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While technological advancements in neuroimaging scanner engineering have improved
the efficiency of data acquisition, electronic data capture methods will likewise signifi-
cantly expedite the populating of large-scale neuroimaging databases. As they do and these
archives grow in size, a particular challenge lies in examining and interacting with the infor-
mation that these resources contain through the development of compelling, user-driven
approaches for data exploration and mining. In this article, we introduce the informatics
visualization for neuroimaging (INVIZIAN) framework for the graphical rendering of, and
dynamic interaction with the contents of large-scale neuroimaging data sets. We describe
the rationale behind INVIZIAN, detail its development, and demonstrate its usage in exam-
ining a collection of over 900 T1-anatomical magnetic resonance imaging (MRI) image
volumes from across a diverse set of clinical neuroimaging studies drawn from a leading
neuroimaging database. Using a collection of cortical surface metrics and means for exam-
ining brain similarity, INVIZIAN graphically displays brain surfaces as points in a coordinate
space and enables classification of clusters of neuroanatomically similar MRI images and
data mining. As an initial step toward addressing the need for such user-friendly tools,
INVIZIAN provides a highly unique means to interact with large quantities of electronic
brain imaging archives in ways suitable for hypothesis generation and data mining.
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INTRODUCTION
After more than a decade of intense interest and effort (Van Horn
et al., 2001, 2005; Van Horn and Gazzaniga, 2002; Van Horn
and Ishai, 2007), neuroimaging data repositories are becoming
commonplace as are the means for populating them using meth-
ods of electronic data capture (Van Horn and Toga, 2009a,b).
Along with raw image volumes from structural and functional
MR and accompanying modalities, these databases frequently
contain detailed subject and study-specific meta-data attributes
providing the contextual components for data collection, study
conditions, assessment, and outcome measures. Archives may con-
tain the brain imaging data obtained as part of a multi-site study
or may represent a range of study types gathered from pub-
lished research studies. Once placed into the database architecture,
qualified users may download the imaging and meta-data from
individual or groups of subjects matching search criterion for
further processing and image analysis, for instance, using work-
flow environments (Dinov et al., 2009, 2010). In most cases,
however, database search criterion are based explicitly and solely
on text- or numerically based meta-data descriptive character-
istics such as age (e.g., subjects older then 50), gender (“male”
vs. “female”), handedness (“right” vs. “left”), scanning parame-
ters (“1.5 T” vs. “3 T” scanners), etc., with no particular bear-
ing upon derived neuroanatomical attributes from the imaging
data themselves. Often, one might want to explore the patterns
of cortical geometry and identify subjects who not only satisfy
the required meta-data-based criterion but also possess certain
characteristics concerning cortical shape, curvature, thickness,

etc. Moreover, the instances of these attributes taken across the
image volumes in the database itself may tend to form group-
ings or clusters based upon neuroanatomical similarity which
may directly relate to meta-data classifiers (e.g., patient diag-
nosis, allelic variant, duration of illness, etc.). The examination
of such patterns and the exploration of which factors might be
worthy of more detailed analysis and hypothesis generation are
not typically a feature of commonly available neuroimaging data
archives.

TRADITIONAL VS. EXPLORATORY DATA ANALYSIS
To look across datasets contained in a neuroimaging archive
requires a different way of thinking than might be normally
approached in a typical “within study” analyses. In the major-
ity of magnetic resonance imaging (MRI) brain imaging studies,
for instance, the data is gathered across subjects using well-defined
clinical or research study protocols with commonly applied data
acquisition protocols. The principle investigator analyses the
acquired data to test specific driving hypotheses asked before the
data was collected. Such analyses often involve within and between
groups comparisons of brain anatomy or function, or correlations
of specific brain morphometry or time course of activity with
clinical or outcome metrics. These often employ the use of tra-
ditional inferential statistical tests (e.g., the general linear model,
Student’s t -tests, ANOVA, etc.) to reach conclusions about their
probabilistic significance. Unfortunately these require investiga-
tors to spend considerable time assessing data sets, even if they are
only of modest size.
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However, the exploration and mining of data from across multi-
ple,non-related studies contained in a large-scale database requires
a different approach. Rather than focus on one particular mea-
sure of interest, one often computes a family of useful descriptive
feature metrics and examines relationships among these metrics
taken individually or collectively to identify interesting trends,
clusters, or gradients across the collections of multiple subjects.
These may be as simple as examining histograms for every mea-
surement, plotting variables against one another, or performing
more sophisticated dimension reduction operations to find com-
binations of useful metrics. In so doing, an investigator seeks to
explore the data and get a sense of the underlying relationships
present to guide and inform subsequent formal statistical analy-
sis. Termed “exploratory data analysis,” these approaches were
championed by Tukey (1977) and seek to help a researcher bet-
ter understand his own data in addition to being insightful for
understanding the data of others (see also Velleman and Hoaglin,
1981).

Exploratory methods have been widely applied in all aspects of
science, most notably in genetics (Teo, 2010), high-dimensional
molecular biological data (Wu, 2010), and electrophysiological
data (Harner, 2009). In contrast to the immediate application of
a rigorous and detailed statistical model to the data, one employs
exploratory approaches to allow the data to “explain itself” by
using a collection of relatively easy to understand metrics and to
look for patterns across study data sets which would not have been
obvious when any data set was considered in isolation.

