
NEUROINFORMATICS
ORIGINAL RESEARCH ARTICLE

published: 01 June 2012
doi: 10.3389/fninf.2012.00021

A mutual information approach to automate identification
of neuronal clusters in Drosophila brain images
NicolasY. Masse1,2*, Sebastian Cachero1, Aaron D. Ostrovsky 1 and Gregory S. X. E. Jefferis1*

1 Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
2 Department of Neurobiology, University of Chicago, Chicago, IL, USA

Edited by:

Hanchuan Peng, Howard Hughes
Medical Institute, USA

Reviewed by:

Graham J. Galloway, The University of
Queensland, Australia
Thomas S. McTavish, Yale School of
Medicine, USA

*Correspondence:

Nicolas Y. Masse, Department of
Neurobiology, University of Chicago,
1126 East 59th Street, Chicago,
60637 IL, USA.
e-mail: masse@uchicago.edu;
Gregory S. X. E. Jefferis,
Neurobiology Division, MRC
Laboratory of Molecular Biology, Hills
Road, Cambridge CB2 0QH, UK.
e-mail: jefferis@mrc-lmb.cam.ac.uk

Mapping neural circuits can be accomplished by labeling a small number of neural struc-
tures per brain, and then combining these structures across multiple brains. This sparse
labeling method has been particularly effective in Drosophila melanogaster, where clonally
related clusters of neurons derived from the same neural stem cell (neuroblast clones) are
functionally related and morphologically highly stereotyped across animals. However iden-
tifying these neuroblast clones (approximately 180 per central brain hemisphere) manually
remains challenging and time consuming. Here, we take advantage of the stereotyped
nature of neural circuits in Drosophila to identify clones automatically, requiring manual
annotation of only an initial, smaller set of images. Our procedure depends on registration
of all images to a common template in conjunction with an image processing pipeline that
accentuates and segments neural projections and cell bodies.We then measure how much
information the presence of a cell body or projection at a particular location provides about
the presence of each clone. This allows us to select a highly informative set of neuronal
features as a template that can be used to detect the presence of clones in novel images.
The approach is not limited to a specific labeling strategy and can be used to identify partial
(e.g., individual neurons) as well as complete matches. Furthermore this approach could
be generalized to studies of neural circuits in other organisms.
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1. INTRODUCTION
How the nervous system processes sensory information and gen-
erates behavior critically depends on its underlying circuitry.
Mapping this circuitry (and understanding its developmental
origins) is a major challenge in neuroscience, and there are cur-
rently two distinct approaches to the problem. One approach,
dense reconstruction, involves labeling many neural structures
in a single brain, and resolving these structures using electron
microscopy (Briggman and Denk, 2006). The main difficulty with
this approach is that segmenting large numbers of neural struc-
tures cannot be fully automated and is too time-intensive to per-
form manually (Macke et al., 2008; Jurrus et al., 2009; Seung, 2009).
The second approach, sparse labeling, involves labeling few neural
structures in a single brain which can be subsequently resolved
using light microscopy (e.g., Otsuna and Ito, 2006; Jefferis et al.,
2007; Lin et al., 2007). By imaging many sparsely labeled brains,
one can piece together the neural circuitry.

One successful approach to sparse labeling has been the Mosaic
Analysis with a Repressible Cell Marker (MARCM) technique in
Drosophila (Lee and Luo, 1999), where only a subset of neurons
that normally express a gene of interest are stochastically labeled.
In MARCM, heat-shock driven mitotic recombination before cell
division segregates the transcriptional repressor Gal80 from the
Gal4-UAS binary transcription system. The progeny of the cell
inheriting Gal80 will not display Gal4 driven expression while the
progeny of the cell devoid of Gal80 will. After a recombination

event, all cells displaying Gal4 driven gene expression (in this case
the green fluorescent protein, GFP) are born from the same prog-
enitor; these are referred to as a clone and in the case of neurons a
neuroblast clone. If a large enough number of samples is analyzed,
the stochastic nature of the recombination allows one to catalog
all neurons expressing the gene in an unbiased manner.

One major bottleneck with this technique is thousands of
brains may need to be imaged, and it is time consuming to man-
ually identify the clones present in each brain. If one were able to
identify the clones in a limited set of images, it would be advan-
tageous to use this information to automatically identify clones in
the remaining set of images.

The goal of this study was to develop a method to identify
automatically neuroblast clones in confocal images of Drosophila
brains. Our procedure is based upon the knowledge that cell bodies
and their projections generated from a single clone are stereo-
typed across animals (Jefferis et al., 2007). We tested our procedure
on 350 male Drosophila brains, where a sparse number of clones
expressing the gene fruitless (fru) were stochastically labeled using
MARCM and the clones present in each image were manually iden-
tified to create a training set for automatic annotation of clones
in the other images. Images were filtered to accentuate the labeled
cell bodies and projections (see Figure 2) and were then registered
onto a common template to allow for comparison between images.
Next, we compared the location of these structures, as well as the
tangent vectors of the projections, across images; this allowed us

Frontiers in Neuroinformatics www.frontiersin.org June 2012 | Volume 6 | Article 21 | 1

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/about
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=NicolasMasse&UID=33458
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=AaronOstrovsky&UID=46976
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=GregoryJefferis&UID=2783
mailto:masse@uchicago.edu
mailto:jefferis@mrc-lmb.cam.ac.uk
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive
http://www.frontiersin.org/Neuroinformatics/10.3389/fninf.2012.00021/abstract


Masse et al. Automated neuron identification by mutual information

to determine how informative the presence of these structures is
about the presence of specific clones. Finally, by matching the parts
of novel images against these informative structures, we were able
to reliably determine the presence of most clones.

