the same

specimen repeatedly. The volume of the hippocampus in one hemisphere of the

mouse brain is approximately 9.9 mm3.

a ketamine-xylazine mixture (150 mg/kg and 10 mg/kg, respec-
tively) and then intracardially perfused first with phosphate-
buffered saline (PBS), heparin and 2 mM ProHance (gadoteridol,
Bracco Diagnostics Inc., Princeton, NJ) and second with 4%
paraformaldehyde (PFA) and 2 mM ProHance. After perfusion,
all extracranial tissue was removed and brains were left in the
skulls and soaked in 4% PFA with 2 mM ProHance for 12 h and
then in PBS with 2 mM ProHance for at least 1 week. A multi-
channel 7.0 T, 40 cm diameter bore magnet (Varian Inc., Palo
Alto, CA) was used to acquire all images for this study. High-
resolution, ex-vivo scans were acquired using a T2-weighted, fast
spin-echo sequence with parameters: 2 s repetition time (TR),
42 ms effective echo time (TE), 6 echoes at 14 ms echo spacing,
25 × 14 × 14 mm field-of-view (FOV), 450 × 252 × 250 matrix,
and twofold oversampling in the first phase encode dimension
(equivalent to acquiring two averages) for a total scan time of 11 h
40 mins.

2.1.2. Ex-vivo low-resolution
Low-resolution, ex-vivo scans of the same samples were acquired
using a T2-weighted, fast spin-echo sequence with parame-
ters: 0.95 s TR, 42 ms effective TE, 6 echoes at 14 ms echo

FIGURE 3 | A scatter plot showing the correlation between

hippocampal and total brain volume from fixed-brain specimens.

Regression line and its 95% confidence interval are superimposed.

FIGURE 4 | The effect of scans per subject when assuming 10 subjects

per group and aiming to recapture a 3% change in volume in a

longitudinal in-vivo study. The solid line illustrates the statistical power
using a standard deviation of 3.1%, as estimated from the in-vivo data. The
dotted line shows the estimate based on a reduced standard deviation of
1.1%, the best estimate obtained by repeated scans of ex-vivo samples.
The latter gives an approximation of imaging and algorithm noise.

spacing, 25.1 × 14.5 × 14.5 mm FOV, 228 × 132 × 132 matrix,
and twofold oversampling in the first phase encode dimension
(equivalent to acquiring two averages) for a total scan time of 1 h
32 mins.
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2.1.3. In-vivo longitudinal
In-vivo images were acquired in mice with manganese (Mn)
enhanced MRI. For this purpose we made a 300mM stock
solution from manganese (II) chloride tetrahydrate from Sigma-
Aldrich in cell culture grade water from Fisher Scientific. This
was then diluted 10× with 0.9% sodium chloride to 30mM
for intraperitoneal injection into the mice (0.4 m mol/kg dose).
Twenty-four hours following Mn-injection, mice were anes-
thetized for imaging with 4% isoflurane and then placed within
the magnet bore for imaging. Mice were maintained on 1% isoflu-
rane at a body temperature of 35◦C according to established
protocols. In-vivo, Mn-enhanced images were acquired using a
spoiled gradient-echo sequence with parameters: 0.1 s TR, 3.7 ms
TE, 55◦ flip angle, 280 × 168 × 168 matrix, 35 × 21 × 21 mm
FOV, with two averages for a total scan time of 1 h 34 mins.

All animal experiments were performed in accordance with
protocols approved by the Toronto Centre for Phenogenomics
Animal Care Committee.

2.2. DATA PROCESSING
Data processing was performed separately for each of the data-
sets described above and is explained in detail in (Lerch et al.,
2011). Briefly, all scans were aligned toward a consensus aver-
age using a three step process. An initial rigid-body alignment
was used to orient all brains in the same coordinate space. Pair-
wise 12-parameter linear alignment is then employed to create an
unbiased linear average of all brains in each experiment. Lastly,
iterative deformable registration then creates a final average with
any remaining local differences between brains removed. A com-
bination of ANIMAL (Collins et al., 1994, 1995) and ANTS
(Avants et al., 2008) was used to compute the registrations. A
previously created segmented atlas (Dorr et al., 2008) was then
deformed toward each data-set’s population average and the vol-
ume for each scan’s hippocampus extracted. When compared to
manual segmentation this automated procedure achieves a Kappa
of 0.86 (with a range of 0.85–0.88), which is high (Chakravarty
et al., submitted). Based on these data, we computed mean and
standard deviations of hippocampal volume measurements for
each scan type. Using the repeated scan measurements, we were
able to estimate both a population standard deviation (which
includes biological and measurement noise) and a within-subject
standard deviation (which includes only measurement noise
when scanning the same subject). These noise source estimates
were subsequently used in our statistical simulations.

