
NEUROINFORMATICS

of individual neurons), and point to several recent methodological 
advances and neuroinformatics-related challenges at the level of 
data mining, management, and integration. In this Editorial, we 
review the advances represented in these reports, and discuss some 
of the grand challenges in this emerging field.

AdvAnces in multi-level connectivity mApping
Sophisticated neuroimaging techniques have opened up new pos-
sibilities to infer structural and functional connectivity at a mac-
roscopic scale. Through measurement of oriented water diffusion 
restricted by cellular elements in the brain, non-invasive methods 
based on diffusion magnetic resonance imaging (dMRI, Figures 
1A,B) play a key role in current neuroanatomical efforts to explore 
the human connectome (Hagmann et al., 2010; Van Essen and 
Ugurbil, 2012). The different dMRI tractography methods pro-
posed so far still require time-consuming manual intervention 
and supervision that may compromise reliability. To overcome 
this problem, Yendiki et al. (2011)1 present a method for auto-
mated probabilistic reconstruction of white matter pathways that 
incorporates a priori anatomical knowledge, and demonstrate auto-
matic tractography analyses in schizophrenia patients and healthy 
subjects (Figure 1B). The ability to perform dMRI tractography 
without manual intervention will greatly facilitate studies with very 
large populations, which will be essential for establishing a con-
nectome for the human brain (Marcus et al., 2011) as well as for 
improving early diagnostic imaging in brain disease.

Estimates of “functional networks” described on the basis of 
statistical associations derived from time series data (neuronal 
recordings) represent another important category of approaches to 
define the human brain connectome. The relationship of anatomi-
cal to functional networks is explored by Daffertshofer and van 
Wijk (2011). Using computational modeling of large-scale neural 
networks these authors argue that patterns of synchronization 
should be analyzed in the context of changes in local amplitude to 
improve prediction of brain dynamics from structure. In a related 
paper, Segall et al. (2012) also employ statistical methods and inde-
pendent component analysis to describe spatial correspondences 
between gray matter density measurements and resting state func-
tional MRI signal fluctuations recorded from a very large group of 
healthy subjects. But while associations between several structural 
and functional features can be observed (Segall et al., 2012), the 
anatomical substrates underlying such indirect in vivo measure-
ments remain obscure and require further investigation.

BAckground And scope
The brain contains vast numbers of interconnected neurons that 
constitute anatomical and functional networks. Structural descrip-
tions of neuronal network elements and connections make up the 
“connectome” of the brain (Hagmann, 2005; Sporns et al., 2005; 
Sporns, 2011), and are important for understanding normal brain 
function and disease-related dysfunction. A long-standing ambi-
tion of the neuroscience community has been to achieve complete 
connectome maps for the human brain as well as the brains of 
non-human primates, rodents, and other species (Bohland et al., 
2009; Hagmann et al., 2010; Van Essen and Ugurbil, 2012). A wide 
repertoire of experimental tools is currently available to map neu-
ral connectivity at multiple levels, from the tracing of mesoscopic 
axonal connections and the delineation of white matter tracts 
(Saleem et al., 2002; Van der Linden et al., 2002; Sporns et al., 
2005; Schmahmann et al., 2007; Hagmann et al., 2010), the map-
ping of neurons organized into functional circuits (Geerling and 
Loewy, 2006; Ohara et al., 2009; Thompson and Swanson, 2010; 
Ugolini, 2011), to the identification of cellular-level connections, 
and the molecular properties of individual synapses (Harris et al., 
2003; Arellano et al., 2007; Staiger et al., 2009; Micheva et al., 2010; 
Wouterlood et al., 2011). But despite the numerous connectivity 
studies conducted through many decades we are still far from 
achieving comprehensive descriptions of the connectome across all 
these levels. There is increasing awareness that new neuroinformat-
ics tools and strategies are needed to achieve the goal of compil-
ing the brain’s connectome, and that any such effort will require 
systematic, large-scale approaches (Bohland et al., 2009; Akil et al., 
2011; Zakiewicz et al., 2011; Van Essen and Ugurbil, 2012).