Importantly, exploratory approaches are conducted not to
arrive at some level of statistical significance of some specific
within- or between-group difference, but to provide a picture of
trends, clusters, and other factors contained in the data, which, in
many instances, may not be approachable through full inferential
modeling. Put another way, exploratory approaches are not meant
for the generation of significant p-values but, rather, the gener-
ation of hypotheses worthy of future significance testing. With
the growth and storage of increasing amounts of data anticipated
from manual and automated data capture approaches, exploratory
approaches for data mining take on a particular importance
for users of large-scale archives to quickly survey database con-
tents, identify interesting avenues for further examination, and,
moreover, do so in an interesting and compelling way.

VISUAL INTERACTION WITH LARGE-SCALE DATA
The graphical placement of spatially based data to illustrate, repre-
sent, and highlight relationships in desktop computer and mobile
device applications is now so pervasive that it is hard to imagine the
time before these tools became part of our everyday lives. Google
Maps1 and Google Earth2 integrate road, terrain, and satellite
mapping data into easy to use navigation tools upon which layers
of additional, contextual information can be superimposed. Other
freely available tools such as Microsoft’s Worldwide Telescope3

seamlessly stitch together images obtained from ground- and
space-based telescopes and present them in a graphical framework

1http://www.google.com/maps
2http://earth.google.com
3http://www.worldwidetelescope.org

enabling fluid inspection of individual stars, nebulae, and constel-
lations by expert as well as armchair astronomers. In each of these
examples, users need only know how to use a computer mouse (or
their finger tip!) in order to interact with the software.

Despite the growing richness of neuroimaging databases, sim-
ilar graphical tools for rendering and representing database con-
tents in a user-friendly manner do not widely exist. In many
instances, graphical systems for plotting measures derived from
neuroimaging data are simply the creation of 2D scatterplots
in Microsoft Excel4 or Matlab (Mathworks, Inc.) or, perhaps, as
advanced as the identification of normalized Talairach/Montreal
Neurological Institute (MNI) coordinates and representing the
metric of interest as a color mapped point at relevant brain loci
and accumulating a distribution of such points across subjects. Yet,
while plotting hundreds of brains as individual points in a scatter
plot helps tell a story, there is an inherent appeal for the examina-
tion of brain surfaces and the mapping of metric intensities on the
cortical surface – much in the same sense as the rendering of satel-
lite imagery on a synthetic globe. Moreover, ease of interactivity is
also appealing. Simple user inputs result in dynamic and fluid con-
trol of the entire collection of data. Several prominent and useful
surface modeling tools do exist which compute and display cortical
surface models and allow the user to interact with them individ-
ually (e.g., FreeSurfer; BrainSuite; Brain Voyager; Brain Browser).
However, these tools are not specifically designed to display more
than one subject’s surface models at a time, nor do they allow
one to represent the similarity between 3D brain surfaces in any
sort of derived data space. In such a multi-dimensional spatial
arrangement, for instance, similar data might be clustered based
upon cortical metric attributes thereby allowing for at least a gross
description of subject-to-subject similarity and meta-data-based
dissimilarity between clusters. Moreover, any spatial configura-
tion of brain surface information could be done arbitrarily into
any framework one might imagine to emphasize trends in the data
(e.g., as positions on a plane, on a sphere, a torus, or any other non-
Cartesian coordinate system). From these arrangements, basic data
mining and additional graphing tools can help users generate new
hypotheses about the uniqueness of sub-clusters of similar brains,
or that some continuum exists across disease classifications rela-
tive to some particular sub-set of morphometric measurements.
Better still, if the interaction with potentially thousands of brain
surfaces simultaneously requires only a click and a drag of the
mouse, the user’s experience will be heightened and ideas can flow
more easily.

A GRAPHICAL INTERFACE FOR EXPLORATION OF NEUROIMAGING DATA
ARCHIVES
Therefore, as neuroimaging archives become richer through the
use of automated data capture techniques, an important challenge
exists for creating new tools that enable database users to inspect,
explore, and interact with their contents. Automated computation
of basic metrics is possible, but how those neuroimaging metrics
can be used to inform a novel and innovative platform for user
interaction and data mining has yet to be investigated in earnest.

4http://www.microsoft.com
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This is the essence of the informatics visualization for neu-
roimaging (INVIZIAN) project based at the Laboratory of Neuro
Imaging (LONI), UCLA. Our project is specifically geared toward
the creation of a user-based framework for the dynamic and inter-
active exploration, examination, and mining of data contained in
large-scale neuroimaging repositories. The repositories might rep-
resent data collected from multi-site collaborations, or individual
laboratories.

In this paper we present the details of the INVIZIAN program.
At its heart, INVIZIAN is an interactive graphically driven frame-
work for dynamic grouping and classification. We illustrate the
example in which each individual dataset is positioned in 3D with
placement that describes feature similarity – a so-called feature
similarity space (FSS). Through query result interaction, the user
can create groups of data that maximize feature-attribute relat-
edness according to their proximity and meta-data characteristics
and display the findings in real-time. By conducting feature- and
meta-data driven mining of assigned groups using data brush-
ing, parallel coordinates, and other exploratory approaches, the
user is able to easily and rapidly visualize underlying relationships
within groups and how these factors contribute to group differ-
ences. With this knowledge and insight, the user might then access
the database and download the relevant raw data to perform a
more rigorous analysis using widely available neuroimaging data
analysis toolsets (e.g., FSL, AFNI, FreeSurfer, etc.). As schematic of
the guiding principles underlying our INVIZIAN framework are
depicted in Figure 1.