2. MATERIALS AND METHODS
2.1. FLY STRAINS
fru+ Cells were labeled using the fruGAL4 line in which the yeast
transcriptional regulator Gal4 has been targeted to the start of the
coding sequence for the FruM isoform (Stockinger et al., 2005).
MARCM labeling used male flies of the genotype y w hs-FLP
UAS-mCD8-GFP; FRT G13UAS-mCD8-GFP/FRT G13tubP-GAL80;
fruGAL4/ + . MARCM clones were generated by heat shocking first
instar larvae for 17 minutes at 37˚C between 0 and 3 h after larval
hatching.

2.2. IMMUNOCHEMISTRY
Fixation, immunochemistry, and imaging were carried out as
described (Cachero et al., 2010). Primary: Mouse anti-nc82 (Wagh
et al., 2006) 1:20–1:40, rat anti-CD8a (Caltag, Burlingame) 1:100,
Chicken anti-GFP (Abcam, ab13970) 1:1000, rotate 2–3 days at
4˚C. Secondary: Alexa-568 anti-mouse (Invitrogen) 1:200, Alexa-
488 anti-rat (Invitrogen) 1:200. Rotate 2–3 days at 4˚C. Pro-
longed incubation with both primary and secondary antibodies
was required for homogeneous staining. Specimens were whole
mounted in Vectashield (Vector Labs) on charged slides to avoid
movement.

2.3. IMAGE ACQUISITION
Confocal stacks were acquired using a Zeiss 710 confo-
cal microscope equipped with a motorized stage which
allowed unattended overnight scanning of multiple samples.
Brains were scanned at 768 × 768 pixel resolution every
1 μm (0.46 μm × 0.46 μm × 1 μm) using an EC Plan-Neofluar
40×/1.30 Oil DIC M27 objective and 0.6 zoom factor. All images
were taken using 16 bit color depths. To speed up processing time,
all images were down-sampled by a factor of 4 × 4 × 2 and con-
verted to 8 bit color depth for this analysis. We found that process-
ing images at higher resolutions did not improve our algorithm’s
ability to identify clones (data not shown).

2.4. IMAGE REGISTRATION
We used nc82 neuropil staining from multichannel confocal stacks
as the input to a fully automatic intensity-based (landmark free)
3D image registration software (Rohlfing and Maurer, 2003; Jef-
feris et al., 2007). An initial linear registration with 9 degrees
of freedom (translation, rotation and scaling of each axis) was
followed by a non-rigid registration that allows different brain
regions to move somewhat independently, subject to a smooth-
ness penalty (Rueckert et al., 1999). The underlying deformation
model is based on third order B splines; for the central brain the
final grid of B spline control points was 51 × 51 × 35, for a total
of 91035 control points and therefore 273105 degrees of freedom.
The algorithm typically held about two thirds of the control points
fixed because they contained no useful information – usually loca-
tions outside the brain. The final control point grid had a mean
spacing of 5–6 μm. The registration for the nc82 channel could
then be applied to other channels containing labeled neurons.

We used an updated version of the core registration
software which we have made available at http://flybrain.
stanford.edu along with a control script used to coordinate multi-
ple registrations. In the later stages of the project, the core registra-
tion toolkit (CMTK) was made open source and is now available
at http://www.nitrc.org/projects/cmtk. The only pre-processing of
raw confocal images before registration was rotation to match the
orientation of the template to the nearest 90˚, followed by export
in Biorad PIC format using a plugin that we have contributed to
the Fiji distribution of ImageJ1.

2.5. CLONE IDENTIFICATION
The central brain is generated by about 180 neuroblasts (neural
stem cells) per hemisphere; each produces a specific group of neu-
rons usually consisting of only one or two morphological classes
(Ito and Awasaki, 2008). Using MARCM we generated brains in
which only those fru+ neurons made by one or a few neuroblasts
are labeled with a membrane targeted GFP. Each fru+ clone con-
sisted of neurons with closely apposed cell bodies in a consistent
location on the surface of the brain, primary neurites following
a highly stereotyped path into the neuropil and axons and den-
drites targeting reproducible neuropil locations. Our dataset of
350 images contains 60 fru+ neuroblast lineages (counting all 4
mushroom body lineages as a single clone).