Systematic literature mining to compile and share complete 
overview of known connections in the macaque brain was pio-
neered by Rolf Kötter and co-workers (Stephan et al., 2001, 2010). 
While yielding promising results (Kötter, 2004; Bota et al., 2005; 
van Strien et al., 2009), more coordinated efforts are needed to col-
lect, organize, and disseminate connectome data sets. To this end, 
there is an urgent need to develop and identify neuroinformatics 
approaches that allow different levels of connectivity data to be 
described, integrated, compared, and shared within the broader 
neuroscience community.

This Research Topic of Frontiers in Neuroinformatics, dedicated 
to the memory of Rolf Kötter (1961–2010) and his pioneering 
work in the field of brain connectomics, comprises contributions 
that elucidate different levels of connectivity analysis (from MRI-
based methods, through axonal tracing techniques, to mapping of 
functional connectivity in relation to detailed 3-D reconstructions 
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Figure 1 | From multi-modal connectivity data to integrated 
connectomes. Image panels illustrating recent progress, selected and modified 
from contributions to the Research Topic “Mapping the Connectome” as 
specified below. (A–F) Connectivity mapping methods in the human brain span 
from indirect in vivo assessment of fiber tracts from diffusion MRI data [(A,B) 
Gorbach et al., 2011; Yendiki et al., 2011] to ex vivo mapping of detailed fiber 
architectures [(C,e) Axer et al., 2011b; (e,F) Annese, 2012]. (g–H) Novel 
experimental methods in animal models include combined optogenetic and 
functional MRI mapping of specific connections (g) (Lee, 2011) and high-
resolution histological imaging [(H) Chung et al., 2011]. (i–J) Examples of recent 
efforts to accumulate, integrate, and share connectivity data, represented by the 

graphical user interface of the Human Connectome Project [(i) Marcus et al., 
2011], and a data mining effort combining 3-D reconstructions of hippocampal 
neurons to explore potential synaptic connections [(J) Ropireddy and Ascoli, 
2011]. (K–N) Recent sophisticated approaches to network analysis, based on 
connectivity-based cortical parcelation [(K) Gorbach et al., 2011], different 
connectivity visualizations using open-source tools [(L,M) Gerhard et al., 2011], 
and identification of structural network motifs [(N) Echtermeyer et al., 2011]. 
(O–P) Updated connectome matrix representations from large-scale data mining 
efforts for the whole rat brain [(O) Bota et al., 2012] and for the rat hippocampal 
region [(P) Sugar et al., 2011]. (Q) Visualization of computational model of a 
tadpole spinal cord connectome (Borisyuk et al., 2011).
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the contributions included in the “Mapping the Connectome” 
Research Topic present novel ways to visualize and assemble con-
nectome data.

In their technology report, Marcus et al. (2011) of the Human 
Connectome Project consortium centered at Washington University 
and the University of Minnesota2 present their plans to non-inva-
sively assess the long range connections of the human brain using 
diffusion MRI data from large numbers of subjects, supplemented 
by structural MRI, genetic, and behavioral data. An important first 
step for this ambitious project is to develop an informatics plat-
form for storing, visualizing, and analyzing massive amounts of 
data (Figure 1I). A key element will be to share the open-source 
platform and associated tools with the community, to allow further 
hypothesis-driven analysis and data mining in this multi-modal 
pool of data. A particular challenge for future data integration and 
knowledge synthesis will be to achieve interoperability with other 
neuroinformatics tools and data collections.

The challenge of integrating and visualizing human connectome 
data of different modalities has been addressed by Gerhard et al. 
(2011). Their flexible open-source Connectome Viewer Toolkit3 
allows integrated storage and viewing of different types of imaging 
data and structured metadata. The toolkit is based on a container 
file format, and linked to a suite of existing tools libraries allowing 
data mining, viewing, and comparison. The authors present sev-
eral example analyses using diffusion MRI data that are integrated, 
manipulated, and analyzed (Figures 1L,M). This freely available 
open-source toolkit stands out as a powerful workbench platform 
for future integration of human connectome data coming from 
multi-modal neuroimaging.

