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High quality neuroscience research requires accurate, reliable and well maintained
neuroinformatics applications. As software projects become larger, offering more
functionality and developing a denser web of interdependence between their component
parts, we need more sophisticated methods to manage their complexity. If complexity is
allowed to get out of hand, either the quality of the software or the speed of development
suffer, and in many cases both. To address this issue, here we develop a scalable, low-cost
and open source solution for continuous integration (CI), a technique which ensures the
quality of changes to the code base during the development procedure, rather than
relying on a pre-release integration phase. We demonstrate that a CI-based workflow,
due to rapid feedback about code integration problems and tracking of code health
measures, enabled substantial increases in productivity for a major neuroinformatics
project and additional benefits for three further projects. Beyond the scope of the current
study, we identify multiple areas in which CI can be employed to further increase the
quality of neuroinformatics projects by improving development practices and incorporating
appropriate development tools. Finally, we discuss what measures can be taken to
lower the barrier for developers of neuroinformatics applications to adopt this useful
technique.
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1. INTRODUCTION
1.1. GENERAL OVERVIEW
In the last decades software has become an integral part of
any research-related activity. Scientists are using various soft-
ware packages to acquire, process and analyze experimental data,
but also to aid their theoretical investigations, such as to cre-
ate and simulate computational models. Many employ standard
applications designed to be used as a part of specific procedures,
some use more generic packages and libraries, such as computer
algebra systems, simulation environments, etc. Notably, the num-
ber of researchers who are creating their own software packages
to address their particular needs, or scripts to integrate several
existing systems in a processing pipeline is ever increasing.

Most scientists, however, are not professional software engi-
neers by training, and therefore the latest developments from the
software industry often only make it into widespread adoption of
the scientific community with a significant delay (Wilson, 2006).
This lag used to be viewed as an acceptable compromise in the
past, since most scientific software development was focused on
specialized solutions or in-house code tailored to narrow classes
of applications, often maintained by a single group or laboratory

consisting of only a handful of developers. In such situations, the
effort of implementing latest advances in software development
technologies from the industry is seen as an investment that is
just not going to pay off during the lifecycle of the project.

Currently, there is a clear trend toward large-scale
collaboration-based projects, such as ITER (http://www.

iter.org), LHC by CERN (http://lhc.web.cern.ch/lhc), LIGO
(http://www.ligo.org), and many others, also in the field of
neurosciences represented by, for instance, the Human Brain
Project (http://www.humanbrainproject.eu) and BrainScaleS
(http://brainscales.kip.uni-heidelberg.de), or The Boston Retinal
Implant Project (http://www.bostonretinalimplant.org). This
favors the development of bigger and more generic research
software packages by consortia of partner institutions, which are
intended to be used and relied upon also by scientists outside the
laboratories that are actively involved in creating the software.
This development calls for new workflows to provide researchers
with adequate means of control over the exploding complexity of
their software.

By way of illustration, in the past, the adoption of centralized
version control systems, such as Subversion, enabled an enormous
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increase in productivity both for individual developers and small
teams of researchers alike. However, in larger groups and under
increasing pressure from more intense development pace, such
systems can become a hurdle that inhibits agile processes due
to branching/merging deficiencies, overhead from relying on the
central server for most actions, and so on. The answer to this
challenge lies in removing centralization overheads through the
adoption of new distributed version control systems (DVCSs) that
are designed around the notions of forking and branching. We
hope that with the advent of DVCSs that are easier to use, the
general acceptance of version control in scientific community will
continue to steadily increase, further enhancing the productivity
of the developers.

In this contribution, we would like to promote within the
neuroinformatics community an upgrade in development prac-
tices of a similar spirit. Continuous integration (CI) (Beck, 1999)
is a modern method of complexity control which is becom-
ing increasingly popular in the software industry. A CI-based
workflow ensures that changes made to the code base during
the development process are fit for release as they are imple-
mented, rather than immediately before the release. Distributing
the integration of changes throughout the development cycle
facilitates improvement of software quality and adherence to
release schedules.

An essential prerequisite for CI to realize its full potential is
a sufficient test coverage of the software in question. In order
to appropriately test the software, one needs to break it down
into a number of maximally self-contained units and check
whether these units produce (previously known) correct outputs
in response to the test data; such checks are called “unit tests.” In
addition to that, every time a bug is identified and fixed in the
software, extra tests (so-called “regression tests”) can be added to
the test suite to ascertain that the problem is resolved for good and
does not subsequently re-occur. Even though CI is already use-
ful in absence of a test suite, for detecting breakages during the
development process of projects written in compiled languages,
its utility is boosted by orders of magnitude when applied to a
code base with a robust test coverage.