2.6. IMAGE PRE-PROCESSING
The goal of image pre-processing is to improve the fluorescent
signal originating from labeled cell bodies or their projections
while reducing the noise from all other sources (1). The fluores-
cent signal from labeled cell bodies is generally quite strong, while
the signal from labeled projections can vary considerably depend-
ing on their thickness and the strength of the Gal4 driver. Thus,
we processed images in two different ways to accentuate either
labeled cell bodies or projections. For cell bodies (Figure 1A),
images were registered onto the template brain before they were
masked, setting the voxel intensity inside the neuropil to zero.
We then convolved the image with a volume of 2 × 2 × 2 pix-
els (3.28 μm × 3.28 μm × 4.26 μm), and voxels whose intensity
was greater than half of the maximum intensity of the convolved
image were considered part of cell bodies (all parameters are listed
in Table 1).

In order to separate signals emanating from labeled neural pro-
jections from noise (Figure 1B), we rely on the fact that neural
projections are approximately cylindrical in shape. We used two
complementary approaches in the pre-processing step to accen-
tuate cylindrical structures in the image data. The first step was
anisotropic diffusion filtering as described by Broser et al. (2004).
As opposed to isotropic filtering which smooths the image equally
in all directions, anisotropic filtering can be implemented to fil-
ter in a direction selective manner. In this implementation, the
moment of inertia in a small volume surrounding each voxel is
calculated to determine the local geometry (all constants used
in our algorithms are presented in Table 1). Next, the image is
smoothed only in the direction of the principal eigenvector of the

1http://fiji.sc
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FIGURE 1 | Flowchart describing the different steps of the procedure (see

Materials and Methods). (A) To process cell body information, images were
first reformatted onto the common template brain and were then masked to
eliminate any contribution from the neuropil. Images were then isotropically
filtered, thresholded and those points above threshold were compared
between images based on coordinate position alone. We then calculated how
informative the presence of each point was of each clone, and used these
values to identify clones in novel images. (B) To process neural projection
information, images were first anisotropically filtered followed by calculating
the cylindrical nature each region by multiplying the two lowest eigenvalues
of the Hessian matrix. Images were then thresholded before a dimension
reduction algorithm was applied. Those points above threshold were then

reformatted onto a common template brain and were subsequently masked
to eliminate the contributions of regions outside the neuropil. We then
calculated the tangent vectors to the resultant one-dimensional structures by
computing the moments of inertia. This was followed by comparing points
between images based on position and tangent vector. As above, we then
calculated the information about the presence of a clone in each point based
on these matches. Clones in novel images were identified based on how they
matched points in other images, and the mutual information of these points.
(C) Example projections of a raw image before filtering. (D) The same image
after anisotropic filtering. (E) The image after each pixel was scored based on
the Hessian matrix followed by thresholding. (F) The image after the
dimension reduction algorithm was applied.

Table 1 | Parameters used in the algorithms.

Anisotropic filtering Dimension reduction

Scan range 10 Number of iterations 45

τ 2 α 2

Number of steps 2 Stopping dimension 1.2

λ 0.1 Number of nearest neighbors 20

Anisotropic coefficients [1 0 0] MOMENT OF INERTIA

TUBING Number of nearest neighbors 20

Standard deviation (μm) 1.0 IMAGE COMPARISON

THRESHOLDING Maximum distance, projection (μm) 5

Threshold, projection 10/255 Maximum angle, projection (deg) 20

Threshold, cell body ½ of max intensity Maximum distance, cell body (μm) 20

IMAGE CONVOLUTION

Volume (μm) 3.28 × 3.28 × 4.26
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moment of inertia. For example, if the local volume contains a
cylindrical structure, the principal eigenvector would be the main
axis of the cylinder and smoothing would only occur parallel to
this axis. In addition to preserving cylindrical structures, the algo-
rithm has the added advantage that it can fill in small gaps within
these structures. The effect of anisotropic filtering on an example
image is shown in Figures 1C,D.

To further emphasize cylindrical structures in our image, we
scored how cylindrical each local region was using the ImageJ
plugin “tubeness”2 bundled with Fiji. The plugin works by Gauss-
ian smoothing the image followed by multiplying the two lowest
eigenvalues of the local Hessian matrix (Sato et al., 1998). High
tubeness scores are given when two eigenvalues are highly neg-
ative: when the two lowest eigenvalues λ1 and λ2 are negative,
the score is

√
λ1λ2, and is zero otherwise. The tubeness scores

are then thresholded to produce a binary image. These two com-
plementary algorithms strongly emphasized neural processes of
cylindrical shape provided their diameter was not too small. The
effect of the tubeness function on our example image is shown in
Figure 1E. Next, there exists an optional step that removes voxels
that are above threshold which form isolated regions. Specifically,
one could determine the connected regions formed by the voxels
above threshold (using the Matlab function bwlabeln, part of the
Image Processing Toolbox), and regions consisting of less than 200
voxels were eliminated. The source code we have made available
(see below) only performs this step if the user has access to the
bwlabeln function. The results in this study were produced with-
out this step. Finally, voxels above threshold were reformatted onto
the common reference brain and then masked to remove voxels
outside the neuropil.