Another approach to combine and integrate various neuroana-
tomical data is to use a common reference space (Bjaalie, 2002; 
Hawrylycz et al., 2011). In their contribution to this Research 
Topic, Ropireddy and Ascoli (2011) demonstrate how potential 
connections (defined by close apposition of axonal and dendritic 
segments) can be inferred from a collection of detailed 3-D recon-
structions of neuronal extensions that were accumulated in a com-
mon 3-D reconstruction of the rat hippocampus on the basis of 
positional values (Figure 1J). The major innovation lies in estimat-
ing this aspect of neuronal connectivity at high-resolution not only 
over a narrow field of view, but across a macroscopic brain region, 
the rat hippocampus. The paper reports on anatomical differences 
across different locations in the hippocampus and points to pos-
sible generalizations of the approach to other regions of the brain.

Axonal connections have been investigated experimentally in 
animal models for many decades, yielding valuable data reported 
in a huge number of publications. While the textual format of such 
reports make it difficult to extract formal knowledge and compare 
connectivity data, this pool of laboriously collected experimental 
results remains important to utilize. Rolf Kötter’s pioneering work, 
particularly the creation of the CoCoMac database4, is a major 
milestone on the way to creating comprehensive and accessible 
online repositories for connectome data (Stephan et al., 2001, 2010). 
The availability of this repository of primate cortical connections 

In this respect, novel methodologies for characterizing micro-
structural aspects of the human and primate brains may provide 
new ways to bridge the gap between post mortem microscopic and 
in vivo macroscopic and functional measures reflecting neural 
connectivity. Polarized light imaging (PLI) of histological sections 
allows quantitative analysis of fiber orientations with very-high 
spatial resolution. Axer et al. (2011a) demonstrate automated 3-D 
reconstruction of fiber orientations across multiple histological 
sections in the human brain stem, yielding highly resolved datasets 
that are useful complements for both conventional histological 
stains and DTI data (Figures 1C,D). Using the same approach, Axer 
et al. (2011b) show how 3-D PLI derived fiber orientation vectors 
can subsequently be used as a basis for high-resolution tractogra-
phy of fiber tracts, potentially suitable for bridging microscopic 
and macroscopic connectome representations. The importance 
of correlating various non-invasive MRI derived measurements 
to cellular-level morphological data is also emphasized by Annese 
(2012), presenting the perspective that whole-brain histological 
maps (Figures 1E,F) created using large-scale digital microscopy 
spanning several histological modalities will support the analysis 
and interpretation of MRI-based connectivity studies. The potential 
of high-throughput and very-high-resolution histological meth-
ods for creating multiscale representations of brain data is further 
demonstrated by Chung et al. (2011), who use knife-edge scanning 
microscopy to section and reconstruct microscopic brain data at 
sub-micrometer resolution (Figure 1H), within volumes that can 
span an entire mouse brain. The inherently multiscale nature of the 
acquired data sets demand sophisticated visualization and analysis 
tools for integrating cellular to systems scales, a challenge that is 
addressed with the introduction of a web-based neuroinformat-
ics platform (Chung et al., 2011). It will be a further, substantial 
challenge to extract actual connectivity information from these 
histological representations.

Recent advances in optogenetic functional MRI (ofMRI) allow 
non-invasive, selective mapping of brain circuit elements that are 
triggered on the basis of genetic markers, anatomic location, or 
axonal projection target. In a perspective article, Lee (2011) outlines 
the potential of ofMRI to enhance system level mapping and our 
understanding of neural circuits. The combination of the unique 
ability of optogenetics to selectively control cellular activity and of 
the mapping of hemodynamic responses with fMRI, opens exiting 
new possibilities for in vivo functional circuit analysis in animals 
(Figure 1G), as well as diverse models of neurological disease. The 
approach potentially has considerable advantages over classical 
axonal tracing methods, by allowing the investigation of network 
dynamics and longitudinal investigations of development and 
aging, as well as monitoring of neural network changes occurring 
in disease models.

integrAtive efforts: AssemBling connectomes
The methodological diversity of current (functional and structural) 
approaches to mapping connectomes represents a major challenge 
to the field, and comparison of data across scales, modalities, and 
species remains a formidable problem (Sporns, 2011). It is therefore 
a long-standing ambition of the neuroinformatics community to 
provide new tools and approaches for integrating neuroscience 
data (Akil et al., 2011; Van Essen and Ugurbil, 2012). Several of 

2http://www.humanconnectome.org/
3http://www.cmtk.org/
4www.cocomac.org
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relationships between brain structure and function. The ways in 
which connectome data are used will to a large extent also dictate 
priorities for data collection and assembly. In this Research Topic, 
five contributions illustrate how connectomics can be applied for 
network analysis and modeling.