The relevance of this work in the context of neuroimaging data
capture and its applications are as follows: (i) we review the ratio-
nale and techniques for exploratory analysis and data mining and
a means for maximally extractive processing of the gathered neu-
roimaging data to prepare it for visual analysis; (ii) we showcase
the interactive INVIZIAN visualization system which provides
expert and novice neuroscientists with the means to easily explore
the feature and structure of neuroimaging data; (iii) we demon-
strate the application of the INVIZIAN environment toward visual

analysis of individual MRI images from healthy as well as non-
healthy patients to illustrate exploration of structural relatedness
between a large cohort of subjects; and (iv) we present inter-
active visual data mining techniques for discovering the trends
between neuroanatomical features and subject meta-data attrib-
utes. The final section concludes the paper with proposals of future
work serving to support neuroimaging data sharing, mining, and
graphically driven exploration as a precursor to more formal data
processing.

EXPLORATORY ANALYSIS AND DATA MINING OF
IMAGE-BASED DATA
Data mining and knowledge discovery within a collection of
multi-dimensional heterogeneous neuroimaging archives is a
process that encompasses work from many techniques. Tradition-
ally for non-MRI data, such as photograph repositories, several
approaches have used basis functions such as wavelets (Unser
and Albroubi, 1996; Daubechies, 2004) to represent images. These
wavelet bases can be truncated for a compact representation that
preserves scale, frequency, and spatial information. A different
approach is followed by Lowe (2004), where instead of using
image intensities directly, a scale invariant feature transform is
computed on the gradient of the image and used to construct a
list of pertinent features for image characterization. These features
are dependent upon the edges or maximum intensity changes in
an image, and can be subsequently used for either segmentation
of regions of interest (Fussenegger et al., 2004) or registration
(Ke and Sukthankar, 2004) across datasets. We term the above
methods as subject-specific approaches. Where feature extraction
and representation is unique and wholly dependent upon a sin-
gle image belonging to each subject. Alternately, population-level
approaches exist that seek to find underlying discriminative pat-
terns between two or more groups of subjects. For example, Turk
and Pentland (1990) attempt to compact available image features
using a maximum variance separation criterion. The work by Mar-
tinez and Kak (2001) minimizes a discriminant function on the set

FIGURE 1 | Overview of the INVIZIAN system framework and data

workflow. Given the contents of an anatomical neuroimaging database,
multi-dimensional scaling (or other data reduction method) determines the
placement of extracted brain surfaces in the INVIZIAN 3D environment. The
user can dynamically interact with the elements in this space, search over

meta-data features, select one or more brain surfaces, and add them to
groups which may be assessed with respect to one another to generate
hypotheses worthy of new experimentation. This process enables the user to
rapidly explore and mine large collections of neuroimaging data for identifying
interesting trends across features and attributes.
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of all image observations, and finds a linear basis for projecting the
observations in a discriminative space. For 3D anatomical images,
we can use wavelet-based approaches (Unser and Albroubi, 1996)
for feature extraction. However 3D data is more complex, and the
definition of edges is cumbersome. Thus even if we can compute
bases and image transforms on 3D intensities, they are not straight-
forward to interpret. Moreover, the data is high-dimensional and
we need efficient tools for image processing. Therefore researchers
have defined methods for extracting geometrical objects from
images in the form of surfaces. For example, Thompson et al.
(2001) extract gray matter pial regions from 3D brain images, and
construct cortical surface representations for analysis. Cortical sur-
faces are compact representations of outer gray matter anatomy,
enabling calculation of feature-rich data values.

Dimension reduction is an important component of data min-
ing. It consists of a class of techniques that attempt to minimize
information loss while reducing structural complexity. While non-
linear approaches are available (e.g., ISOMAP; Tenenbaum et al.,
2000), many depend upon linear models. Multi-dimensional scal-
ing (MDS; Beals et al., 1968; Kruskal and Wish, 1978) is a strategy
that aims to replicate the similarity between data in its native
configuration using a lower dimensional representation (Chen
et al., 2008). It minimizes the variance of the pairwise dissim-
ilarities, such that the projected data in the lower dimensional
space conserves the distances in the original higher dimensional
space. Principal Component Analysis PCA (Martinez and Kak,
2001; Xu and King, 2001) transforms the data to a reduced prin-
ciple component representation using a set of orthogonal vectors
that retain most of the variance in the original data. Kohonen’s
(1998) Self Organizing Maps represents a type of artificial neural
network that produces a topology preserving 2D representation of
the input data. Support vector machines (Abe, 2010) also provide
a convenient means for identifying basic dimensions that separate
two or more groups.

The dimension reduction process can be made more intu-
itive by including an interactive component with the calcula-
tions. For example, an MDS approach proposed by Williams and
Munzner (2004) enables a user to iteratively reduce the dimen-
sionality of data, while targeting reduction computation toward
regions of interest. Visual hierarchical dimension reduction (Yang
et al., 2003a) constructs and arranges dimensions into a hierar-
chy, presented as a radial interface facilitating user exploration
of dimensional configuration. Interactive Hierarchical Dimension
Ordering, Spacing, and Filtering (Yang et al., 2003b) extends the
idea by adding automated components that attempt to identify
lower dimensional sub-space structure. Johansson and Johansson
(2009) propose an interactive dimension reduction system driven
by user-defined quality metrics. Dimension reduction can lead to
information loss, but in Johansson’s interactive system the user
controls what dimensions are important by appropriately weight-
ing correlation, clustering, and outlier significance. Once the user
assigns weights and a dimensionality threshold, the framework
provides a graph illustrating information loss per variable reduced.
This framework can be further enhanced by a query-based visual-
ization, as the one that facilitates dynamic and guided visualization
toward data deemed compelling by user query–result interaction.
Previously, a query-based approach has been presented in VisDB