2.7. DIMENSION REDUCTION
The anisotropic filtering along with the tubeness function strongly
emphasized cylindrical structures, however there still existed vari-
ability in the size and shape of these structures (Figure 2). Since
we wished to compare projections in different regions based on
their coordinate position and their tangent vector, we applied one
final algorithm to ensure that the images were mostly composed
of one-dimensional structures. Condensing a three-dimensional
image onto a one-dimensional structure is inherently a form of
dimension reduction, and so we adapted an existing dimension
reduction algorithm developed by Chigirev and Bialek (2004).
The algorithm is based on the information bottleneck method
(Tishby et al., 1999), which is a trade-off between minimizing the
distance D and the mutual information I between the original
image and its representation. Let xi represent the coordinates of
our image that are above threshold; we wish to project these onto
an equal number of points, whose coordinates are given by γ j,
that form a one-dimensional representation of the original image.
Letting p(γ j| xi) be the probability that the coordinate xi is pro-
jected onto γ j, and using the Euclidean distance, the functional to
be minimized is:

F = D + αI ,

D =
∑

i

∑
j

p (xi) p
(
γj |xi

) ∥∥xi − γj
∥∥2

2http://homepages.inf.ed.ac.uk/s9808248/imagej/tubeness
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FIGURE 2 | Example images from the dataset. (A) Histogram of the
number of identified images per clone. (B) Z-projection of image SAHM16,
which contained one identified clone and several unidentified. (C)

Z-projection of image SAKW1 which contained two identified clones. (D)

Z-projection of image SAJV25 which contained five identified clones.

I =
∑

i

∑
j

p (xi) p
(
γj |xi

)
log

p
(
γj |xi

)
p

(
γj

)

Minimizing the functional F with respect to γ and p(γ |x)
leads to a set of self consistent equations which can be iteratively
solved. By assigning equal probability to the N points in the image,
p(xi) = 1/N, the iteration scheme reads

p
(
γj

) = 1

N

N∑
i=1

p
(
γj |xi

)
,

γj = 1

Np
(
γj

)
N∑

i=1

xip
(
γj |xi

)
,

Z (xi) =
N∑

j=1

p
(
γj

)
exp

(
− 1

α

∥∥xi − γj
∥∥2

)
,

p
(
γj |xi

) = p
(
γj

)
Z (xi)

exp

(
− 1

α

∥∥xi − γj
∥∥2

)
.

We note that the expression for the probability p(γ j|xi) that the
point xi is projected onto γ j naturally falls out of the minimization.

If we let α = 0 so that there is no mutual information con-
straint, the projected coordinates γ will be identical to the original
coordinates x, and by default the dimensionality of the represen-
tation will be equal to the dimensionality of the original image. At
the other extreme, as α becomes very large, all coordinates γ j will
collapse to a single point located at the center of mass of the image,
forming a 0-dimensional representation. By using an intermediate
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value for α, we can force the representation to assume a one-
dimensional representation. The difficulty is that different values
of α are required to project the image onto a one-dimensional
structure depending on the local structure of the image. In the-
ory, one could use a variable α adapted to different portions of
image. We chose a simpler approach, and chose a uniform value
of α = 2, sufficiently large for most image structures, and then
fixed the location of coordinates γ j whenever their dimensional-
ity came sufficiently close to one. Specifically, after each iteration
of the algorithm we calculated the local dimensionality around
each point γ j using the Grassberger-Procaccia algorithm (Grass-
berger and Procaccia, 1983). Using the 20 nearest neighbors for
each point, we first measured the function C(r), the number of
nearest neighbors that were within a radius r of the point. The
dimension is then given by

dim = dlogC(r)

dr

We considered the point γ j belonged to a sufficiently one-
dimensional structure if its local dimension was below 1.2, and
we fixed its position as long as it remained below this value.
This procedure was able to reduce most image structures to one-
dimensional structures (Figure 1F), allowing us to easily calculate
the tangent vectors for each point γ j as described below.

2.8. COMPARING POINTS BETWEEN IMAGES
Since neuroblast clones produce mostly stereotyped cell bodies
and projections across different brains, we wished to determine
whether an image contained a structure that was repeated in other
images. We determined whether cell bodies and projections were
repeated across images in two different manners. Points belong-
ing to cell bodies in different images, which have been registered
onto the template brain, were considered a match if they were
separated by no more than 20 μm. To compare points belonging
to projections between images, the local information along these
one-dimensional curves can be captured by its coordinate position
and its tangent vector. We again used the local moment of inertia
to determine the tangent vector: for each point in a neural projec-
tion, we used its 20 nearest neighbors to compute the moment of
inertia, and used the principal eigenvector as the tangent vector.
Points in two different images were deemed to match if they were
separated by less than 5 μm, and their tangent vectors differed by
no more than 20˚.

We used this procedure to separately describe each point
belonging to either a cell body or a projection as a binary vec-
tor whose length matched the number of images. Each entry in
the vector was associated with an image, and its value was one if
that point matched a point in another image, and zero otherwise.