Building upon the previous work on ensuring the correctness
of NEST (Eppler et al., 2009), a collaboratively developed neu-
ronal network simulator for large heterogeneous networks, we
established a new CI-based development process. Our solution,
described in section 2, is based on Jenkins, a popular CI server. It
is scalable and open source: we share our designs and source code
required to independently replicate a similar setup, in addition to
providing CI as a service to a number of other projects.

The adoption of CI has resulted in sizeable improvements for
all projects participating in our pilot implementation. In sec-
tion 3.1 we describe how the basic features of CI allow the “health”
of a code base to be measured, by providing valuable metrics
which help to guide engineering efforts. In addition, we show
how the CI system can indirectly contribute to other parts of
the workflow, such as supporting a complex code merge (see
section 3.2.1). The CI-based workflow in the NEST project not
only allows us to detect a large number of potential problems
that would previously have gone unnoticed until the integration
phase, but also substantially decreases the turnaround time (TAT)

before already identified issues are resolved (section 3.2.2). Other
projects have benefited from advanced statistics collection (code
coverage), static code analysis, regular multi-platform builds, etc.
(see section 3.3).

In section 4 we identify several additional areas in which CI
can be leveraged to aid development and quality assurance (QA)
processes, and other approaches that can be used to manage the
complexity of a growing code base. Finally, we argue for estab-
lishing a common platform that would provide similar services to
neuroinformatics projects, thereby promoting the adoption of CI
and thus raising the quality of research-oriented software in the
field of neuroscience.

1.2. CONTINUOUS INTEGRATION
Let us consider a typical software engineering workflow in a
project with multiple developers, illustrated in Figure 1A. Assume
the group of scientists consists of a number of seasoned develop-
ers working on several platforms (for instance, Linux and Mac
OS X). They are already employing a number of techniques that
can thankfully be considered a standard in software develop-
ment these days: the project’s source code is hosted in a central
version control repository and has a test suite that allows to
validate its core functionality. Smaller changes are implemented
directly into the main source tree, larger features are developed in
branches that are merged into the main tree when new versions
are released. Before the software is pushed to a public web server,
a release engineer (most often this is a single person responsi-
ble for releases, but may also be a team) reviews smaller changes
that made it into the trunk during the development cycle, merges
outstanding changes from branches, runs the test suite and cuts
the release. This process is known in the industry as integra-
tion phase and testing performed during this phase as integration
testing.

Unfortunately, this workflow does not scale as the group of
developers becomes larger and more geographically distributed,
and the software itself evolves into a more complex solution
consisting of a significantly greater number of lines of source
code (SLoC) running on many subtly different platforms. Thus
it becomes practically impossible for release managers to main-
tain awareness of the state of the code in different subsystems,
where accumulating problems start calling for changes in over-
all design or simply require refactoring of the code to bring it
up to the current standards (several such scenarios are shown
in Figure 1). Typical symptoms of this state of affairs include
constantly delayed releases, frequent breakages on some of the
supported platforms and loss of control over the code base.

As the software gains more optional features, some develop-
ers effectively give up on regular testing before every commit
(essentially committing untested code), since testing every single
combination of features becomes prohibitively time consuming.
Besides, even the most thorough developers do not have all of the
supported platforms in standard configuration at their disposal
and therefore, as illustrated, it often happens that while the test
suite passes on one platform, the software is no longer operational
on another (the latter is not a purely hypothetical speculation, but
has in fact occurred on multiple occasions during NEST devel-
opment). In the “best” case, these problems are identified later
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A B

FIGURE 1 | (A) Traditional workflow when quality control is applied to the
project during the integration phase. The code is stored centrally in the
version control system (VCS), but individual developers are relied upon to test
their code regularly (the process of running the test suite on the checked out
code is illustrated by the blue boxes, untested changes are denoted with blue
file icon, whereas orange file icon indicates that the change set in question is
tested). Changes are frequently introduced that cause breakages for some
developers, but not for the others (exemplified by the red star, showing how
checked in changes that work on Mac OS X broke the support for Linux
platforms), which is often only discovered by release engineering. In the

worst case, releases containing severe bugs might get shipped to the
external users (represented by the red flash). (B) Agile continuous
integration-based workflow, where a central server is set up to monitor the
state of the source code, collect code metrics and perform automated
testing. The changes are integrated into the main tree directly as they are
being developed and releases are produced when all automated testing
procedures pass. Regular testing is now being performed automatically by
the continuous integration server in a standard setting (so no committed
changes will remain untested) and developers are immediately notified in the
case if committed changes have caused build breakages or test failures.

on in the development cycle when one of the developers is con-
fronted with them during his research activities, but often they
remain undiscovered until the integration phase and cause addi-
tional delays or, even worse, make it into release and are later
reported by the external users.