(Keim and Kriegel, 1994). In their article, the authors build a
multi-dimensional view of a relational database repository. They
define type-specific distance metrics which are employed against
all data to rank relevance to each user query. Feedback is presented
as a pixel map, with a carefully chosen color scheme depicting dis-
tance of query result from significant near matches. For instance,
Scout (McCormick et al., 2004) is a data-parallel programming
language for graphics processors which hides the nuances of both
the underlying hardware and supporting graphics software layers.
In addition to general-purpose programming constructs, the lan-
guage provides extensions for scientific visualization operations
that support the exploration of existing or computed data sets.
Scout takes advantage of GPU hardware acceleration to enable
the guidance of visualization processing via mathematical evalu-
ation. This system is interfaced through a custom programmable
API that manipulates pixel parameters during visualization of the
data. Finally, a more recent query-driven system was proposed by
Gosink et al. (2011) which employs multivariate analysis to visually
describe areas of importance to the user while performing visual-
ization on a single large scientific dataset. Users interact with the
query solution space to identify statistically interesting combined
parameter values. However, this approach is limited to the con-
sideration of only a single dataset at a time (multimodal images
of gas combustion in their example) and is not likely suitable for
collections of 3D anatomical neuroimaging volumes or cortical
surface representations.

Therefore, data mining and dimension reduction approaches
are particularly compelling frameworks for the representation and
examination of large-scale data archives. Coupled with accelerated
computer graphics and an interactive display, they provide a novel
way to rapidly identify patterns in brain imaging archives which
may lead to new ideas for formal data processing and even the col-
lection of additional empirical data. We sought to leverage these
concepts toward a novel graphical “environment” for exploratory
neuroimaging informatics.

THE INFORMATICS VISUALIZATION IN NEUROIMAGING
SYSTEM
Informatics visualization for neuroimaging was specifically
designed for graphical data exploration and mining applied to
large-scale neuroimaging data repositories. An easy to use graph-
ical user interface, mouse-driven interactivity, a compelling visual
display, and a satisfying overall experience for the user were
considered essential features.

The simplicity of the INVIZIAN interface is in noticeable con-
trast to the complexity of the data it seeks to present. Moreover,
mouse-based user inputs and minimal need for typing were also
important consideration. Google Earth and similar programs rely
on the display of rich graphical information yet user interaction
revolves around the most basic of modern computer inputs: sin-
gle/double clicking, dragging, scrolling, etc. Typing is minimized
and, often unneeded. Excessive sets of controls, dials, sliders, and
input boxes are not present or, for those that do exist, they may
be easily hidden. A user-configurable skybox background (see, for
example, the back ground of Figures 5 and 6) aids with the percep-
tion of depth, distance, and relative motion of brain surfaces as the
user dynamically moves around in the INVIZIAN environment – a
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visual effect which is particularly impressive when viewed in a
large-format video display. This basic philosophy was the guid-
ing principle for developing all aspects of INVIZIAN’s design and
implementation.

Developed in C++, INVIZIAN utilizes the Qt™application
and UI framework5. Qt’s numerous UI libraries enable quick
prototyping of new widgets and other visual interfaces. Qt’s
OpenGL support is extensive, encapsulating much version specific
API usage, such as off-screen rendering. Qt’s cross-platform sup-
port encapsulates all of the operating system specific calls within
INVIZIAN, such as obtaining the user’s home directory or window
environment configuration. Additionally, Qt contains generalized
APIs for direct interaction with a database, which is useful for
supporting queries of subject meta-data under INVIZIAN. The
implementation of the meta-data search interface is simplified sig-
nificantly through the use of SQLite6. First, INVIZIAN parses all
subject meta-data (itself stored as a set of subject-specific xml files
under its current implementation) into an internal SQLite table.
During runtime, INVIZIAN can retrieve user-specified Boolean
queries and check them against the meta-data SQL tables for
matches. The results of the matching list then drive the graphical
highlighting of matching surfaces as displayed to the user using Qt
in the INVIZIAN interface.

Viewing surface mesh objects represents the majority of the
interaction within the INVIZIAN application. Managing such
large amounts of shared memory is a complex undertaking how-
ever, and for this purpose we take advantage of the Boost C++
Libraries. Specifically INVIZIAN uses the Boost smart pointer
library7 to manage surface mesh reference counts and perform
shared object instantiation and deletion.

Lastly, the backend data mining analytics and plotting within
INVIZIAN are carried out using R (R Development Core Team,
2011) and GGobi (Cook and Swayne, 2007). Custom R scripts
draw from and populate data frames from the meta-data SQL
table thereby making them available for examination using any
relevant inferential statistical test and, should the user require,
the determination of p-values of observed group differences, etc.
Using other R implementations facilitated by the RGGobi pack-
age (Wickham et al., 2008) it is possible to launch the GGobi
interface with values from the data frame. GGobi then presents
summaries of the derived metric data to the user via a series of
plots that build upon the coordinated view provided through
INVIZIAN navigation. Indeed, any statistical test or probability
value generated by R can be captured and, in principle, displayed
back to the user via GGobi through the INVIZIAN interface.
What is more, user inputs from within INVIZIAN are immediately
updated on the GGobi plots and vice versa to provide interactive
data brushing.

