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Behavioral categories of functional imaging experiments along with standardized brain
coordinates of associated activations were used to develop a method to automate regional
behavioral analysis of human brain images. Behavioral and coordinate data were taken
from the BrainMap database (http://www.brainmap.org/), which documents over 20 years
of published functional brain imaging studies. A brain region of interest (ROI) for behavioral
analysis can be defined in functional images, anatomical images or brain atlases, if
images are spatially normalized to MNI or Talairach standards. Results of behavioral
analysis are presented for each of BrainMap’s 51 behavioral sub-domains spanning five
behavioral domains (Action, Cognition, Emotion, Interoception, and Perception). For each
behavioral sub-domain the fraction of coordinates falling within the ROI was computed
and compared with the fraction expected if coordinates for the behavior were not
clustered, i.e., uniformly distributed. When the difference between these fractions is large
behavioral association is indicated. A z-score ≥ 3.0 was used to designate statistically
significant behavioral association. The left-right symmetry of ∼100K activation foci was
evaluated by hemisphere, lobe, and by behavioral sub-domain. Results highlighted the
classic left-side dominance for language while asymmetry for most sub-domains (∼75%)
was not statistically significant. Use scenarios were presented for anatomical ROIs from
the Harvard-Oxford cortical (HOC) brain atlas, functional ROIs from statistical parametric
maps in a TMS-PET study, a task-based fMRI study, and ROIs from the ten “major
representative” functional networks in a previously published resting state fMRI study.
Statistically significant behavioral findings for these use scenarios were consistent with
published behaviors for associated anatomical and functional regions.
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INTRODUCTION
Relating findings from functional imaging studies to prior
research is an important step in expanding our understanding of
brain and behavior. Relevant publications are often found using
keyword searches in databases such as Pub Med followed by
ad hoc filtering, but interpretation can vary between researchers.
Neuroimaging databases providing access to metadata from
functional human brain research can help make more concise
interpretations of behavior (Neurosynth—http://neurosynth.

org/, Brede—http://neuro.imm.dtu.dk/services/jerne/brede/,
PubBrain—http://www.pubbrain.org/, and BrainMap—http://
www.brainmap.org/). However, finding relevant information
in such databases can be difficult, the information is generally
not presented in a manner that facilitates concise interpretation,
and issues can arise regarding reverse inference (Poldrack, 2006,
2011). To address these problems we developed software to
automate regional behavioral analysis of the human brain using
data from the BrainMap database (http://www.brainmap.org/).
The approach uses 3-D images formulated as spatial probability

distributions of activation foci classified according to BrainMap’s
behavioral sub-domains. With over 20 years of development
BrainMap has evolved into an extensive resource cataloging
functional metadata from more than 2100 peer-reviewed papers,
and over 10,000 experiments characterized using 83 paradigm
classes. BrainMap categorizes functional imaging experiments
using five major behavioral domains (action, cognition, emotion,
interoception, and perception) with 51 sub-domains (Fox
et al., 2005; Table 1). Each experiment is assigned one or more
behavioral classifications along with a set of x-y-z coordinates for
reported activations, and these data provide the basic structure
for forming behavioral probability distributions as 3-D images.
Region of interest (ROI) analysis is applied to these spatial
probability images to assess behaviors. Findings can be charted
as a “behavior profile” or viewed as z-score significance ranked
behavior listing (Figure 1) to facilitate interpretation. The variety
of experiments, imaging systems, processing methods, and
paradigm classes in the BrainMap database provide breadth and
depth for behavioral analyses.
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Table 1 | BrainMap behavior categorization by domain and sub-domain.

Action Cognition Emotion Interoception Perception

1. Execution:Other (8518) 10. Attention (10,995) 27. Anger (507) 35. Air-hunger (236) 43. Audition (2850)

2. Execution:Speech (3399) 11. Language:Orthography (2011) 28. Anxiety (577) 36. Bladder (315) 44. Gustation (1173)

3. Imagination (1244) 12. Language:Other (1204) 29. Disgust (879) 37. Hunger (386) 45. Olfaction (400)

4. Inhibition (2519) 13. Language:Phonology (1621) 30. Fear (1311) 38. Other (200) 46. Somethesis (2542)

5. Motor:Learning (832) 14. Language:Semantics (7593) 31. Happiness:Humor (120) 39. Sexuality (877) 47. Somethesis:Pain (3472)

6. Observation (972) 15. Language:Speech (7244) 32. Happiness (1060) 40. Sleep (260) 48. Vision:Color (201)

7. Other (11) 16. Language:Syntax (655) 33. Other (12,821) 41. Thermoregulation (29) 49. Vision:Motion (2514)

8. Preparation (346) 17. Memory:Explicit (7002) 34. Sadness (1167) 42. Thirst (209) 50. Vision:Other (2106)

9. Rest (1611) 18. Memory:Other (50) 51. Vision:Shape (2995)

19. Memory:Working (7819)

20. Music (822)

21. Other (8847)

22. Reasoning (1387)

23. Social (1562)

24. Soma (581)

25. Space (1935)

26. Time (495)

Total (19,452) Total (61,783) Total (18,442) Total (2512) Total (18,253)

The number of activation foci in the brain for each sub-domain () along with totals by domain are provided.

Behavioral analysis software was developed and tested as a
plugin application for the Multi-image Analysis GUI (Mango)
image processing system (http://ric.uthscsa.edu/mango/). Several
features of Mango were important in this development: (1) ease
of use, (2) multi-platform Java application, (3) extensive ROI
tools, (4) ability to add and update software as a plugin module
and (5) full access to a suite of image viewing and process-
ing features. Mango is available from the Neuroimaging Tools
and Resources (NITRC) website (http://www.nitrc.org/) and the
Research Imaging Institute (RII) website (http://ric.uthscsa.edu/
mango/). Regular updates for Mango have been provided with
additional features (12 releases through 2012), and over 10,000
copies of Mango have been downloaded.