To counter these accumulating problems, a new methodology
called CI has been introduced by the agile development prac-
titioners community, and is steadily gaining popularity in the
industry. In a project that has adopted a CI-based workflow (illus-
trated in Figure 1B), quality control is continuously applied to the
product as opposed to the traditional procedure of applying QA
during the integration phase after completing all development.
Essentially, CI is a way of decreasing the risks associated with inte-
gration by spreading required efforts over time, which helps not
only to improve the quality of the software, but also to reduce the
time taken to deliver it.

In practical terms, a typical solution consists of a dedicated
master server, which monitors the central source code reposi-
tory, controlling a build farm. As changes are detected, the system
builds the code in a standardized environment, runs a battery of
tests to validate it, collects useful metrics reflecting the state of
the code, and provides the developers with immediate feedback.
It is important to mention, however, that CI is not only about
automating parts of the QA process, but can lead to a paradigm
shift in the development practices when universally accepted in
the team.

Stringent quality control is very important in the con-
text of research-oriented applications in the domain of

neuroinformatics, due to their emphasis on correctness, repro-
ducibility and performance. Many projects, however, are
restricted by the lack of manpower and funding to implement
elaborate QA procedures. We assert that the NEST project is in
a similar situation to many neuroinformatics projects: we cannot
afford to keep developing without CI any longer, but at the same
time, most “off the shelf” solutions are inaccessible to us due to
our limited budget.

Here we present a blueprint for developing a low-cost, high
functionality CI system, which meets the needs of the neuroin-
formatics community as proven by the conducted case studies.
Technical implementation details follow in section 2, the effects
of the CI on the development practices in NEST and the benefits
for additional case studies of neuroinformatics projects are given
in section 3 and finally, the conclusions and future directions are
summarized in section 4.

2. MATERIALS AND METHODS
2.1. SUPPORTING INFRASTRUCTURE: GENERAL DIRECTIONS
The scale of the supporting infrastructure for CI should gener-
ally match the level of complexity of the project at hand. Small
projects, such as convenience libraries or focused stand-alone
applications, especially written in an interpreted (and thereby to a
large extent platform-independent) language like Python, do not
generally require testing on many different operating systems and
hardware platforms. Hence, an out-of-the-box instance of any
popular CI server installed locally on the developer’s workstation
may be entirely appropriate. For large-scale projects, however,
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heterogeneous build farms consisting of dozens of servers, includ-
ing those running various operating systems on rather unconven-
tional non-x86 hardware (like POWER, SPARC, and ARM among
others), are not uncommon.

Such large build farms, however, entail total costs of own-
ership (TCO) far beyond the price tag attached to the bare
hardware (which in itself is often a challenge to fund), including
administrative labor, hardware maintenance, network connec-
tivity, power and cooling, rack space, and other concomitant
overhead expenses. As most projects in neuroinformatics, NEST
included, are run on tight budgets there is a natural desire to
minimize these costs by increasing server density and maximizing
hardware utilization.

Therefore, considering the scale of the NEST project, we
adopted a compromise strategy: a single large x86 SMP server
was dedicated to support the infrastructure for the CI system.
Instead of deploying the CI server on bare metal and running
builds directly on the master, we decided to virtualize all builders
and machines running most auxiliary services through a Type 2
hypervisor (KVM) in order to remain flexible by isolating services
from each other and also from the underlying hardware platform.
In this setting, each particular service (e.g., web or application
server, build slaves, etc.) is confined inside a virtual machine
with a dedicated operating system installation running on top
of emulated hardware, as if it were a separate physical server.
This way individual services are disentangled to the largest possi-
ble extent, with the only remaining allowed interactions between
them happening via the virtual network.

The obvious advantage of such a setup from the security stand-
point lies in that if any individual service were to be compromised,
the attacker would not necessarily gain full control over the whole
system, which is important in the scenario when services are being
offered to third parties that are only weakly trusted. In addition
to that, virtualization provides both hardware abstraction and a
higher amount of flexibility from the management point of view.
Virtual machines can be freely migrated between physical nodes
(provided that such nodes have required amounts of resources
available) and individual services and/or their platforms (oper-
ating system and runtimes) can be upgraded, downgraded or
reinstalled independently from each other.