To illustrate what cannot be properly appreciated in the for-
mat of a printed journal article, we provide a movie featuring the
use, functionality, and interactivity of INVIZIAN as part of our
Supplementary Material. A beta Linux package of INVIZIAN is

5http://qt.nokia.com
6http://www.sqlite.org/about.html
7http://www.boost.org

currently available8 under the LONI software license9. The official
INVIZIAN release date is set for the second half of 2012, at which
point we will provide installable packages for the Linux, Windows,
and Macintosh platforms. More information is available on our
NITRC project site10.

EXAMPLE NEUROIMAGING DATA SETS AND
PRE-PROCESSING STEPS
To illustrate its use for dynamic interaction with large neu-
roimaging data, we demonstrate the application of INVIZIAN
for rendering an archive of T1-anatomical MRI image volumes,
collected from diverse clinical neuroimaging studies contained in
the image and data archive (IDA)11 based at the LONI at UCLA.
Our collection of image volumes was comprised of a sample of
N = 874 subjects from the Alzheimer’s Disease Neuroimaging Ini-
tiative (ADNI; Jack et al., 2008), Australian Imaging Biomarkers
and Lifestyle (AIBL) project (Ellis et al., 2009), and the Cogni-
tive Neurophenomics Project (CNP; Bilder et al., 2009) datasets.
Broadly, they consisted of 384 ADNI, 236 AIBL, and 118 CNP sub-
jects. The ADNI study consisted of 91 Alzheimer’s (AD) patients,
194 subjects showing mild cognitive impairment (MCI), and 99
healthy controls (NC), 158 M/226 F having mean ± SD age of
74.99 ± 7.07 years. The choice of data sets which contain AD sub-
jects was chosen specifically to illustrate an example where clusters
and differences in brain morphometry would be readily appar-
ent. We could have easily selected alternative data sets or included
additional datasets where these differences were less prominent.
However, as detailed below, all data were processed similarly and,
thus, not explicitly according to the study, experimental group,
or other particular meta-data feature. Finally, we note that as the
amount of data loaded into the system is increased, INVIZIAN
maintains interactivity by utilizing multiple resolution surface
meshes, limited only by the memory capacity of the user’s system.

For all data processing steps, we utilized LONI Pipeline (Dinov
et al., 2009, 2010) for segmentation and registration of the input
MRI image volume data. This grid-based solution provides val-
idation and distribution of new computational tools, and an
intuitive graphical interface for developing and executing par-
allel volumetric processing software. Specifically, our processing
employed the brain extraction tool (BET; Smith, 2002) tool for
skull stripping MRI images in our workflow. All image volumes
in the database were registered (Woods et al., 1998) to a standard
MNI atlas image. The resulting gray/white matter images were
then processed in parallel using FreeSurfer (Dale et al., 1999) to
extract (i) the cortical (gray/CSF boundary) surface, and (ii) 34
sub-cortical features such as the major gyri, hippocampus, and
the putamen. Freesurfer is a highly useful and widely available
tool for cortical surface generation and partitioning which has
recently been shown to perform very well in the consideration
of ADNI data sets (Desikan et al., 2010). This process resulted in
a geometrical representation stored in the form of a triangular
mesh file format. While other partitioning schemes and methods

8http://invizian.loni.ucla.edu
9http://www.loni.ucla.edu/Software/license.php
10http://www.nitrc.org/invizian
11http://ida.loni.ucla.edu
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exist (Tu et al., 2008, for instance), the choice of which may affect
results, FreeSurfer provides a well-defined brain segmentation
upon which region-specific morphometry can be performed.

Several volumetric measurements such as gray matter thick-
ness, volume, and surface area were computed on the processed
data. Gray matter thickness was computed as the mean dis-
tance from the gray matter/cerebrospinal fluid interface to the
gray/white matter surface, and vice versa. Gray matter volume
was calculated as the product of the thickness and the area of
the surface layer midway between the gray/CSF and white/gray
matter boundaries. Additionally, a mean area measure was calcu-
lated at each point on the cortical surface by averaging the areas
of triangles including that point. Along with the gray matter fea-
tures calculated over the whole pial surface, we also obtain 34
regional cortical parcelations according to the Desikan–Killiany
atlas (Desikan et al., 2010). Lastly, each subject image within the
archive was accompanied by a file containing subject attribute data.
The image processing, segmentation, and extraction utilities were
exported through the LONI Pipeline. The surfaces, their parce-
lations, and the calculated feature values along with the subject
meta-data are stored as described above.

For examination of brain-to-brain similarity, we use the
approach introduced by Joshi et al. (2009, 2011) which calcu-
lates distribution functions of feature values taken over the cortex.
Briefly, a kernel density estimation technique (Botev et al., 2010)
is used to construct a non-parametric functional representation
of feature functions and is implemented as follows:

For a total of N parcelated regions, let each parcelation be
denoted by X i:u ⊂ R

2 → R
3, i = 1,. . . N. A given cortical feature

is then represented by a mapping fxi : u → R. For example,
if fxi represents the projected cortical thickness for region i, it
assumes all permissible values from roughly 0.5 to 4.5 mm. Next,
we calculate the relative frequencies of the observed feature and
reduce the 2D variation of the cortical attribute to a univariate
quantity. From this frequency distribution, we then estimate a
probability density function in a non-parametric manner using
kernel density estimation. Thus for a single individual cortex,
the set pi:[a, b] → R, i = 1,. . . N represents the univariate cor-
tical patterns of the feature distribution. Here the interval [a,
b] is the range of allowable values associated with the attribute.
So, rather than recording exact regional values, the representa-
tions describe region-specific structural patterns. For each feature,
the nominal values are reduced to a univariate representation
by calculating the value frequencies. Finally, a non-parametric
probability distribution for the feature is derived for each region.
They serve as compact representations of feature values over the
whole-brain.