A fundamental principle of brain organization is that func-
tional systems are formed by specific anatomical connections. 
Knowledge about the specific hodological organization of different 
brain regions may thus predict the various functional properties of 
such regions. Gorbach et al. (2011) explore relationships between 
the functional and connectional “fingerprints” of cerebrocortical 
areas in the human brain, by using hierarchical information-based 
clustering of MRI-based connectivity measures. They propose an 
automated hierarchical parcelation approach to identify cortical 
subunits that are consistent with cytoarchitectonic maps and previ-
ous connectivity-based parcelation schemes (Figure 1K).

Echtermeyer et al. (2011) examine changes in network structure 
that appear when the same brain is mapped at different spatial 
resolutions. Their emphasis is on network motifs and their compo-
sition and spatial distribution (Figure 1N). The study highlights the 
important roles of spatial scale and resolution for drawing conclu-
sions based on network analysis.

Computational modeling represents an increasingly important 
approach aiming at combining available data on anatomical connec-
tivity with a virtual exploration of functional properties that emerge 
from the interaction of structural coupling and neural dynamics. 
Using a model of a simple spinal cord system, the developing spinal 
cord of the Xenopus, Borisyuk et al. (2011) introduce a new approach 
toward characterizing connectomes by constructing the network on 
the basis of known developmental processes of neuronal and axonal 
growth. The resulting network (Figure 1Q) is then studied with a 
number of visualization and topological analysis tools, revealing 
relationships between sets of simple developmental rules and topo-
logical regularities. To meet the considerable computational chal-
lenges of simulating complex neural network models, Kunkel et al. 
(2011) have developed strategies for adapting network representa-
tions to reduce the memory consumption for simulation software. 
Such efforts are highly relevant for future up-scaling of compu-
tational modeling efforts, which will be necessary to incorporate 
more comprehensive structural and functional connectome data.

Finally, French et al. (2011) utilize data sets on rodent brain 
connectivity and gene expression patterns to explore possible 
inter-relations, and identify several aspects of connectivity and 
gene expression that are indeed correlated. This work highlights 
an integrative aspect of connectomics that links connectivity data 
with other non-connectomic data sources, e.g., from genomics and 
proteomics. The confluence of connectomics and genomics will 
likely be a major growth area in the not-too-distant future.

progress mAde And mAin chAllenges
The papers presented in this Research Topic demonstrate approaches 
to mapping, integrating, and utilizing connectivity data through 
structured neuroinformatics, in the spirit of the “Kötter School of 
Neuroinformatics.” The multiple modalities and levels of investiga-
tion represented in this collection of Research Topic papers illustrate 
the need for concerted and sustained efforts by several research com-
munities to arrive at reasonably comprehensive connectome maps 

has spurred a large number of projects in the analysis of complex 
brain connectivity (e.g., Modha and Singh, 2010) as well as the 
computational modeling of associated brain dynamics (e.g., Cabral 
et al., 2011; Deco and Jirsa, 2012).

Several groups have invested in further ambitious data mining 
projects to aggregate connectome data from legacy data (Sugar et al., 
2011; Tallis et al., 2011; Bota et al., 2012). Over several years, Bota 
and co-workers have developed a publicly available neuroinformatics 
system, called the brain architecture knowledge management system 
(BAMS), which currently contains >50,000 connectivity reports from 
the rat brain (Figure 1O). The BAMS system5 provides a valuable 
framework in which curated connectivity data can be stored and 
retrieved. In their review article, Bota et al. (2012) provide an update 
on recently added data and functionality, and discuss general meth-
odology and strategy for producing global connection matrices.