2.9. CALCULATING THE INFORMATION OF EACH POINT
Assigning binary vectors to each point belonging to a cell body or
projection allowed us to determine whether the point was associ-
ated with a specific clone. Intuitively, a point would be informative
of a specific clone if it matched points in images also containing the
clone, but did not match points in images that did not. To quan-
tify this measure, for each point in each image we calculated the

mutual information between the images that contained a match-
ing point and whether these images contained the clone. This was
calculated separately for points belonging to cell bodies or pro-
jections. Specifically, for each image, its points, and all clones, the
mutual information is:

MI
(
image, point, clone

) =
∑

m=0,1

∑
c=0,1

p (c , m) log
p (c , m)

p (c) p (m)

where p(c) is the probability that an image contains the clone and
p(m) is the probability that there exists a matching point. Intu-
itively, the mutual information between two variables measures
how much our uncertainty about one variable decreases given the
value of the second. Describing each point as a binary vector allows
us to quickly calculate the mutual information, a necessity given
that there exists thousands of points per image, 350 images, and
60 clones.

2.10. CLASSIFYING NEW IMAGES
Two sets of values are needed to determine which clones are present
in a new image. First, one must determine the points in all existing
images that match a point in the test image. Secondly, one requires
the mutual information scores for all clones. When testing whether
the image contains a specific clone, the images already known to
contain this clone form our template, and the score is based on
the mutual information of the points in the template images that
match a point in the new image. Specifically, let Ij,k = 1 if point j
from the template image k matches a point in the new image and
equals zero otherwise. Give this, the score of our new image for a
specific clone is

s
(
imagetest, clone

) =
∑

k

∑
j Ij ,k max

(
0, MI

(
k, j , clone

) − λ
)

∑
k

∑
j max

(
0, MI

(
k, j , clone

) − λ
)

This value was calculated separately for cell bodies and for pro-
jections. For each clone, we tested 40 different values of λ, ranging
in equal steps from 0.0025 to 0.1. The value that maximized the
receiver operator characteristic score (see below) was used.

2.11. SCORES USING THE RECEIVER OPERATOR CHARACTERISTIC
We measured the performance of our classification using the area
under the receiver operating characteristic (AROC) curve (Green
and Swets, 1975). Given two random samples drawn from two
distributions, the AROC measures the probability that one can
correctly determine from which distribution each random sample
was drawn, based on which sample has a greater value. In other
words, it is a measure of how separate two distributions are from
each other. Specifically, given two distributions, p(x) and q(x), the
AROC is

AROC =
∫ ∞

0

∫ ∞

x
p (x) q

(
y
)

dydx .

In our analysis, the distribution q(y) corresponds to the dis-
tribution of scores of images containing the clone of interest, and
the distribution p(x) corresponds to the distribution of scores of
images not containing the clone of interest. We used this method
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to assess the reliability of our procedure to identify clones based
on either the cell body or neural projection information. We also
assessed the reliability of identifying clones by combining cell body
and projection scores:

p (x) = wCBpCB (x) + wP pP (x) ,

q (x) = wCBqCB (x) + wP qP (x) ,

where CB and P denote cell body and projection, respectively.
We desired that the weights satisfy three conditions: (1) they sum
to one, (2) they are monotonically increasing with respect to the
AROC score, and (3) if the AROC score of a feature is close to 1,
then its weight is strongly favored over the other. Several possibil-
ities were explored before settling on the following equations that
were both intuitive and produced high AROC scores:

wCB =
1

1−AROCCB
− 2

1
1−AROCCB

+ 1
1−AROCP

− 4
,

wP =
1

1−AROCP
− 2

1
1−AROCCB

+ 1
1−AROCP

− 4
.

We subtracted by 2 in the numerator so that the weight was
assigned a value of 0 if the corresponding AROC score was equal
to 0.5 (i.e., the neural feature provided no information regarding
the presence of the clone).

2.12. COMPUTER CODE AND DATA
The image processing pipeline and analysis code were both
implemented in Matlab3. The image processing pipeline, which
has external dependencies on fiji and CMTK as noted above,
can also run in Octave, a free and open source alternative
to Matlab4. This allowed us to carry out some investigations
of different parameters using a Linux/Sun Grid Engine based
compute cluster. However all regular image processing and
all analysis was carried out on MacOSX or Windows desk-
top machines. Full source code is available for download at
https://github.com/jefferis/FruCloneClustering. A simple instal-
lation script is provided. Functions are documented and some
examples of their use are provided. The final processed data used
to generate the figures in this manuscript is available for imme-
diate web download via the installation script, along with some
of the original image data. Further details of these supplemental
data are presented at http://jefferislab.org/data and the full image
dataset is available on request from GSXEJ on a hard drive.