PAIRWISE CORTICAL SIMILARITY MEASURED USING
JENSEN–SHANNON DIVERGENCE
The first step in MDS is the creation of a pairwise distance matrix
between the feature values of each subject image. Distance mea-
surements can be Euclidean, angular, multivariate, etc. In our
case, following Joshi et al. (2011) we employ the Jensen–Shannon
divergence (Lin, 1991) as a choice of distance metric between dis-
tribution functions. The following subsection provides the details
of this metric. The Jensen–Shannon divergence is a symmetric

formulation of the Kullback–Leibler divergence, and is defined as

J
(
pk , pm

) = KL
(
pk , pkm

) + KL
(
pm , pkm

)

Here the quantity KL is the Kullback–Leibler divergence, and is
given by

KL
(
pk , pm

) =
∫ ∞

−∞
pk(x) log

pk(x)

pm(x)
dx

The term pkm is simply the average of pk, and pm. The JS diver-
gence however is not a true metric since it does not satisfy the
triangle inequality. The distance between two cortical patterns
is then defined as follows. Given two pairs of feature func-

tions, [pi
k ], [pj

k ], k = 1, . . . N , the distance between patterns i,

and j is given by, D(i, j) = ΣN
k=1wk J (pi

k , p
j
k). Here wk are the

weights assigned to each divergence, and can be either optimized
or adjusted according to prior information. It is not unusual to
assume all weights are equal to unity.

Multi-dimensional scaling decomposition of the distance
matrix results in a set of orthogonal coordinate sets, which help
to reduce or explain the original dimensionality of the matrix
in a smaller sub-space. The number of non-zero eigenvalues of
the matrix will be at most N−1, whereas the minimum number
will be a function of the relative distances and clustering of the
entries. MDS is particularly useful in this case since brains which
are most similar will lay close to each other in the derived spatial
configuration, whereas brains which are most dissimilar will be
positioned far apart. This has a natural and intuitive quality, which
users can immediately appreciate and understand in the context
of the INVIZIAN interface.

In the example presented here, we employ MDS to generate a
feature descriptive view of MRI datasets in an interactive 3D envi-
ronment. We stress that we could have chosen any other approach
to creating a coordinate system (PCA, ICA, etc.) and point out that
INVIZIAN is, in fact, coordinate system agnostic in so far as being
able to contain any spatial configuration of brain surfaces within
its 3D environment. Of note, we have experimented with planar,
helical, spherical, and toroidal arrangements of brain surfaces as
well as examined support vector machines (SVM; see Filipovych
and Davatzikos, 2011 for recent applications in brain image classi-
fication) wherein each has its own unique ability for depicting uni-
variate or multivariate cortical similarity. Indeed, users may easily
switch between these configurations in the INVIZIAN program
interface as well as import their own spatial coordinate systems.

EXAMPLE LARGE-SCALE DATA EXPLORATION WITH
INVIZIAN
After the MDS (or other suitable coordinate generation process),
the cortical surfaces for each subject are positioned at their respec-
tive locations in the interactive 3D INVIZIAN space (Figure 2,
top). Using their computer’s mouse, the user may click and drag,
therefore rotating the entire“cloud”of brain surfaces; zoom in on a
particular brain surface or cluster of them (Figure 2, middle); click
and select individual or multiple brain surfaces and rotate them
independently of their neighbors. Employing a multi-resolution
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FIGURE 2 | Informatics visualization for neuroimaging navigable

graphical environment. INVIZIAN supports the loading of hundreds of
MRI surfaces into its interactive graphical environment (top). The user is
able to pan, rotate, and zoom in on the data collection (middle). For each
surface, as the user zooms closer, higher resolution versions of the surface
are seamlessly swapped in (bottom) to allow the viewing of finer detail
while maintain smooth interactivity.

strategy, when an individual brain is selected, INVIZIAN seam-
lessly replaces the lower-resolution surface mesh with a high-
resolution version (Figure 2, bottom). This automated swapping
ensures that the navigable display of surface geometry is presented
at interactive frame rates, while providing a high level of anatomi-
cal detail on demand. Currently we employ meshes with approxi-
mately 25,000 triangles for the low-resolution representations and
250,000 triangles for high-resolution models.

INTERACTIVE GROUPING
The goal of INVIZIAN is to provide the user with a means for
discovering relationships between neuroanatomical feature and
meta-data attribute values. A major component of INVIZIAN
for user interaction is the process by which users may perform
query-based cluster identification. Users can create groups in

FIGURE 3 | Schematic of the heterogeneous cluster discovery process.

Discovering similarity relationships across heterogeneous data sets is
similar to identifying clusters that occupy the shaded region of the Venn
diagram. For instance, in this schematic example, only group C is clustered
in both feature and attribute space.

multiple ways for subsequent summary and comparison against
other groups (Figure 3).