Building upon their earlier work in the hippocampus (van Strien 
et al., 2009), Sugar et al. (2011) present an interactive connectome 
of hippocampal and parahippocampal connections. The authors 
have extracted ∼2600 descriptions of hippocampal connections 
from 226 published reports, and assembled them into a versatile, 
searchable application providing a comprehensive description of all 
known network elements in this region (Figure 1P). Overcoming 
a range of challenges related to level of detail, incongruent and 
incomplete reports, and diverse use of nomenclatures, Sugar et al. 
provide the most comprehensive connectome description so far 
for a specific rat brain region. The efforts of these hippocampal 
experts present an excellent case study for how connectivity data 
should be assembled for other brain regions.

The process of extracting integrated knowledge representations 
from connectivity data requires a framework for standardized data 
descriptions, such as a common atlas space and consistent termi-
nologies for neuroanatomical entities. Tallis et al. (2011) have com-
bined two pre-existing rat brain atlas systems (Dashti et al., 2001; 
Burns et al., 2006) with a data management system (Russ et al., 2011) 
into a software system for synthesizing knowledge based on neural 
connectivity data. This system provides access to experimental tract-
tracing data mapped onto atlas plates (Swanson, 2004) coupled to 
a semantic framework, and permits analyses and interpretation of 
connectivity patterns based on spatial and semantic views.

Taken together, these different attempts at assembling connec-
tomes from existing and new data illustrate novel possibilities of 
gaining new knowledge through data systems that allow systematic 
integration and comparison of data based on standard nomencla-
tures, semantics, and spatial frameworks. To fulfill the long-term 
ambition of having reasonably complete connectomes we must 
also address the challenge of data exchange and interoperability 
across database systems of this kind.

Applied connectomics: network AnAlysis And 
modeling
While new and sophisticated approaches to connectome mapping 
and data integration will be essential for the further advancement 
of this field, it is important to also investigate how accumulated 
connectome data can be utilized to further our understanding of 

5http://brancusi.usc.edu/bkms
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may develop to a level where they can be employed for the automated 
gathering of connectivity information from the published research 
literature6. Further, curated databases may collaborate more closely 
with field experts, in order to preserve the multi-faceted neuroana-
tomical knowledge acquired in many experimental labs over several 
decades (where knowledge is currently threatened by the upcom-
ing retirement of many of the “traditional” anatomists), or new 
experimental efforts may be started for the systematic, “industrial” 
brain connectivity gathering in rodent models (Bohland et al., 2009; 
Zakiewicz et al., 2011).

The papers collected in this Research Topic offer a snapshot 
of diverse approaches pursued at the inception of a wide array of 
connectome studies across scales and species. The end goal of a 
comprehensive understanding of the network structure of complex 
nervous systems will require the integration of data and methods 
for mapping connectivity from neurons to systems. We have an 
exciting time ahead of us.

linking brain regions and neurons. The complexity and multi-faceted 
nature of brain connectivity clearly calls for cooperation, collabora-
tion, and mutual understanding of methods, problems, and results.

A fundamental challenge for the establishment of a common 
description of brain connectivity will be to cross-validate the dif-
ferent methodologies. Some important efforts have already been 
made at different scales (Schmahmann et al., 2007; Bock et al., 2011; 
Briggman et al., 2011), but further work is needed to link methods 
such as structural and functional MRI (Segall et al., 2012), 3-D-PLI 
and tractography (Axer et al., 2011b), and optogenetics and fMRI 
(Lee, 2011). Since studies of the human connectome continue to rely 
on indirect connectivity measures, such as DTI and related imag-
ing methods, we will need parallel experimental efforts in animal 
models and robust statistical methods to demonstrate the validity 
of connectivity data obtained by non-invasive means. This need for 
validation also underlines the continuing value of conventional con-
nectivity data that are derived by tract-tracing in animal models and 
are compiled in databases such as CoCoMac or BAMS. A number 
of strategies may be imagined to further expand and enhance such 
compilations. For example, computational text mining approaches 6www.textpresso.org/neuroscience/
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