A primary goal of the automated “behavioral analysis” project
was to provide software that would rapidly determine regionally
specific behaviors for researchers’ brain studies. Summing activa-
tion foci within an ROI for each behavioral sub-domain was the
initial step; however, additional processing was necessary to prop-
erly gauge the relationship between these data and BrainMap’s
behavior domains. The next processing step was to convert ROI
sums to activation probabilities. Further processing was done
to correct probabilities for region size effects. Finally, statisti-
cal validity was provided as z-scores testing the null hypothesis
that the distribution for activation foci observed within an ROI
was not different from that predicted for a spatially uniform
random distribution within the brain. This paper describes devel-
opment methods, characteristics, and provides use scenarios for
behavioral analysis with functional and anatomical images.

METHODS
Each experiment in the BrainMap database is behaviorally classi-
fied using one or more sub-domains. Behaviors that classify well

by major domain but do not match an existing sub-domain are
classified as Domain:Other, such as “Action:Other” in Table 1.
Similarly, behaviors that classify well by sub-domain but do
not match other sub-domains are classified as Domain:Sub-
domain:Other, such as “Perception:Vision:Other”. This provides
completeness for classification of experiments by domain and
sub-domain. The “Other” groupings may subsequently be sub-
divided and designated more explicitly as the BrainMap database
continues to grow.

A five-step process was used to make a data structure to rapidly
index locations and behaviors (Figure 2). In Step 1 (BrainMap
Database), each experiment in the BrainMap database is isolated,
and Talairach coordinates for the experiment’s activation loca-
tions (activation foci) recorded. Experiments often have multiple
Behavior IDs to cover the multiple behaviors involved. In Step 2
(Behavior-Location), data are reorganized as a table of behavior
sub-domains (Behavior IDs) with a list of coordinates for each.
Note that the same coordinate can be associated with more than
one Behavior ID. In Step 3 (3-D Behavior Image), a 3-D image
of activation foci is formulated for each behavioral sub-domain.
Images were formatted with 2-mm isotropic spacing, similar to
the spatial precision in functional brain images, with locations
indexed by Talairach coordinates. For each location in a behavior
sub-domain’s coordinate list we added “one” to its image, such
that the resulting image tabulated activation foci by location. An
example of an activation foci image formed in this manner is
illustrated for the “Action:Execution” sub-domain in Figure 3. In
Step 4 (3-D PDF), activation foci images are converted to 3-D
probability density function images PDF(x, y, z) by dividing each
by the total number of activation foci (Nb) in the brain for its
sub-domain (Table 1). Finally, in Step 5 (4-D PDF), the set of 51
3-D PDF images were concatenated into a single 4-D probability
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FIGURE 1 | Behavior analysis of left-hand finger tapping.

(A) High-resolution brain MRI with ROI from a functional MRI (fMRI) study,
(B) surface rendering to illustrate the 3-D nature of the ROI, and (C)

sub-domains listed by descending z-scores with statistically significant
behaviors highlighted. Data can be viewed as a bar graph or exported as an
Excel compatible file.

density image PDF(x, y, z, b) where location and behavior can
be readily indexed. This 4-D image is stored using the NIH’s
NIfTI (Neuroimaging Informatics Technology Initiative) file for-
mat (http://nifti.nimh.nih.gov) with gzip compression (http://
www.gzip.org/) for efficient distribution.

The regional probability for each sub-domain’s behavior (b)
is determined by summing PDF(x, y, z, b) over the x-y-z extent
of a brain ROI. These probabilities range from near zero for a
small ROI to unity for a whole-brain ROI. The probability for an
ROI varies by sub-domain according to location, size and shape
and increases as the ROIs spatial configuration approaches that of
the activation foci in a behavior sub-domain. PDF-based behav-
ior images rather than Activation Likelihood Expectation (ALE)
based behavior images (Laird et al., 2009) were used to provide a
direct means to calculate probabilities.

Automated behavior analysis requires that brain images be
spatially normalized. Internal calculations use Talairach coordi-
nates (Lancaster and Fox, 2009). A built-in MNI-to-TAL affine
transform (Jenkinson and Smith, 2001; Lancaster et al., 2007)

is provided to adjust images fitted to the Montreal Neurological
Institute (MNI) brain space (Evans et al., 2012) to the Talairach
brain space. Images from popular functional image analysis soft-
ware applications such as FMRIB Software Library (FSL http://
www.fmrib.ox.ac.uk/fsl/), Statistical Parametric Mapping (SPM
http://www.fil.ion.ucl.ac.uk/spm/) and Analysis of Functional
Neuroimages (AFNI http://afni.nimh.nih.gov/afni/) are sup-
ported using the NIfTI file format. ROI tools in Mango can be
used to threshold statistical parametric images (e.g., z-scores) to
provide 3-D ROIs for behavior analysis. Probabilities for an ROI
are determined for the 51 behavioral sub-domains, and when
organized by domain: sub-domain provides a “behavior profile.”
Probabilities are the probability that reported behavior-specific
activation foci fell within the ROI. The use of probabilities, rather
than activation foci sums, controls for the differences in numbers
of foci per sub-domain (Table 1).

The measured or “observed” probability po increases as ROI
size increases reaching unity for a whole brain ROI. We therefore
sought a size-adaptable expected probability (pe) for significance
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FIGURE 2 | A five-step process is used to extract coordinate and behavior data from the BrainMap database and formulate a behavioral probability

density function (PDF) as a 4-D image indexed using x-y-z coordinates and behavior (b).

testing. Like observed probability the “expected” probability
needed to range from zero to unity as ROI volume changed from
zero to full brain volume, but not vary by location or shape.
To meet these needs pe was calculated as the ROI-to-brain vol-
ume ratio, with brain volume determined from the Talairach
Daemon (Lancaster et al., 2000), which is sized according to the
1988 Talairach Atlas brain (Talairach and Tournoux, 1988). The
expected probability pe is therefore an estimate of observed prob-
ability po should activation foci for a sub-domain be randomly
distributed throughout the brain, i.e., not regionalized.