As one method of group identification, the user provides a
text-based meta-data attribute search via a query textbox. The
immediate result is a set of brains highlighted with white “bub-
bles” around them illustrating the distribution of brains satisfying
the query. INVIZIAN also supports refinement of the query for
identifying data clusters that span both feature and attribute value
types. The user may then assign a name and description to this
group of brains and can select an arbitrary color to visually anno-
tate the grouping. For instance, performing an initial query for
subjects with a body weight heavier than 80 kg (Figure 4 Top)
shows no obvious clusters suggesting that there is an association
between brain morphometry and body weight. In contrast, by
searching for “study identifier = CNP” (that is data obtained from
the CNP based at UCLA), we note a distinct clustering within
the upper-left-most grouping of data. Coloring by study reveals
a partition of data in INVIZIAN according to which particularly
study in the IDA database the data came from (Figure 4 Bottom).
In this manner, users can explore the relationships between brain
data sets, grouping them based on naturally occurring separations
in the spatial coordinate system, meta-data values, or both. Other
methods of group creation involve the multiple-selection of brain
surfaces by simply clicking on them or clicking somewhere in the
INVIZIAN environment and dragging a selection box around a
cluster of brain surfaces. Indeed, all of these methods can be used
interchangeably to create and modify groups of subjects that the
user finds interesting.

APPLICATION TO INDIVIDUAL BRAIN SUB-REGIONS
When specifically investigating the AIBL and CNP study data, one
might be primarily interested in identifying how hippocampal vol-
ume alone correlates with subject meta-data attribute values. The
Jensen–Shannon divergence approach is employed using only the
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FIGURE 4 | Query-driven heterogeneous cluster discovery. (Top)
Conducting a search by subject weight does not reveal any
particularly interesting clustering of the brain surfaces within
INVIZIAN. Alternatively, querying by the imaging study identifier

code from the meta-data reveals two slightly overlapping clusters
(Bottom). The data can then be grouped and colored according to
the result of the query, thereby storing this result for further
inspection and comparison.

volume of the hippocampus as the lone input to populate the pair-
wise distance matrix. The MDS result obtained of this distance
matrix is depicted in Figure 5 (top) where any particular clus-
tering of the data is not immediately obvious. However, a slight
rotation and zoom reveals that two distinct clusters exist (Figure 5,
middle). After applying a query to the meta-data wherein we ask
to highlight those subjects who are greater than 80 years old, we
identify an apparent relationship between hippocampal volume
and age (Figure 5, bottom).

INTERACTIVE GRAPHING OF META-DATA BY GROUP AND BY METRIC
While grouping feature-similar clusters of brain surfaces can be
informative on its own, a more detailed examination of rela-
tionships between neuroanatomical feature values and meta-data
attributes may still be warranted. For instance, as there appears
to be a relationship between hippocampal volume and age, we
can use feature-wise selection to create exclusive feature-similar
groups out of the top and bottom clusters. This assignment is

shown in Figure 6. To graph these relationships in other ways,
INVIZIAN employs a number of graphical means for the plotting
of cortical surface metrics by grouping. The Figure also displays a
linked scatter plot (Figure 6, left insert) parallel coordinates plot
(Figure 6, top insert), the data values painted by user assigned
group color. Having additional graphical representations from
within INVIZIAN helps to further illustrate that age does, at least
partially, classify the two distinct groups of data by hippocampal
volume. This helps to showcase the idea that INVIZIAN can be
used for hypothesis generation, where it is easy to see how one can
arrive at the testable statement that “The volume of the hippocam-
pus varies inversely with age.” With this hypothesis in hand, the
user can obtain the data directly from the IDA and perform their
own individual data analysis.

APPLICATION TO REVEAL WHOLE-BRAIN SIMILARITY CLUSTERING
Instead of focusing on a specific region when investigating the
ADNI data, we focus our exploration on the relationship between
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FIGURE 5 | Query-based navigation across multiple studies

contained in an archive. (Top) Certain views of the cloud of brain
surfaces in INVIZIAN might not reveal any particular pattern. However,
after rotating the data two distinct clusters of brain surfaces become
visible (Middle). Additionally, executing a meta-data query, e.g.,

“Subject Age > 80,” reveals that there appears to be an age related
component to the clustering (Bottom). A user-selectable skybox
background aids with the perception of the 3D space, relative
distance, depth, and motion as the user navigates in the INVIZIAN
environment.

global gray matter thickness and meta-data values. Upon exami-
nation using both mouse-driven and query-driven interactions we

identify a potential trend in these data involving subject diagnosis
(Figure 7). Subjects diagnosed as “normal” tend to be clustered
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FIGURE 6 | Grouping and classification of clusters based on

feature similarity. Groups can be created based on feature
similarity and then linked scatter (left inset) and parallel coordinates
plots (upper insert) can be created within INVIZIAN to help to
illustrate that, in this instance, there is a relationship of

correspondence between hippocampal volume and age. The top
cluster is made up almost exclusively of older subjects. The
user-selectable skybox background provides helpful visual contrast
for when groups of brain surfaces have been created and a color
chosen for representing them.