3. RESULTS
We used cross-validation to test our procedure on a set of 350
images of male Drosophila brains. Only clones that were present
in at least 4 brains were included in the analysis, giving a total of 60
clones. Images contained from one to eight identified clones with
a median of two (Figure 2A). Three example images with various
levels of background noise are shown in Figures 2B–D containing

3http://www.mathworks.co.uk
4http://www.gnu.org/software/octave/

one, two, and five identified clones, respectively. It is important
to note that the number of identified clones per images does not
fully capture the number of structures in each image. For example,
the image shown in Figure 2B contains only one identified clone,
but also contains an optic lobe clone (which we did not seek to
identify) as well as two additional clones that were only weakly
labeled and thus considered part of the background. We believe
that a single metric such as the number of identified clones per
image does not fully convey the complexity of the dataset and the
reader is encouraged to examine the sample images from the first
three clones available for download (see Materials and Methods)
to form their own opinion.

To determine whether an image contained a certain clone, we
compared it against a template derived from all the images in
our dataset containing that specific clone (however the image we
were testing was never included in any template). In Figure 3A,
we show a test image (black points, same brain as presented in
Figure 1) containing an AL-PN clone compared against one of the
47 AL-PN template images (red points) and one of the 7 mcAL-
PN template images (blue points) where the brightness of each
red and blue point corresponds to its mutual information. Our
algorithm finds the points in each template image that match at
least one point in the test image; in this case, more points from
the AL-PN template image matched points in the test image com-
pared to the mcAL-PN template image (Figure 3B). Thus, this
AL-PN template image received a greater score (which depends on
the proportion of matching points and their mutual information,
see Materials and Methods) for this test image compared to the
mcAL-PN template image.

In total, 350 images were compared against 60 clone templates.
For each clone, we divided the scores for all 350 images into two
distributions: one distribution for images that contained the clone
and one for images that did not. A template can reliably identify
a specific clone if there exists little overlap between the two distri-
butions. We quantified the separation between the distributions
using the area under the ROC curve (AROC, see Materials and
Methods). Given a random sample from each of these two dis-
tributions, the AROC gives the probability that the sample image
containing the clone scores higher than the sample image without
the clone. A score of 0.5 indicates that one can only guess at chance
whether the image contained the clone while a score of 1 indicates
that one can always determine whether the image contained the
clone.

Overall, we could reliably identify clones using templates based
on either neural projections or cell bodies (mean projection
AROC = 0.974, median = 0.996; mean cell body AROC = 0.908,
median = 0.962) although both the mean and median AROC
scores were greater for templates based on neural projections
(p < 10−3, two-sided t-test; p < 10−5, two-sided Wilcoxon signed-
rank test; Figures 3C,D). We could improve upon our ability
to identify clones by combining the projection and cell body
scores (see Materials and Methods); mean combined AROC
scores were greater than mean projection scores (mean combined
AROC = 0.984, p = 0.041, two-sided t-test), although the increase
in the median combined AROC score was not significant (median
combined AROC = 0.998, p = 0.096, two-sided Wilcoxon signed-
rank test; Figure 3E). Although our method was capable of reliably
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FIGURE 3 | Assessment of the clone identification algorithm

using cross-validation. (A) A processed test image (black points)
containing an AL-PN clone is compared against a AL-PN template
image (red points) and a mcAL-PN template image (blue points). The
brightness of the red and blue points correspond to the mutual
information of the point. (B) Same as (A), except only those points

from the two template images that matched a point in the test image
are shown. (C) Distribution of projection AROC scores for the 60
clones. (D) Same as (C), except showing the cell body AROC scores.
(E) Same as (C), except showing the combined AROC score. (F–H)

Z-projections of three example clones with variable projection and cell
body AROC scores.

identifying the majority of clones (combined AROC scores for 40
clones were above 0.99), certain clones proved more difficult to
identify (scores for 3 clones below 0.9). We wished to understand
the source of this variability.

Interestingly, the number of clones per image was not cor-
related with the combined AROC scores (Spearman correlation
coefficient; r = −0.16, p = 0.23). The two clones with the greatest
number of images, the mushroom body (78 images) and AL-
PNs (48 images) clones scored lower than the average (projection

AROC scores of 0.932 and 0.930, respectively). For these clones,
more than one projection pattern existed, reducing the amount of
common processes shared by all images containing the clone.

One problem that our algorithm encountered was the variable
level of fruitless driven GFP expression. In clones mcAL-b and
aSP3-i, strong fru expression allowed Gal4 to circumvent the Gal80
repressor, leading to low-level “leak” of GFP expression indepen-
dent of any labeling event. A clone was only considered labeled
if it strongly expressed GFP in an image, but in many cases, our
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algorithm was able to detect the low expression levels of these
clones that were present in many images. Calculating the mutual
information for these clones and scoring them was troublesome
since they were often present in images where their presence had
not been manually annotated. This partially explains why clones
mcAL-b and aSP3-i had projection AROC scores of 0.904 and
0.972, respectively, well below the median score.