Additionally, we invested significant effort in keeping all
aspects of the infrastructure described in a declarative fash-
ion (whereas the description itself is stored in a source control
repository). Such an arrangement facilitates the distribution of
administrative responsibilities among several (possibly geograph-
ically dispersed) operators on one hand, and on the other hand,
allows every virtualized service to undergo virtual to physical
(V2P) migration in the case that its resource requirements can
no longer be satisfied by the host machine. For instance, if the
need arose to test NEST builds systematically on POWER hard-
ware and the emulation speed proved itself to be too slow for
builds to be carried out at an acceptable rate on the current plat-
form, an additional POWER-based blade could be installed in the
rack and connected to the configuration management system in
the same way as the virtualized guests.

Another advantage of keeping declarative definitions of all
guest machines is that it is trivial to scale up the number of

otherwise identical builders as needed. This is particularly impor-
tant for matrix builds, when the CI system is set to try all possible
combinations of build configuration parameters (in the specific
case of NEST: by enabling or disabling the support for distributed
computing through MPI, including or excluding models that
make use of advanced integrators from GNU Scientific Library,
etc.). As convenient and important as matrix builds are, unfortu-
nately, the amount of possible individual configurations explodes
with the number of build parameters. Therefore, the ability to
increase the number of builders by simply duplicating already
existing definitions is very advantageous, as in this way spare sys-
tem resources can be used to keep build times within reasonable
limits.

These two ground-laying approaches (virtualization and
declarative configuration management) work well for the vast
majority of hardware and operating systems currently available
on the market. However, we need to mention two important
caveats. First, it is often desirable to use Mac OS X slaves for CI,
but the legal status of running virtualized copies of Mac OS X
operating system by Apple on non-Apple hardware is ambiguous
and depends on the jurisdiction. In this case, an exception for
using a bare-metal system instead is warranted. Second, declar-
ative configuration descriptions work best with platforms that
incorporate advanced package management (i.e., most Linux
distributions, various BSD flavors, Oracle Solaris, etc.). On plat-
forms that adopt packaging only in a severely limited form, e.g.,
lacking package repositories or having an unpackaged base system
(such as Microsoft Windows or Apple Mac OS X), installing and
updating software through configuration management systems
requires substantial extra effort. Systems administrators wish-
ing to use these platforms should be aware of these additional
shortcomings.

2.2. SUPPORTING INFRASTRUCTURE: HARDWARE AND SOFTWARE
The system is deployed on an off-the-shelf Dell PowerEdge R710
server (2U rack-mount format) featuring 2 x Intel Xeon X5680
CPUs (6 physical cores and 12 SMT threads each running at
3.4 GHz clock speed on average), 48 GB of RAM and 2 × 2 TB
spinning disk drives in software RAID-1 configuration along with
a single 100 GB solid state drive. The machine is running Red
Hat Enterprise Linux 6.3 which is managed through Red Hat
Network (RHN) online system management software and serves
as a virtualization host as well as runs a non-virtualized Puppet
2.7 master (software versions are accurate at the time of writ-
ing). Guest machines are controlled via libvirt virtualization API,
which also controls the firewall, e.g., sets up network address
translation (NAT) and provides them with necessary core net-
work services such as DHCP and DNS through dnsmasq. This
scheme is illustrated in Figure 2.

Infrastructure description is implemented in Puppet (http://
puppetlabs.com), stored in a publicly available git repository
(see section 4.3) and fetched into the host machine manually as
necessary. Puppet is the name of both an open source configu-
ration management system implemented in Ruby and a declara-
tive domain-specific language (DSL) based on Ruby and Puppet
libraries, which can be used to write manifests for said configu-
ration management system that contain descriptions of system

Frontiers in Neuroinformatics www.frontiersin.org January 2013 | Volume 6 | Article 31 | 4

http://puppetlabs.com
http://puppetlabs.com
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


Zaytsev and Morrison Continuous integration in neuroinformatics

FIGURE 2 | Schematic diagram of NEST QA infrastructure. The orange
cloud represents the virtualization host (Dell PowerEdge R710 server) with
a number of services running directly on top of the host operating system.
The gray cloud corresponds to an isolated virtual network that connects
virtualized build master and build slaves. All services are managed by
non-virtualized Puppet master instance. There is bi-directional
communication between build master and slaves, however, neither of them
communicate directly with the host (only individual services, such as
Puppet master and infrastructural web server are listening to the host’s
interface that is attached to the isolated virtual network).

resources and their states. In the following, the key concepts
relating to declarative configuration management systems will be
explained with application to Puppet for clarity, however, note
that they are mostly independent of a particular software and can
be readily translated to other systems such as Chef, etc.