FIGURE 7 | Additional interactive plotting functionality. A plot of the
brain surfaces from subjects having similarly sized hippocampi and
classified by their meta-data as being “normal” (blue) and subjects with
Alzheimer’s disease (red). With these groups selected, a bar chart (inset)
plots subject meta-data diagnosis value by feature value. Normal subjects
are plotted as the top-most bar and the Alzheimer’s disease (“AD”) group is

presented as the bottom-most bar. The length of each bar represents the
total number of subjects per subject meta-data category. This helps to
illustrate that the most of the normal subjects are members of the blue
feature-similar cluster, and vice versa. This can be particularly helpful when
examining and performing grouping operations on large collections of
subject data.
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toward the bottom left of the collection of brain surfaces. Addi-
tionally, AD patients appear clustered toward the upper right.
A Ggobi bar chart colored by group (Figure 7 inset) illustrates
that groups appear to vary by diagnosis. Finally, isolating the
superior frontal regions of each data set, a histogram plot of cor-
tical thickness (Figure 8, left) shows that the group comprised of
mostly healthy normal subjects exhibits greater thickness whereas
the other group, comprised of AD subjects, has reduced cortical
thickness.

This set of results is simply a convenient illustration of a well
known neurological finding. Alzheimer’s Disease is characterized
by cortical atrophy and thinning due to increases in beta-amyloid
plaques and the build-up of tau proteins resulting in neuronal cell
death (Cutler, 1988). The results shown in Figure 8 illustrates that
cortical thickness is reduced in AD patients as compared to normal
control subjects. While this is a frequent finding in AD (Thomp-
son et al., 2004; Thompson and Apostolova, 2007; Dickerson et al.,
2009; Querbes et al., 2009; Westlye et al., 2009) and, therefore, not
entirely surprising nor a unique result under INVIZIAN. How-
ever, we highlight it here to illustrate the ability of INVIZIAN to
identify this effect as an outcome of an uninformed exploratory vs.
inferential statistical consideration. Further examination of cluster
patterns may reveal even more subtle relationships worthy of more

FIGURE 8 | Brain region-specific exploration of the data using linked

plots painted by user-defined group. Corresponding to the data
represented in Figure 7, but focusing only on the superior frontal gyrus
sub-volumes, histograms for the group consisting of mostly healthy
subjects is given (left), while a red group is largely comprised of patients
with Alzheimer’s Disease. Thus, from the examination of how brain
morphometry clusters in a derived feature space explored using INVIZIAN,
a user can quickly and interactively discover that normal subjects exhibits a
larger mean thickness in frontal cortices than do patients. Such a
hypothesis can be examined more closely by downloading the original data
from the database or tested more precisely through the collection of new
empirical brain imaging data.

rigorous analysis or even new hypothesis-driven data collection.
We also emphasize that while the presented example focuses on
Alzheimer’s subjects, the proposed visual analysis can be applied
to other types of neuroscientific clinical data as well.

In summary, by using INVIZIAN users can quickly and easily
explore and interact with hundreds and even thousands of rep-
resentations of brain imaging data from large-scale archives such
as the LONI IDA and other resources. The example of healthy,
AD, and MCI subjects used here, taken from across multiple
neuroimaging project contained in the same large-scale archive,
demonstrates the functionality of INVIZIAN. While the results
depicted are not new or novel, they provide confirmation of
well-reported effects and validation that INVIZIAN is able to
illustrate these relationships using only an MDS-based approach.
Using other methods for generating spatial coordinates, additional
relationships might be revealed or accentuated.

CONCLUSION AND FUTURE WORK
In this paper we describe the INVIZIAN system for the interac-
tive exploration of data contained within large-scale neuroimaging
repositories. In the example we present, INVIZIAN takes a derived
coordinate system based on pairwise discrimination of dataset
feature values and provides a powerful and efficient visualiza-
tion environment, which emphasizes an interactive, dynamic, and
compelling user-experience. Indeed, as electronic data capture
methods become more mature and widely used to populate
neuroimaging archives, we contend that it is user-friendly infor-
matics tools such as INVIZIAN that will help make the case for
the greater sharing of neuroimaging data, encourage greater data
mining of information contained in neuroimaging data archives,
and will broaden the audience of researchers and their students
into the examination of brain data.

As we develop INVIZIAN further, we intend to investigate other
effective coordinate systems in which to project brain to empha-
size inherent patterns that are informative. For instance, we are
examining methods for assigning initial groups using automated
k-means clustering algorithms. We also plan on providing data
mining analysis as part of the query–feedback. As an exam-
ple, during Boolean attribute searches INVIZIAN will display a
metric illustrating the degree of clustering for the queried data.
Non-Cartesian coordinate systems will also be explored (e.g., pla-
nar, spherical, helical, toroidal, etc.). The use of GGobi will be
depreciated and we will directly embed plots of meta-data and
morphometric data relationships. Finally, we intend to expand
the collaboration and multi-site project opportunities which may
be facilitated by INVIZIAN. In all cases, our goal for INVIZ-
IAN is to present data based on similarity so that the user may
perceive relational patterns visually and interactively in much
the same way that people now use programs such as Google
Earth.

In conclusion, a wide variety of data capture methodolo-
gies are under development to aid the populating of large-scale
biological and medical data archives, increasing the amount of
data users must sift through. As these methods take hold, novel
methods for exploratory visualization and interaction with neu-
roimaging database contents are necessary and important. These
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tools must be developed with the user kept firmly in mind. We
believe that INVIZIAN is a compelling first step toward the cre-
ation of useful exploratory neuroimaging tools possessing such
capabilities. All in all, dynamic user interaction frameworks like
INVIZIAN, for use with large-scale archives and populated using
automated data capture methods, will facilitate acquisition of
new knowledge, and promote scientific discovery in the brain
sciences.
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