Another contributing factor was the amount of overlap between
different clones: clones located in unique regions in the brain were
much easier to identify than those clones that overlapped substan-
tially with others. For example, the clone AL-a (Figure 3F) which
had a perfect projection AROC score of 1.0, had a distinctive pro-
jection that crosses both hemispheres of the brain. Even clones
that did not possess such a well defined main neurite, such as the
clone aSP2-a with a projection AROC score of 0.983 (Figure 3G),
could be identified due to its unique projection. On the other
hand, clones such as aSP3-k (projection AROC score of 0.811;
Figure 3H) were located in densely populated areas of the brain,
overlapping considerably with other clones. For several clones with
lower projection AROC, combining the cell body scores led to a
significant improvement in their identification. For example, the
combined AROC score for clone aSP3-k was 0.986, an increase of
0.155 compared to its projection AROC score.

In this dataset, there was a large variety in the number of images
per clone, ranging from 4 to 78 (median 9.5). Much time could be
saved if one had to identify only a few examples of each clone and
use this procedure to automatically identify clones in the remain-
ing images. We wondered whether clone templates consisting of
small numbers of example images could be used to reliably iden-
tify clones in novel images. Thus, we repeated the cross-validation
analysis used for 3, but we used a maximum of either three, four,
or five images per clone to determine the mutual information and
classify new images (Figure 4). If a clone had more than the maxi-
mum number of images, we selected the image names ranked first
alphabetically.

Limiting the number of images in the template had a surpris-
ingly small effect on the AROC scores. The median combined
AROC scores were 0.997, 0.996, and 0.993 using a maximum of 5,
4, and 3 images, respectively (Figure 4). Scores for several images

actually increased when using a reduced set of images, highlight-
ing the fact that including poor quality images can degrade the
clone template, and that choosing a small number of high quality
images per clone can be sufficient to reliably identify novel images.
Thus, our algorithm can reliably identify clones using a relatively
small number of images to form the templates.

In our procedure, a decision on whether an image contains a
clone ultimately depends on how the image scored compared to
a user-determined threshold. As an additional test, we considered
a different metric of success. We selected the 135 images in our
dataset that, according to our original annotation, contained a
single clone. We compared these images against all 60 clone tem-
plates and measured whether the clone template with the highest
score matched the clone contained in the image. Of 135 images,
125 scored highest against the matching clone template. For five
of the images that failed, our algorithm identified either mcAL-b
or aSP3-i, two clones that showed GFP expression independent
of MARCM labeling events (see above). Our algorithm correctly
detected the presence of these neurons although the images were
not annotated as possessing either clone. For the other five images
our algorithm failed to identify the correct clone.

All of the analysis that we have presented so far has examined
images from the same dataset used to generate the classifier. These
images are challenging because they contain complex labeling pat-
terns with multiple neuronal clusters and a significant amount of
image noise; furthermore all testing was done by leave-one-out
cross-validation, so no image could contribute information to the
classifier used for its identification. Nevertheless, these confocal
image data were acquired in a single lab with quite consistent
experimental conditions. We therefore decided to test the general-
ity and robustness of our approach by using rather different input
data. In parallel with our own group’s studies of the neuroanatomy
of the fruitless courtship circuit, Yu et al. (2010) used image reg-
istration (to their own distinct template brain) combined with
a distinct genetic labeling strategy to divide fruitless expressing
neurons into about 110 genetically and morphologically discrete
clusters. As part of their data analysis Yu et al. (2010) traced the
main processes of many of these neuronal groups, resulting in
simple neuronal skeletons with only a few branches. Since Cachero
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et al. (2010) and Yu et al. (2010) were in theory studying exactly
the same population of fruitless expressing neurons it should be
a relatively simple matter to identify the corresponding neuronal
clusters from both studies. However in practice, we have found
that this is challenging even for expert neuroanatomists (AO, SC,
GSXEJ, unpublished observations). We therefore decided to use
the neuronal tracings from Yu et al. (2010) to search the image
classifier developed in this study from the image data of Cachero
et al. (2010).

For searching, the tracings were first transformed onto the IS2
template brain used in this study. Their 3D coordinates were then
extracted (ignoring connectivity) and tangent vectors and local
dimensionality were calculated in identical fashion to the approach
used to characterize neuronal projections from images in the main
dataset. The mutual information score against each template clone
was then calculated using the same procedure described in 2. We
found numerous cases where the top hit for the tracings differed
from our tentative manual annotation. Figure 5 presents two such
examples. In the first case (Figure 5A) one cluster (aDT3) of olfac-
tory projection neurons defined by Yu et al. (2010) mapped onto
two neuroblast clusters according to Cachero et al. (2010). The
mutual information approach successfully identified the correct
neuroblast clone corresponding to the query tracing (mAL-PNs),
which had been incorrectly matched with the second neuroblast
cluster (AL-PNs) during manual annotation. As a second exam-
ple, no candidate had been proposed for the aSP7 cluster of Yu
et al. (2010) during manual annotation. However searching with
a query tracing against the 60 clone templates identified a strong
and unique match in clone AL-b (Figure 5B). Three dimensional
volume rendering of an AL-b clone and the tracing provided a
visual confirmation of the match (Figure 5C).