The Puppet ecosystem comprises three inter-related main
components: Puppet master, the server component that compiles
operator-supplied manifests into system-specific catalogs con-
taining information about resources and resource dependency,
Facter, which is the utility that discovers relevant facts about
the system, and Puppet agent, which is the client component
that fetches appropriate catalogs from the master and applies
them against target systems making use of facts. Additional sup-
porting components include related software such as Marionette
Collective, which enables mass actions to be performed remotely
on Puppet-controlled hosts, and various control dashboards,
lifecycle management systems such as Foreman, etc.

Once a new revision of manifests is downloaded to the server,
Puppet master compiles catalogs that are relevant to each par-
ticular guest and distributes them upon next round of update
requests. All guest machines are running Puppet agents which are
installed at the provisioning stage, and by default they poll the
master for updates every 30 min. This comes with an additional
benefit of having a known state to be enforced on all machines:
for instance, if any particular service crashes (or was stopped via
manual intervention and not restarted thereafter due to operator
error), it will be restored into the running state by Puppet agent
upon the next execution.

It is interesting to note that since most machines do not have
a state and associated non-volatile information, it does not make

sense to back them up in this setting, because the whole setup
can be reconstructed from the infrastructure definition which is
stored in a version control repository. Since git, the system used to
store the revisions, is a DVCS, each checkout contains the whole
history of repository modifications and hence is a backup in itself.
The few exceptions that do have states, such as the CI master
server, can be dealt with on an individual basis.

A typical workflow when changing the configuration of the
system then boils down to the following sequence of actions:
describe the updates in form of Puppet resources, commit
updated manifests into the git repository, fetch them into the
server, perform a dry-run —a special mode of operation of the
Puppet agent, when necessary changes to the system are displayed,
but not actually applied—and finally push them into produc-
tion. Puppet also supports environments which make it possible
to implement staged workflows when only servers in the test lab
or specific subsets of production servers receive updated mani-
fests, but the added complexity of such a solution outweighs its
advantages in our particular case.

Provisioning of new machines plays a crucial role in the
overall infrastructure maintenance. In order to make it a pre-
dictable and reproducible process, we use kickstarting to auto-
mate the deployment of the hosts, be it a physical or a virtual
machine. This is a mechanism available for Red Hat derived
systems, including the community-supported Fedora distribu-
tion. Kickstart files containing various directives to the operating
system installer are automatically generated by Puppet from tem-
plates using the information about the guests that is already
exposed otherwise following the DRY (do not repeat yourself)
principle.

2.3. CONTINUOUS INTEGRATION SERVER
There are several common CI system designs to chose from:
a master/slave model, reporting server model, and a hybrid of
both. In order to avoid limiting the setup to a particular build
system stack (e.g., CMake and CDash) and to keep it as versa-
tile as possible, we selected a hybrid model where both server
can send commands to the build slaves and the slaves can peri-
odically report to the server [see Brown and Wilson (2011),
Chapter 9. “Continuous Integration” for the details, the book is
freely available at http://www.aosabook.org/en/].

We chose the long-term support release of Jenkins (LTS) for its
stability and infrequent upgrade cycle (every 1–2 months, regular
releases are pushed out every week) as the CI solution imple-
menting this paradigm, and one virtual machine was dedicated to
run the master server. The web application is served through its
bundled servlet container; the option of deploying through a 3rd
party application server was not considered, since no other Java
applications were to be deployed and so using an external con-
tainer would not offer any advantages at this scale. The Jenkins
master was set up to control its slaves via secure shell connec-
tions (SSH) and via Java Network Launching Protocol (JNLP)
slave agents where SSH is unavailable (Windows).

Jenkins allows the functionality and appearance of the basic
system to be extended by installing additional plugins. The project
provides plugin developers with an extensive and stable API,
which makes it possible to customize almost every aspect of
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the system without modifying its core. The importance of hav-
ing such an API should not be underestimated, because this
makes it possible to upgrade the system easily without hav-
ing to re-implement site-specific customizations. Additionally,
Jenkins developers operate a centralized plugin update server
which greatly simplifies the task of keeping track of the new ver-
sions of extra plugins. Users can also set up their own trusted
update environment should the need arise.