To test for significance of behaviors we used the null hypothesis
that the observed probability of activation foci was not different
from expected, i.e., that po = pe. This test was done for each of
the 51 behavior sub-domains. The difference (po − pe) is called
the effect size, and when it is positive more activation foci are
seen within the ROI than expected for random spatial distribu-
tion. Likewise when the effect size is negative fewer activation
foci are seen than expected for random spatial distribution. The
focus for behavior analysis is therefore on positive effect sizes. To
determine variance for effect size we modeled the two possible
outcomes of activations (inside or outside of the ROI) using the
binomial distribution. In this study po and pe served as binomial
“success” probabilities (probability of activations falling within
the ROI), and the number of trials was the whole-brain activa-
tion tally (Nb) for a sub-domain. For the binomial distribution
the variance of “p” is calculated as p(1-p)/N. An effect-size z-score

for each behavioral sub-domain was calculated as follows:

z = po − pe(
po(1−po)+ pe(1−pe)

Nb

)1/2
(1)

Only behavioral sub-domains with positive z-scores ≥ 3.0 are
considered significant (Bonferroni corrected to overall p-value
of 0.05 for the 51 behavior sub-domains. Results for each sub-
domain are provided as total foci, observed probability (po),
relative probability (po − pe)/pe, and z-scores. These are viewable
as charts and a table of ranked values to facilitate interpretation.

PROCESSING TIMES
The processing speed for behavior analysis software with the
2-mm spacing 4-D PDF image was tested on two systems using
the ROI from Figure 1, (1) a windows based desktop PC (Sony
Vaio PCV- RZ32G) with an Intel Pentium 4 (2.6 GHz) proces-
sor running Windows XP (SP3) and (2) a MacBook Pro with
Intel core duo processor (2.33 GHz) running OS X 10.6.7. The PC
had 1.5 GB of RAM and the Mac had 2 GB of RAM, and a faster
internal bus. Both systems performed analysis and updated results
within 1 s for the ROI illustrated in Figures 1A,B. Processing
speed varies with ROI size, but even with hemisphere size ROIs
processing time was ∼1 s on the MacBook Pro. Application
startup time was 1.3–2.5 s mostly due to initialization of the 4-D
PDF image. Processing times were increased by 4–8X for a 1-mm
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FIGURE 3 | The ‘Action:Execution’ behavior sub-domain image.

Activation foci are overlaid onto gray matter from the Talairach Daemon
(Lancaster et al., 2000) to provide an anatomical background. Crosshair at
(−4, 0, 0).

4-D PDF image. These tests show that behavior analysis results are
available almost immediately and facilitate rapid interpretation
and exploration.

SPATIAL PRECISION OF THE PDF IMAGE
Most functional images are acquired with relatively low spatial
precision (sample spacing >2 mm), so ROIs derived from these
images are also considered low resolution. The 4-D PDF image
was made using 2-mm spacing for analysis of such low-resolution
images. However, behavior analysis can also be done using ROIs
from high spatial resolution anatomical images (∼1 mm spac-
ing), so we made a 1-mm spacing 4-D PDF image to evaluate
this use. We tested both low- and high-resolution images using
both 1- and 2-mm spatial precision PDFs. The behavior analysis
software down converts 1-mm precision ROIs to 2-mm preci-
sion for use with the 2-mm spacing PDF image and up converts
2-mm ROIs to 1-mm precision for use with the 1-mm spacing
PDF image.

High-resolution ROI testing used spherical ROIs from a brain
image with 1-mm spacing. High-resolution ROIs were defined
as spheres of 12-mm radius positioned at two brain sites of
interest, the supplementary motor area (SMA) at Talairach co-
ordinate (−1, 4, 48) and the anterior cingulate (−1, 43, −1).
Low-resolution ROI testing (∼2 mm spacing) was done using an
ROI made by thresholding an individual fMRI study at z-score =
2.5. The ROI was from the fMRI study illustrated in Figure 1.

SYMMETRY OF ACTIVATION FOCI
To examine the balance of foci reported in left and right brain
we evaluated the left-right (L-R) symmetry of activation foci in
the brain. Tallies of activation foci for left and right brain were
made from the 100,000+ locations reported in BrainMap, and a
z-score determined for the fraction of activation foci left of mid-
line. Analysis was done for major anatomical subdivision of the
brain by hemispheres and by lobes. Further symmetry analysis
was done by behavior evaluating each of the 51 behavior sub-
domain images. Finally, symmetry analysis was performed for the
language areas, Broca’s (BA44 and 45) and Wernicke’s (posterior
BA22), which favor the left hemisphere. ROIs for these lan-
guage areas were based on their Brodmann Areas defined in the
1988 Talairach atlas. The posterior portion of BA22 was isolated
using y-coordinates posterior of y = −27. The two language-area
ROIs were enlarged to help account for spatial and anatomical
variability by dilating twice using a 3×3×3 kernel.

USE SCENARIOS
Since “behavior analysis” is co-ordinate based it can be used
for analysis of images where the brain is registered to the MNI
or Talairach brain spaces. This allowed us to provide use sce-
narios over a wide range of interests including a brain atlas, a
TMS/PET study, a task-based fMRI study and a published resting
state network study.

Harvard-Oxford Cortical (HOC) atlas
The brain atlases distributed with the FSL software (http://
www.fmrib.ox.ac.uk/fsl/data/atlas-descriptions.html) have well
defined anatomical regions delineated by numeric values so
that they can be readily defined as ROIs. We selected eight
gyral regions from the HOC atlas for behavioral analy-
sis (http://www.cma.mgh.harvard.edu/fsl_atlas.html). The eight
regions spanned from the middle frontal gyrus (MFG) to the
occipital pole (OP). The 1-mm 25% thresholded maximum prob-
ability atlas was used for this study. The HOC atlas is in MNI space
so we applied the MNI-to-TAL transform before processing. ROIs
were defined using the numeric values designated for each of the
eight brain regions.

TMS/PET study
Behavior analysis was used by (Narayana et al., 2012) to com-
pare behaviors associated with SMA connected regions using
connectivity determined by stimulation based TMS/PET (Fox
et al., 1997, 2006; Paus et al., 1997; Laird et al., 2008) and by
meta-analytic connectivity modeling (MACM) (Fox et al., 1998;
Robinson et al., 2010; Cauda et al., 2011; Eickhoff et al., 2011;
Torta and Cauda, 2011). Statistical parametric maps for MACM
and TMS/PET studies were formulated based on brain areas
co-varying with right SMA. ROIs delineating significant brain
regions (z ≥ 3) were used as input for behavior analysis.