4. DISCUSSION
In this study, we have described how one can speed up the iden-
tification of Drosophila neuroblast clones in large datasets. By
manually identifying clones in a small set of images, our pro-
cedure identifies informative regions in the brain, allowing one to
detect the presence of clones in novel images. Crucially, one must
identify only a handful of images for most clones (Figure 4) before
using this method to identify clones in novel images.

Overall, our procedure was successful at reliably identifying
the majority of clones; the combined AROC scores for 40 out
of 60 clones were above 0.99 while 48 clones scored above 0.98
(Figure 3E). However, our procedure had difficulty detecting sev-
eral clones for reasons outlined in the Results. Some of these
difficulties were not related to our procedure, but can be attrib-
uted to the annotation of our dataset which was not designed for
this study. For example, AL-PN and mushroom body clones both
contain several different projection patterns; labeling these dis-
tinct projection patterns as different clone types could improve
the chances of successful identification.

Another problem unrelated to our procedure was the low-level
leaky expression of GFP in neurons from two of the clones. In
many images the weak fluorescence from these clones was detected
even though the image were annotated as not containing the clone.
In future implementations it might be helpful to raise the threshold
in the regions of the brain where these clones are located to prevent

A

B

C

*

*

FIGURE 5 | Searching fruitless clone templates using partial tracings.

(A) A query tracing (cyan, aDT3 cluster) was used to search the classifier
developed in this study. The informative (high mutual information) points
from the closest matching template clone are shown in orange, while the
cell bodies are shown in green. (B) A similar search was carried out for a
second tracing (aSP7 cluster). (C) Volume rendering of an image containing
the AL-b neuroblast clone (red/orange) showing the excellent match with
the query tracing (cyan). Notice also the excellent correspondence of the
position of the cell body cluster (asterisk) with the green template cell
bodies in (B). In both (A,B) informative points (orange) are present on both
sides of the brain since the training set has clones in the left and right
hemispheres (see Materials and Methods for details of this issue).
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the false detection of low-level GFP leak. In contrast, GFP expres-
sion for some clones was always weak; in these cases, one could
lower the threshold in the brain regions where these clones are
located to guarantee that their presence is detected.

As seen in Figure 4, reducing the number of images per clone
had a marginal effect on performance, and in some cases actually
improved reliability. One possible improvement to our procedure
would be to optimally select images used to form the templates;
one can visually identify images of poor quality that would degrade
the quality of the template. A more rigorous approach would be to
select a subset of images that maximizes the mutual information
for the most informative points. For the majority of clones with
AROC scores close to 1.0 this would probably have little effect, but
may prove beneficial for the lower scoring clones.

For many clones, the main neurite was relatively small com-
pared to the diffuse projections that were too small to resolve in
the confocal data. Our filtering approach for neural projections
was meant to accentuate cylindrical structures, such as the main
neurites and was not designed for these finer, more diffuse struc-
tures. As a result the filtered output of diffuse projections did not
resemble the original image. One possible modification would be
to employ a second, separate filter adapted to accentuate these dif-
fuse projections. One could then try to identify diffuse projections
that are stereotyped across animals. Another possible modifica-
tion to our pre-processing methods could be to improve how we
process images to identify cell bodies. The combination of a mask
to exclude the neuropil with a simple convolution worked well for
our dataset. However for other datasets where cell bodies are not
so readily identifiable based on position or so cleanly separated
from image noise, 3D versions of more advanced algorithms may
be required (e.g., Huang et al., 2010; Wu et al., 2010).

Although this procedure relies on manually identifying clones
for an initial set of images, it is possible to adapt this method
to identify clones without any prior annotation. As described in
2, every point in every image is assigned a binary vector with
length equal to the number of images in the dataset. Each entry
in the vector indicates whether the point matches a point in
a different image. Clustering algorithms (Slonim et al., 2005)
can then be employed to find those points that have matches

in a common set of images. Using this approach, we found
that many clusters were associated with specific clones (results
not shown), however, many clusters were comprised of points
belonging to several overlapping clones. Provided that one could
properly separate clusters associated with a single clone, manual
annotation of the dataset might no longer be necessary. Further-
more such unsupervised learning could also be used to boot-
strap a supervised learning process: unsupervised clusters could
be manually validated and then used as the basis for learned
categories.

Large scale efforts to map the fly brain are resulting in a vari-
ety of single cell and neuronal cluster level data (Cachero et al.,
2010; Yu et al., 2010; Chiang et al., 2011; Peng et al., 2011). There
is therefore a pressing need to develop approaches that can inte-
grate neuroanatomical data across different labeling approaches
and laboratories. We have demonstrated that our approach can be
used for neuronal matching of tracings of image data obtained in
a second laboratory that encompass only fragments of a full neu-
ronal cluster. Although a quantitative study of this application is
beyond the scope of the current work, we believe that our approach
is sufficiently robust and general that it could be of widespread use
in this area. Furthermore, the same strategy could be adapted for
matching long range, projectome level data from mouse (Bohland
et al., 2009) or human brains (Hagmann et al., 2008), since the
spatial location and orientation of neuronal fibers are likely to
have rather similar properties to the Drosophila neuron clusters
we have examined.
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