2.3. STATISTICAL SIMULATIONS
The key terms in our statistical simulations are shown in Table 1.
The data at each timepoint is simulated in the following way:

Volume_Baseline ∼ normal(μpopulation, σpopulation)

Volume_Timepointi ∼ Volume_Baseline

+normal

(
μβ

(
timepointi − 1

Ntimepoints − 1

)
, σsubject

)

We assume a linear change with equally spaced timepoints.
For the following studies we have set μβ to be 3%. Each of

FIGURE 5 | The effect of within subject variability on the ability to

estimate group differences. This is estimated based on 10 subjects per
group, four scans per subject.

FIGURE 6 | The effect of subjects per group based on a standard

deviation of 3.1% and four scans per subject.

the following experiments will draw 1000 samples per quan-
tity to be estimated to study the effects of varying subjects per
group, scans/timepoints per subject, and the two sources of noise
(σpopulation and σsubject ). An example simulated dataset based on
those numbers is shown in Figure 1. All simulations were carried
out in R statistical environment (www.r-project.org) using the
rnorm function for drawing random numbers from the normal
distribution.
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FIGURE 7 | The trade-off between subject and population

standard deviations (given in % volume) for the fixed-brain

experiment. In the basic fixed-brain experiment we assumed that
there was no subject variance (i.e., all within subject variance was

methodological); if that is not true, then even the fixed-brain
estimates will suffer. The black lines indicate standard deviations
of absolute (solid) and relative (dashed) volumes as determined
by our imaging data.

3. RESULTS
3.1. CONTRIBUTIONS TO THE VARIANCE OF HIPPOCAMPAL VOLUME

MEASUREMENTS
To estimate the variance contributions to hippocampal volume
measurements, we imaged mice repeatedly at high-resolution
ex-vivo, at low-resolution ex-vivo and longitudinally in-vivo.
Sample images are provided in Figure 2. After registration of all
images to an unbiased, consensus average, the volumes of the
hippocampus and whole brain were extracted. As can be seen
in Table 2 the population standard deviation in hippocampal
volume ranges between 4.8% and 5.0%, depending on the scan
type. Hippocampal volume estimated from scanning the same
fixed-brain specimen repeatedly, however, showed a standard
deviation of only 1.1–1.3%, depending on the image resolution.
The implication is that the majority of variance in our imag-
ing measurements is biological, not methodological. Moreover,
we observed that a significant proportion of the variance in hip-
pocampal volume is accounted for by overall differences in brain
volume. This is made clear by considering hippocampal volumes
normalized by brain volumes (Table 2), which have standard
deviations reduced to 1.7–3.0% for the population and to 1.0%
for repeat scans. A scatterplot of hippocampal volume to brain

volume is provided in Figure 3 and shows the two volumes are
highly correlated.

3.2. FACTORS AFFECTING THE DETECTION OF ANATOMICAL
PHENOTYPES IN In-vivo TIMECOURSE EXPERIMENTS

We next performed a series of simulations to determine possible
outcomes in a timecourse experiment in which we supposed a 3%
change in the volume of the hippocampus. We independently var-
ied the number of uniformly spaced timepoints per subject, the
within-subject standard deviation (i.e., the measurement error
associated with each scan), and the number of animals in each
of two groups (an affected group vs. a control group with no
change). In these cases, and based on the variance measurements
from our in-vivo imaging data, the key to recapturing the simu-
lated change is to ensure at least one of the following conditions
is satisfied:

1. the number of timepoints per subject is at least six (with
10 subjects per group and a 3.1% standard deviation,
Figure 4);

2. the imaging method is improved to reduce the within-subject
standard deviation (i.e., the standard deviation associated
with repeated scans of the same mouse) to less than 2.7%
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FIGURE 8 | And the same tradeoff for the longitudinal in-vivo

experiment. Clearly the population standard deviation has little effect, which
is to be expected given that we are fitting a linear mixed effects model with a
random intercept per subject. So the only variance we really care about is the

within-subject variance. This simulation again assumes 10 subjects per
group and four scans per subject. The black lines indicate standard deviations
of absolute (solid) and relative (dashed) volumes as determined by our
imaging data.