Task-based functional MRI (fMRI) study
A statistical parametric image indicating active brain areas from
a fMRI study was used to demonstrate behavioral analysis for a
single subject. The task was a finger tapping sequence of the non-
dominant (left) hand used in a motor learning project (Figure 1).
The statistical parametric image was formatted as a 2×2×2 mm
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z-score image aligned to the Talairach brain space. A single ROI
was formulated using a z-score threshold of z = 2.5. Behavior
analysis was done using this ROI.

Resting state networks
Functionally connected regions within the brain are identifiable
using resting state fMRI and independent component analy-
sis (ICA) (Arfanakis et al., 2000; Bartels and Zeki, 2005; Ma
et al., 2007; Jafri et al., 2008). Smith et al. (2009) published
their fMRI-ICA findings from a resting-state study of 36 sub-
jects. They performed an ICA analysis using a model order of
20 and converted the ICA spatial maps to z-statistic images, then
thresholded using z ≥ 3 to isolate components as regions. Ten
of these components were considered as the “major representa-
tive” functional networks, based on remarkable correspondence
observed between components derived from ICA of resting state
fMRI data and those from BrainMap-derived ICA components
of co-activating networks. They provided detailed descriptions
of associated behaviors for the ten networks, as determined
from extensive review of the BrainMap database. We downloaded
these regions from the FMRIB website (http://fsl.fmrib.ox.ac.
uk/analysis/brainmap+rsns/) and performed behavior analysis
for each of the ten components for comparison with author’s
behavioral descriptions.

RESULTS
SPATIAL PRECISION OF THE PDF IMAGE
Behavior analysis for the high-resolution spherical ROI in SMA
indicated six significant sub-domains for the 1-mm behavior
image and seven significant sub-domains for the 2-mm behavior
image. The slight mismatch occurred for a sub-domain where the
z-score was near the significance threshold (z = 3.0). Behavior
analysis for the high-resolution spherical ROI in anterior cin-
gulate indicated five significant behavioral sub-domains using
the 1-mm behavior image and four with the 2-mm behavior
image; again the mismatch was where the z-score was near the
significance threshold value.

Similar results were seen for the low resolution ROI derived
from the fMRI study with 6 of 7 matching significant sub-
domains. A paired t-test was performed comparing the z-score
behavior profiles for 1-mm and 2-mm 4-D PDF images and for
1-mm and 2-mm precision ROIs, and all p-values were less than
0.03. Behavioral sub-domains with z-scores >4.0 were identical
regardless of the precision in forming ROIs (1-mm or 2-mm) or
precision used for the 4-D PDF image. The small differences in
behavioral analysis results should have minimal effect for auto-
mated behavior analysis where the variability in ROI position,
size, and shape are more important. Based on these results we
opted to use the 2-mm 4-D PDF image with the behavior analysis
software.

SYMMETRY OF ACTIVATION FOCI
A small but highly statistically significant leftward fraction (54%)
was seen for the cerebrum (Table 2). The distribution within
the cerebellum was slightly rightward (51%) but not statisti-
cally significant. Significant asymmetry was seen in all cerebral
lobes. In three lobes (Frontal, Temporal, and Parietal) there

Table 2 | Left-Right distribution of activation foci by brain region.

Region Volume (mm3) Left fraction z-score

Cerebrum 1,310,229 0.54 22.9∗

Cerebellum 159,554 0.49 −1.6

Frontal lobe 474,393 0.55 18.7∗

Temporal lobe 216,674 0.54 9.4∗

Parietal lobe 180,664 0.54 10.2∗

Occipital lobe 143,634 0.52 4.0∗

Limbic lobe 120,585 0.51 2.3∗

Sub-lobar 165,115 0.52 4.4∗

∗Significant z-scores (|z| ≥ 2.0).

was a large leftward trend (54–55%). In the Occipital and sub-
Lobar regions the leftward trend was smaller (52%) with lesser
z-scores. Finally, the Limbic lobe had the smallest leftward trend
(51%), which was only slightly above the threshold for statistical
significance.

Only 13 of the behavior sub-domains (∼25%) indicated a sta-
tistically significant L-R difference (Table 3). One sub-domain
“Action:Inhibition” had a rightward trend (55%). A large leftward
trend was seen for language related sub-domains with left frac-
tions of 60% or more. No statistically significant asymmetry was
seen for the Emotion and Interoception domains. The leftward
trend for “Action:Execution” was likely due to the fact that most
hand related tasks are performed with the right hand.

Behavioral analysis for the language ROIs indicated signifi-
cant language behaviors in the left hemisphere, “semantics” and
“speech”. No significant behaviors were indicated for the right-
side ROIs. These results are consistent with left dominance of
language for Broca’s and Wernicke’s areas. The observed L-R
symmetry of activation foci was consistent with the expected
symmetries (Banich, 2004), with a slight overall leftward trend
primarily due to the dominance of language areas on the left.

USE SCENARIOS
HOC Atlas
Significant behaviors (z-score = 3.0) were seen for each of the
eight anatomically defined brain regions (highlighted in Table 4).
The summary of major findings organized by behavioral domain
is as follows:

Action. Significant behaviors were seen for all regions except the
OP. Significant findings for Execution (Speech) were only seen in
the precentral and postcentral gyri. The largest z-scores were for
Execution (Other) in the precentral gyrus (preCG), postcentral
gyrus (postCG), and superior parietal lobule (SPL). Action exe-
cution is often a necessary part of task-based functional imaging
studies, and this was reflected by the largest overall z-score in the
preCG. Two action sub-domains were not significant in any of the
eight brain regions, “Other” and “Preparation.”

Cognition. Significant behaviors were seen for all regions except
the postCG. The two largest z-scores were in the MFG for “work-
ing memory” and in lateral occipital cortex-superior (LOCS)
for “Space.” The major behavior sub-domains for the two
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Table 3 | Left-Right distribution of activation foci by behavior sub-domain.

Sub-domain Domain # Foci left # Foci right L + R Left fraction Left z-score

Execution:Other Action 3924 3270 7194 0.55 7.7∗

Execution:Speech Action 1625 1254 2879 0.56 7.0∗

Imagination Action 645 454 1099 0.59 5.9∗

Inhibition Action 1036 1254 2290 0.45 −4.6∗∗

Language:Orthography Cognition 1050 662 1712 0.61 9.6∗

Language:Other Cognition 660 415 1075 0.61 7.7∗

Language:Phonology Cognition 907 525 1432 0.63 10.5∗

Language:Semantics Cognition 4232 2349 6581 0.64 24.2∗

Language:Speech Cognition 3829 2523 6352 0.60 16.7∗

Language:Syntax Cognition 392 196 588 0.67 8.6∗

Memory:Explicit Cognition 3459 2736 6195 0.56 9.2∗

Memory:Working Cognition 3591 3311 6902 0.52 3.4∗

Somesthesis:Other Perception 1157 1009 2166 0.53 3.2∗

∗Significant leftward.
∗∗Significant rightward (|z| ≥ 3.0).

frontal regions (SFG and MFG) were “working memory” and
“Attention.” The only region with a significant z-score for the
“Social” sub-domain was the superior frontal gyrus (SFG).

Emotion. Only three brain regions (SFG, MFG, and lateral
occipital cortex-Inferior (LOCI) had significant emotion z-scores.
For the LOCI region the behaviors were “Disgust” and “Fear”
while for the frontal regions behavior was non-specific (Other).

Interoception. Similar to the Emotion domain, only two regions
had significant z-scores, preCG and LOCI. For the LOCI region
the behavior sub-domain was “Sexuality” while the preCG was
non-specific (Other).

Perception. Significant perception behaviors were found in all
eight regions. Many regions indicated significant visual involve-
ment, with largest z-scores for the three occipital regions. The
only region with a significant z-score for “color vision” was the
OP. None of the eight brain regions indicated “Gustation” or
“Olfaction” as a significant behavior.

The associations between brain regions and behaviors fol-
lowed general expectations, with language mostly in the MFG and
preCG and vision mostly in the occipital regions (Banich, 2004).

TMS/PET Study
MACM and TMS/PET statistical parametric images indicated
similar SMA connectivity patterns, with the MACM connec-
tions being more extensive (Narayana et al., 2012). Behavior
analysis of MACM regions revealed significant behaviors for all
major and numerous minor sub-domains. Behavior analysis of
the TMS/PET regions indicated significant behaviors in fewer
sub-domains, with no behaviors reported for the Interoception
domain. However, the largest z-scores for TMS/PET in Action,
Cognition, Emotion, and Perception domains matched those for
MACM. The author’s concluded that MACM informed on the
broad functional nature of SMA connections, while TMS/PET
identified the more specific electrophysiological connectivity of

SMA, and importantly behavioral analysis mirrored this finding
with broad vs. restricted behavioral findings.

Task-based fMRI study
The ROI for the fMRI study encompassed brain areas that are
assumed to be active in a finder-tapping study (large right M1
region, a small left M1 region, a SMA region, and smaller
regions in left cerebellum; see Figures 1A,B). The behavioral
listing (Figure 1C) indicated distinct significant behaviors asso-
ciated with Action, Perception, and Cognition domains, with
statistically significant behavior sub-domains highlighted. The
first five of these are typical for a motor learning task. The
sixth “Perception:Somesthesis (Pain)” might have been related to
the experience of performing the task in an MRI scanner. The
most significant behavior was “Action:Execution” (Z = 15.57).
The high z-score for this behavior is an indication of the large
fraction of activation foci from the “Action:Execution” behavior
sub-domain (Figure 3) within the ROI, especially the compo-
nents in M1 and SMA. These results indicate high specificity of
behavior analysis for an individual fMRI study when the task is
carefully controlled.

Resting state networks
Flagged significant behavior sub-domains (z ≥ 3.0) for the 10
resting state networks ICA1-10 (Table 5) matched well with their
published descriptions (Smith et al., 2009). A full functional
explication based on examination of BrainMap metadata has been
provided for these 10 networks (Laird et al., 2011). The results
observed from the fully automated behavioral analysis generally
agree with these prior works. Specifically, we observed a strong
correspondence between the default mode networks (ICA4) and
the domains of social cognition, explicit memory, and rest, as well
as a lack of domain prevalence for the cerebellar network (ICA5),
indicating the functional heterogeneity of this brain region.

Importantly, compared with the atlas study (Table 4), where
significant “Perception:Vision” behaviors were reported in many
anatomically defined regions, “Perception:Vision” behaviors were
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Table 4 | Behavior analysis of eight anatomical regions from the HOC atlas.

Sub-domain Domain SFG MFG preCG postCG SPL LOCS LOCI OP

Execution (Other) Action 2.73 −0.41 22.37 14.80 11.34 4.11 −1.08 −3.30

Execution (Speech) Action −0.82 1.19 9.11 3.78 −0.15 −3.41 −0.65 2.69
Imagination Action 1.86 2.49 8.11 2.83 5.11 1.77 −0.50 −2.59
Inhibition Action 4.18 6.64 1.30 −1.52 3.02 5.45 1.44 −1.05
Motor (Learning) Action 3.44 1.90 4.31 2.94 3.88 2.35 −0.42 −1.97
Observation Action 1.00 2.97 2.43 0.17 4.78 2.69 6.40 1.67

Other Action 0.69 −0.51 0.53 −0.57 −0.37 −0.68 −0.44 −0.49
Preparation Action 1.63 1.64 1.96 1.05 0.84 0.38 1.26 −0.12
Rest Action −3.35 3.75 −0.60 −1.24 −1.99 3.02 −1.08 −1.70
Attention Cognition 5.36 12.76 5.07 −1.75 7.94 10.87 4.06 −0.91

Language (Orthography) Cognition 1.61 1.99 3.50 −0.52 2.99 4.38 6.14 5.24
Language (Other) Cognition 0.73 3.19 2.81 −1.23 1.22 3.01 2.98 3.57
Language (Phonology) Cognition 0.87 5.29 4.75 −2.41 0.50 1.40 −0.07 0.36
Language (Semantics) Cognition 2.77 8.37 3.36 −4.17 1.65 1.78 7.21 3.39

Language (Speech) Cognition 0.63 6.55 7.92 −1.01 1.01 −1.04 2.55 2.95
Language (Syntax) Cognition −1.08 1.69 1.87 −2.33 0.48 1.83 −1.54 −0.63
Memory (Explicit) Cognition 4.26 9.14 0.71 −5.43 2.95 5.99 2.37 −1.20
Memory (Other) Cognition −0.12 0.48 0.56 −0.28 −0.78 −0.01 0.69 −0.05
Memory (Working) Cognition 8.18 17.25 7.54 −3.55 7.53 11.80 2.21 −0.99