(with 10 subjects per group and four imaging timepoints,
Figure 5); or

3. there are 12 or more animals per group (with four imaging
timepoints and 3.1% standard deviation, Figure 6).

To generalize these data to other structures and situations, a
more complete exploration of the parameter spaces is provided
in Figures 7–9. In each case, the false positive rate (p-value) at a
power of 0.8 is shown as a function of the subject and population
standard deviations (Figures 7 and 8) or of the scans per subject
and number of subjects (Figure 9). In comparison of Figures 7
and 8, there is a clear advantage to imaging in-vivo where popu-
lation variance predominates, because each mouse can be fit with
an independent intercept. Our hippocampal measurements, how-
ever, suggest this advantage is largely offset if relative volumes can
be used instead of absolute volumes, as this significantly reduces
the population variance (see dashed line, Figure 7).

3.3. In-vivo LONGITUDINAL VERSUS CROSS-SECTION Ex-vivo
TIMECOURSE EXPERIMENTS

Figure 10 explores the ability of both the in-vivo vs. ex-vivo exper-
iments to accurately estimate the timecourse of hippocampal

volume change. Here, the slope of the volume change over time
is estimated and the total change over the time period estimated
as the slope multiplied by the total time. We compare the in-vivo
and ex-vivo situations keeping the numbers of scans constant;
i.e., a longitudinal experiment with four scans each of 10 sub-
jects is compared to a cross-sectional experiment with 40 different
experimental subjects imaged with 10 at each of four timepoints.
The density plots clearly show that the longitudinal data is better
able to accurately estimate the slope and recover the 3% change
in hippocampal volume when using either absolute or relative
volumes (see also Table 3). However, again, the use of relative
volumes provides a significant improvement in both the in-vivo
and ex-vivo experiments, and very nearly eliminates the benefit of
longitudinal in-vivo data.

4. DISCUSSION
There are multiple decisions that have to be made when designing
a new mouse imaging study, including the choice of the number
of animals to scan, whether to do a high-resolution fixed-brain
experiment or, if imaging in-vivo, how many scans should be
acquired for each animal over the duration of the experiment.
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FIGURE 9 | Tradeoff between scans per subject and subject numbers for the in-vivo experiment. Clearly we can get power by increasing either. The solid
black line indicates the datapoints where the total scan number is kept to a constant 30 scans.

Here we investigated these trade-offs by determining the source
of variability in anatomy measurements derived from high field
mouse MRI and then simulating an experiment designed to
recover a subtle change in hippocampal volume.

One key conclusion from our imaging data is that anatomi-
cal variability in mouse imaging studies is low (∼5%), which is
not surprising given that animals are typically from an inbred
strain and raised in identical environments. Most of the variabil-
ity in the population, moreover, is accounted for by the overall
brain volume, and not specific to local structure volumes. For
study design purposes, it is, therefore, important to note that the
number of animals required to recover a change in relative (i.e.,
normalized) hippocampal volume is noticeably less than what
would be required to recover estimated differences in absolute
volumes.

In spite of the relatively low anatomical variability in inbred
mouse populations, this variability remains the single most sig-
nificant source of variance in imaging studies. Although the lack
of a ground truth in our data makes it impossible to fully estimate
the proportion of anatomical variance that is due to methods
error vs. biological variance, repeatedly scanning the same spec-
imen indicates that we can estimate hippocampal volume with

a precision of approximately 1% with high-resolution ex-vivo
imaging. Variability across a population of inbred mice, on
the other hand, is around 5%, or 1.7% if brain volume is
accounted for. This reiterates the tight correlation between vol-
umes of a structure and total brain volumes. It is also likely
to account for our observation that addition of extra sub-
jects increases statistical power more efficiently than addition
of imaging timepoints. Selection of additional subjects allows
averaging of measurements across the population, where error
is greatest.

We also noted, perhaps not surprisingly, that ex-vivo imag-
ing provides greater precision than in-vivo imaging. For this
reason, ex-vivo imaging will always be preferable when only detec-
tion of the anatomical phenotype is required, without attention
to its timecourse. This is especially true if relative volumes are
appropriate. However, longitudinal in-vivo experiments would
be preferred where absolute volume measurements are required,
including cases where many brain structures might be affected
simultaneously, thus skewing measurements of the whole brain
volume. Our data further suggest that longitudinal in-vivo exper-
iments maintain a better ability to precisely estimate the rate
of change across time than cross-sectional ex-vivo experiments,
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FIGURE 10 | The ability to accurately recapture the slope in an in-vivo

experiment with 10 subjects per group and four scans per subject

(baseline plus three timepoints with an expected change) and

a final expected change of 3% is shown here compared to

a cross-sectional experiment with four similar timepoints but using

ex-vivo acquisitions.