Music Cognition 1.54 0.44 2.34 0.64 2.70 −1.38 −2.37 −1.70
Other Cognition 4.31 6.51 −0.39 −4.23 3.72 3.76 0.73 −1.49
Reasoning Cognition 3.08 7.74 −0.86 −2.12 3.32 7.10 0.07 0.88
Social Cognition 4.01 1.57 0.61 −2.51 0.16 2.76 0.47 −1.28

Soma Cognition 1.11 1.44 2.04 −0.67 2.81 1.55 2.61 0.48
Space Cognition 3.67 3.93 3.60 −1.69 6.97 13.12 6.35 0.78
Time Cognition 1.97 2.93 1.80 −1.08 1.22 0.77 0.14 1.22
Anger Emotion −0.19 2.35 1.18 −2.17 −1.47 −0.24 0.75 −1.81

Anxiety Emotion 0.97 −0.30 0.77 −1.73 −0.91 −0.51 0.27 −0.99
Disgust Emotion −0.78 0.38 −2.32 −2.79 −2.45 0.19 3.12 1.07
Fear Emotion −0.65 0.78 −0.58 −4.22 −1.40 −2.31 4.42 −0.03
Happiness (Humor) Emotion 0.46 −0.37 −0.94 −1.17 −0.29 0.05 1.94 −1.63
Happiness (Other) Emotion −0.13 0.58 1.07 −2.12 −2.50 −1.92 2.93 −0.44

Other Emotion 3.84 5.74 −2.12 −6.10 0.39 −0.42 2.86 −2.41
Sadness Emotion −0.20 2.33 0.09 −3.02 −1.09 −2.51 1.59 1.04
Air-hunger Interoception −1.30 −0.16 −0.97 −1.62 −1.71 −3.15 −0.38 −1.67
Bladder Interoception −0.11 −1.01 2.88 −0.50 −1.30 −2.17 −2.33 −2.63

Hunger Interoception 0.43 −1.75 −0.82 −0.96 −1.56 −1.83 2.96 −0.34
Other Interoception 0.68 0.41 3.59 1.53 0.62 −1.19 −1.86 −2.10
Sexuality Interoception −0.95 −0.41 −0.62 −0.92 1.38 1.52 5.96 0.64
Sleep Interoception 1.98 −0.02 −1.84 −1.79 1.47 1.94 0.50 −1.32

Thermoregulation Interoception 0.25 −0.83 −1.04 −0.92 −0.60 −1.10 −0.71 1.31
Thirst Interoception −0.69 0.34 −0.73 1.46 −0.26 −0.95 −1.20 −0.99
Audition Perception −0.82 3.72 1.93 0.05 1.27 −1.04 −3.31 −3.69
Gustation Perception −0.22 0.85 1.21 0.31 −1.10 −1.03 1.18 1.51
Olfaction Perception −0.60 0.98 −2.18 −1.60 0.04 −0.79 −1.22 −0.69

Somesthesis (Other) Perception −0.74 0.60 8.19 8.67 4.80 −1.70 −2.22 −1.53
Somesthesis (Pain) Perception 0.94 0.15 3.41 1.89 1.49 −5.76 −4.56 −7.11
Vision (Color) Perception 0.39 2.74 −0.35 −1.85 2.19 1.84 2.24 4.45
Vision (Motion) Perception 4.71 2.60 7.46 −2.30 8.31 11.86 6.31 3.32

Vision (Other) Perception 1.20 4.24 3.98 −2.61 2.93 7.15 4.92 5.43
Vision (Shape) Perception 1.57 2.89 3.30 −2.41 6.05 11.19 11.06 5.44

Significant behaviors (z≥3.0) highlighted

SFG, superior frontal gyrus; MFG, middle frontal gyrus; preCG, pre central gyrus; postCG, post central gyrus; SPL, superior parietal loblule; LOCS, lateral occipital

cortex superior; LOCI, lateral occipital cortex inferior; OP, occipital pole
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Table 5 | Behavioral analysis of ten major representative functional networks (Smith et al., 2009).

Sub-domain Domain ICA1 ICA2 ICA3 ICA4 ICA5 ICA6 ICA7 ICA8 ICA9 ICA10

Execution (Other) Action −3.56 −2.55 3.47 −11.36 3.93 37.19 2.00 −4.28 −7.13 −0.38

Execution (Speech) Action −0.88 1.29 1.97 −4.97 3.44 10.16 14.13 −1.59 −6.77 −0.35
Imagination Action −1.08 −2.83 1.92 −1.60 −0.08 11.41 0.37 0.34 −2.79 5.31
Inhibition Action −1.88 −2.99 1.43 −0.70 −6.29 3.63 3.20 10.88 5.16 3.63
Motor (Learning) Action −0.32 −1.38 3.20 −0.51 1.47 8.36 −0.09 0.80 −2.30 0.87
Observation Action 0.68 1.11 7.67 −3.44 −2.89 1.93 −0.75 −0.23 0.56 3.37

Other Action −0.91 −0.77 0.02 0.15 −0.82 0.03 0.75 0.37 −0.08 0.58
Preparation Action −0.66 −0.67 0.43 0.89 −2.09 4.28 −0.32 2.67 −0.26 −0.17
Rest Action −2.45 −3.59 −2.50 7.08 −3.89 −2.91 0.47 4.73 0.57 3.82
Attention Cognition 0.68 −1.99 8.92 −2.55 −8.63 8.84 4.02 12.17 2.39 10.84

Language (Orthography) Cognition −0.06 5.83 10.67 −2.82 −0.85 1.53 0.17 −1.18 −4.79 6.75
Language (Other) Cognition −0.69 2.24 4.69 −0.62 −1.94 1.35 3.64 −2.23 −3.17 5.31
Language (Phonology) Cognition −3.49 −0.23 1.56 −3.55 −1.56 −0.24 7.69 2.61 −1.70 10.18
Language (Semantics) Cognition 0.34 2.26 9.32 −2.61 −3.10 −0.26 8.45 1.28 −7.80 16.77

Language (Speech) Cognition 0.52 0.02 4.83 −2.79 −1.11 4.75 17.23 1.25 −6.12 10.24
Language (Syntax) Cognition −0.78 −1.28 −0.30 0.28 −1.66 −1.34 4.42 0.18 −1.48 5.54
Memory (Explicit) Cognition −1.62 −2.99 2.43 5.43 −7.48 −3.04 1.11 10.20 −2.50 12.24
Memory (Other) Cognition −0.20 −0.27 0.19 −1.28 −0.98 0.54 0.08 −0.74 −0.37 1.22
Memory (Working) Cognition −1.90 −2.21 9.02 −6.14 −3.77 6.58 −3.53 10.35 4.32 17.20

Music Cognition −3.04 −2.86 −1.75 −2.71 0.86 3.61 10.11 0.25 −3.01 0.72
Other Cognition −3.58 −3.09 −0.65 1.15 −7.32 −2.18 0.14 22.60 −1.30 6.01
Reasoning Cognition 2.34 0.18 2.62 1.90 −4.43 −0.52 −2.90 4.85 2.18 8.40
Social Cognition −2.37 −3.72 −0.74 6.45 −4.41 −2.42 1.17 4.24 0.98 1.88

Soma Cognition 0.48 0.17 2.39 0.35 −3.09 1.70 3.27 1.40 −1.42 1.14
Space Cognition 3.26 0.44 13.82 −1.32 −1.58 4.58 −2.98 −1.18 −1.37 6.49
Time Cognition −0.60 0.52 0.66 −1.81 −0.65 1.07 0.98 1.13 0.80 2.29
Anger Emotion −0.45 −1.93 1.94 −2.53 −1.69 −1.70 3.85 0.98 −0.03 0.54

Anxiety Emotion 0.29 −0.20 −0.66 1.22 −2.36 −0.55 1.69 5.29 −1.17 −0.57
Disgust Emotion 0.22 0.94 2.77 0.37 −2.37 −2.24 4.64 3.02 −1.67 −0.30
Fear Emotion −1.35 0.35 4.28 −0.05 −1.86 −4.07 2.07 5.62 −3.31 −2.43
Happiness (Humor) Emotion −1.29 −1.48 3.26 0.28 0.02 −1.43 1.47 −0.20 −1.51 −1.38
Happiness (Other) Emotion −0.55 0.27 1.60 0.15 −2.86 −2.16 3.23 2.16 −2.26 −1.39

Other Emotion −4.70 −4.97 −2.35 3.47 −9.15 −4.27 2.74 25.52 −2.95 4.73
Sadness Emotion −1.08 −0.06 −0.48 −0.25 −3.40 −3.20 2.03 3.55 −2.12 −0.75
Air-hunger Interoception −1.31 −1.19 −1.22 −2.17 2.20 −1.55 0.36 0.61 −1.87 −1.51
Bladder Interoception −3.13 −1.45 −2.82 −2.37 1.07 2.32 1.53 2.77 −0.12 −1.85

Hunger Interoception 1.05 0.51 1.83 −0.94 −0.05 −2.59 2.79 1.52 −2.28 −1.19
Other Interoception −2.43 −2.41 −1.75 −2.56 0.09 4.00 2.23 0.59 −0.74 −0.40
Sexuality Interoception −3.02 −0.09 4.73 −0.16 −4.20 −1.08 1.01 5.32 −4.06 0.67
Sleep Interoception 2.69 −1.43 1.92 0.46 0.36 0.51 −0.82 1.08 −1.48 0.28

Thermoregulation Interoception 1.21 0.75 −0.86 0.80 −1.33 −0.25 0.37 0.15 −1.02 −0.38
Thirst Interoception −0.53 −2.49 −3.18 0.81 −1.47 2.23 1.52 2.60 −1.07 −0.36
Audition Perception −4.34 −4.16 −4.30 −3.52 −4.80 2.31 21.30 0.44 −3.64 0.11
Gustation Perception −2.40 0.73 0.22 −2.83 −0.34 −1.37 3.00 5.79 −2.88 −0.72
Olfaction Perception −1.53 −1.52 −1.70 0.33 −0.99 −1.76 0.86 4.76 −2.00 −0.69

Somesthesis (Other) Perception −2.34 −2.46 −0.87 −4.51 −0.18 14.22 5.38 1.07 −0.63 1.03
Somesthesis (Pain) Perception −9.73 −4.34 −7.83 −5.32 0.02 8.45 10.00 11.53 1.19 −0.27
Vision (Color) Perception 2.42 3.32 4.73 −2.58 −1.37 −1.05 −3.30 0.71 −0.23 1.90
Vision (Motion) Perception 8.18 2.48 10.64 −2.91 −3.48 12.19 −5.75 1.58 −4.02 2.45

Vision (Other) Perception 8.65 5.38 10.52 −0.93 −2.24 2.53 −1.10 −0.38 −1.98 2.81
Vision (Shape) Perception 5.59 7.04 19.04 −4.16 −1.38 2.86 −3.33 −2.77 −2.94 4.29

Significant behaviors (z ≥ 3.0) highlighted.

ICA1-ICA3, visual areas with ICA1 medial, ICA2 OP and ICA3 lateral; ICA4, default mode network; ICA5, cerebellum; ICA6, sensory motor; ICA7, auditory; ICA8,

executive control; ICA9 and 10, frontoparietal (ICA10 on the left).
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more restricted to classic visual areas in the resting state network
study (ICA1-3; Table 5). This supports the notion of improved
behavioral specificity for functionally derived vs. anatomically
derived ROIs. For some networks, we observed a higher degree
of significance across a wider range of behavioral domains
than was expected. In particular, we observed several perceptual
and motor networks that yielded significant cognitive domains,
which informs as to the complexity of many-to-many map-
pings between brain regions and mental functions, as well as
the potential risks associated with carrying out reverse infer-
ence (Poldrack, 2006; Chang et al., 2012; Yakoni et al., 2012)
without a computational framework and underlying database
structure. However, behavior analysis is intended to inform
concerning a forward region-to-behavior relationship not the
reverse.