Table 3 | The relative abilities of the in-vivo and high-resolution

ex-vivo experiments to accurately estimate the slope (with an

expected final change of 3%) of an induced change given as means

and 90% confidence intervals (CI). See also Figure 10.

Dataset Absolute volume Relative to

brain volume

Mean 90% CI Mean 90% CI

Ex-vivo high-resolution 3.01% 0.07–6.01% 3.0% 2.04–4.09%

In-vivo 3.0% 1.47–4.56% 3.0% 2.26–3.76%

although this benefit is largely eliminated in cases where relative
volume measurements are appropriate.

These results may be summarized in a few simple rules of
thumb for mouse neuroimaging:

• relative volumes are more sensitive to anatomical phenotypes
than absolute volumes and are appropriate if only perturba-
tions to normal anatomy are expected;

• ex-vivo imaging at high-resolution is superior if a timecourse is
not of interest;

• longitudinal in-vivo imaging is superior to cross-sectional
ex-vivo imaging for measurement of changes in absolute vol-
ume and for characterizing the rate of change over time
(although this advantage is nearly eliminated if relative vol-
umes are appropriate); and

• addition of more subjects, rather than more timepoints, is pre-
ferred for improving the statistical power of a longitudinal
study.

Of course, these rules are simplifications and there are several
caveats to keep in mind when applying them. First, we considered
specifically the volume of the hippocampus as our measurement
of interest. The hippocampus is a relatively large structure in the
mouse brain and can be effectively measured in both in-vivo and
ex-vivo images. Other structures in the brain, and particularly
smaller ones, may be very difficult to measure in-vivo, resulting
in a much higher variance for the in-vivo data than is present
in the hippocampus. This would favor use of ex-vivo imaging.
The relative variances of structures of interest for both in-vivo
and ex-vivo imaging must, therefore, be considered in design of
the study. Second, other concerns, including limiting the num-
bers of mice used in research as well as potential uncertainty
about the exact timing of the changes in neuroanatomy would
suggest scenarios wherein fewer animals with more scans per
animal are preferred. Other practical considerations, including
limitations on the number of times mice can be scanned and
the possibility of introducing confounding anatomical changes
with repeated anesthesia, may ultimately determine the preferred
design of any given experiment. In Mn-enhanced imaging exper-
iments, in particular, possible toxicity due to repeated doses of
Mn must be considered. While well-tolerated in adult rodents
in single modest doses (∼80 mg/kg or less), repeated doses or
exposure in early developmental stages will increase the likeli-
hood of toxic effects (Gerber et al., 2002; Bock et al., 2008; Deans
et al., 2008). This consideration favors the use of more subjects
as opposed to more time points, a choice that our data sug-
gests is statistically advantageous as well. On the other hand,
the preparation of ex-vivo samples requires precise control over
perfusion and fixation protocols in order to ensure consistency
across all samples (Cahill et al., 2012), and will change the shape
of the ventricular system due to a lack of cerebrospinal fluid
pressure (Ma et al., 2008). Finally, it must be noted that we
simulated a very simple linear change with a known beginning
and end. Neither of these assumptions is likely to be perfectly
true in any given experiment. Alterations in anatomy will not
always be linear, nor will the precise timing of these changes
always be known. While it would be possible to extend our
simulations to encompass differing assumptions, the possible
number of such combinations would provide a more complex
set of rules.

In spite of the possible limitations of our study, we hope that
the power analyses contained herein provide a guide for design
of mouse imaging experiments. Increasingly, mouse imaging is
providing insights into changes in the brain over time that can-
not easily be visualized by any other means. We believe imaging
will consequently be a powerful tool in understanding how the
brain responds to stimuli and to disease. In combination with
the genetic tools available in the mouse, this will present unique
opportunities to understand the mechanisms of normal and
pathological brain function. The guidelines in this manuscript
will aid in design of these imaging studies, and in particular, sug-
gest when in-vivo or ex-vivo study designs are likely to be most
efficient.
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