DISCUSSION
The basic assumption of behavior analysis was that the spatial dis-
tribution of activation foci derived from the BrainMap database
for each behavioral sub-domain represents the sub-domain’s true
probability distribution function. The large numbers of activa-
tion foci reported by some sub-domains indicate that this was
a reasonable assumption (Table 1). We felt that large-N sub-
domains (Nb > 1000 foci) would be reasonably represented but
were concerned about lower-N sub-domains. However, inte-
grated probabilities for the low-N sub-domains can be large if
the ROI matches with the spatial distribution of activation foci.
To test basic assumptions we formulated behavior-specific ROIs
for each sub-domain and examined the behavior profile of each.
To simulate a continuous PDF, desired for formulating ROIs, we
smoothed each sub-domains PDF image using a 3-D Gaussian
filter (FWHM = 10 mm). Behavior-specific ROIs were formed
using a 25% threshold.

A highly significant z-score (z > 10) was seen in each
behavior-specific profile for its paired sub-domain. In fact paired
behavior sub-domains were ranked in the top four for all
behavior-specific profiles (36 ranked 1st, 9 ranked 2nd, 5 ranked
3rd, and 1 ranked 4th). The “Action:Execution:Other” sub-
domain had the highest z-scores for behavior-specific ROIs of
several other Action sub-domains (Action:Imagination, Action:
Motor Learning, and Action:Preparation). This was not unex-
pected since Action:Execution is a behavior that occurs in
conjunction with these behaviors and would be designated as
such in BrainMap. Interestingly, “Emotion:Other” had the high-
est z-score for the behavior-specific ROIs from “Interoception:
Sexuality” and “Perception:Olfaction” behavior sub-domains.
This suggests that a strong emotional response in experiments
with these sensory driven behaviors. Importantly, all other
behavior-specific profiles from the low-N Interoception domain,
paired best with their sub-domain. This evaluation showed that
a behavioral sub-domain can be significant when an ROI that
matches the spatial distribution of activation foci for the sub-
domain, even for low-N sub-domains.

The regional benefit of behavioral analysis obviously dimin-
ishes for larger ROIs, so we recommend using ROIs smaller
than cerebral hemispheres (Table 2). Effect size decreases as the
ROI size increases, approaching zero for a whole brain ROI, as

both po and pe approach unity (Equation 1). We expect that
likely use scenarios will be with ROIs formulated from statisti-
cal or anatomical maps, which are much smaller than cerebral
hemispheres. There are several factors that relate to significant
behaviors for such ROIs. The variance in effect size (po-pe) is
inversely related to Nb, such that larger-N sub-domains (Table 1)
can have higher z-scores for the same effect size. Therefore behav-
ior analysis for low-N sub-domains, such as Interoception, may
require a larger effect size to reach the same significance level.
Adding more studies to the BrainMap database for low-N sub-
domains will help balance this effect and is a recommendation
of this project. An effect size approaching +1 (po→1 and pe→0)
indicates a good spatial match between the distribution of acti-
vation foci for a behavioral sub-domain and the ROI, and also
leads to a reduction in variance, since variance of both po and pe

approaches to zero at these extremes (see Equation 1). This non-
N related variance property indicates that the z-score for a low-N
sub-domain can be significant for larger effect sizes. These factors,
increasing the numerator of Equation 1 and the decreasing the
denominator, can jointly lead to high z-scores for sub-domains
with “highly localized” activation foci when probed using an ROI
that fits the location and extent of the sub-domain.

While the regional specificity increases with smaller ROIs,
the utility of automated behavior analysis also diminishes with
diminishing ROI size. Unlike the Talairach Daemon (Lancaster
et al., 2000) it is not reasonable to use behavior analysis

FIGURE 4 | Activation foci from all 51 behavior sub-domains are

distributed throughout the Talairach brain. Outline from the Talairach
Daemon. Crosshair at (−28, 0, 0).

Frontiers in Neuroinformatics www.frontiersin.org August 2012 | Volume 6 | Article 23 | 10

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


Lancaster et al. Automated behavior analysis

for single coordinates. However, it is possible to estimate behav-
iors in the neighborhood of a single location. This can be achieved
by varying the search range about a point ROI, at an x-y-z coordi-
nate, until significant sub-domains are reported or until the range
reaches some user defined limit. If no significant sub-domains
were found within the range limit the reported outcome would
be “no significant behaviors within this neighborhood.” This
approach has not yet been tested, but a future release of the behav-
ior analysis software will support using a table of coordinates to
append a list of significant behaviors within a neighborhood, sim-
ilar to what is done for the Talairach Daemon for anatomical
labeling of locations.

The BrainMap database changes almost daily as new papers
are entered. Periodic updates to the 4-D behavior image will
be provided to keep pace with changes. Database growth was
experienced during the development of the behavior analysis
application where the 4-D behavioral image was updated several
times to improve on low-N sub-domains.

The null hypothesis was that the observed probability po

was not different from the probability expected pe if activa-
tion foci were randomly distributed throughout the brain, i.e.,
not localized. There is a potential problem with the way pe was
calculated, based on whole brain volume, since activation foci
should not fall within all spaces within the brain, i.e., white mat-
ter or ventricles. This suggests that we should use a volume less
than whole brain when calculating pe. However, as illustrated in
Figure 4 the distribution foci throughout the brain includes these
regions, albeit with fewer foci/volume. This is due to many effects,
including differences in brain normalization methods, differences

in resolution of functional images, and differences in methods
to determine locations of activations. To avoid making assump-
tions that might vary over time we felt that the best alternative
was to assume that for the null case any location within the brain
would be equally likely for activation. This method worked well to
delineate significant behaviors in this project. Also, this approach
worked well for ROIs placed in WM, where most z-scores were
negative, and no significant behaviors were indicated. Finally,
this approach has worked well for rejection of ICA components
associated with motion artifacts (mostly at brain boundaries),
where most z-scores are negative, and no significant behaviors are
indicated.

The automated regional behavioral analysis application is a
software tool that provides real-time access to the comprehensive
set of behavioral data in the BrainMap database. The only user
action is to define the ROI in a spatially normalized brain image.
To simplify interpretation, results are presented as a behavior pro-
file chart with a table of behaviors ranked by z-scores. Benefits of
automated regional behavior analysis were demonstrated in brain
atlases, in individual and group fMRI studies, as well as for rest-
ing state networks. The behavioral analysis software provides a
novel approach to organize, share, and interpret database infor-
mation and, as such, should provide a unique resource for the
neuroimaging community.
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