In our case, we supplemented the standard Jenkins setup
with several non-core plugins, most notably a set of plugins
for build log and static code analysis/metric collection (Static
Analysis Utilities, Jenkins Cobertura Plugin, Warnings Plug-in),
as well as extra plugins for most popular version control systems
(VCSs) (Jenkins Mercurial Plugin, Git Plugin). The community
around Jenkins is generally very open to external contributions.
The changes to core plugins that we developed during the work
described here were deemed to be useful outside the context of
our specific site. Following an independent code review, they were
accepted upstream, thus removing the need for us to maintain
them on our own.

Thanks to the advanced permission system built into Jenkins
and strong isolation achieved by virtualizing the builders, we
were able to extend the service to several other software pack-
ages. We provided Jenkins accounts to users external to the NEST
Initiative, with sufficient permissions to modify the build jobs for
their respective projects without interfering with other parts of
the system. This made it possible for them to enjoy the bene-
fits of having a centrally managed CI solution without incurring
additional costs.

We adopted the following policy with respect to (re-)creating
suitable build environments on Jenkins slave machines: all nec-
essary configuration changes are to be made through Puppet
right after kickstarting. This also implies that all necessary soft-
ware packages and libraries should be installed system-wide via
the integrated package management facilities. On one hand this
can be seen as an inconvenience, because some most recent
libraries and programs might not be available directly from the
operating system repositories, so they need to be backported or
packaged manually and fed into the local infrastructural reposito-
ries. On the other hand, this approach ensures perfect automated
reproducibility of the setup, also for the downstream users that
might wish to rebuild from source on their own machines in an
identical way.

3. RESULTS
3.1. GENERAL OVERVIEW
The core benefit provided by the adoption of CI-based develop-
ment practices is the ability to offset the risks associated with
the integration phase by distributing required efforts over time,
i.e., integrating new changes into the product as they are being
developed as well as performing statistics collection and qual-
ity control on the go. This increases the quality of the software
while decreasing the time to market for new features and bug
fixes. In addition to monitoring VCSs, scheduling builds and run-
ning the test suites, one of the most important functions of a
CI setup is to extract and collect information about the builds.
Developers thereby have access to indicators that show the status

of the latest build and a convenient interface to the historical
data.

All the kinds of information that are collected by Jenkins are
summarized in Table 1. Jenkins provides a very intuitive and
ergonomic web interface to access this data (Figure 3) which can
be supplemented by e-mail notifications and/or other interfaces
and notification schemes provided by the plugins, among others
CLI interface, and IRC and Jabber notifications. The availabil-
ity of a one-stop information point for build and test results as
well as code quality metrics has had a significant positive effect
on our development workflow, as we discuss in greater detail in
section 3.2.

The same web interface can be used to configure most aspects
of build jobs and the Jenkins system as a whole, which helps
to distribute administrative responsibilities among developers.
This functionality is, of course, protected by password and there-
fore not visible to the public. In order to grant the rights to
configure their own build jobs to external developers from asso-
ciated projects we use the Project-based Matrix Authorization
Strategy, the most flexible built-in access control and authoriza-
tion strategy available in Jenkins. It allows us to assign different
sets of permissions to individual accounts or groups of accounts
globally, and then specify fine-grained settings per build job if
needed.

3.1.1. Build log analysis
One of the most frequently used features of a CI system is
undoubtedly the analysis of build logs; not being a part of the core
Jenkins distribution, it is provided by Dr. Ullrich Hafner’s Static
Code Analysis Plug-ins suite (https://wiki.jenkins-ci.org/display/
JENKINS/Static+Code+Analysis+Plug-ins). This collection of
plugins offers a robust build log analysis data collection and visu-
alization framework. In the following, we describe a specific part
of this suite, the Compiler Warnings Plug-in, in greater detail, but
other analogous collectors such as Checkstyle, DRY, FindBugs, and
so on are also available.

Most developers are aware of the importance of writing clean
code that does not cause compilers to emit warnings, however,
in practice this goal is difficult to achieve. As large projects
are compiling, huge amounts of verbose build system output
scroll by and intermittently appearing new warnings are very
hard to detect, especially if some warnings are in fact gener-
ated by inclusion of headers from external libraries and should
not be taken into account. One way around this problem is the
“-Werror” GCC flag, which instructs the compiler to treat warn-
ings as errors and abort the compilation as soon as a warning is
encountered. This option is not always applicable, as in the case
mentioned above, when some warnings are beyond the control
of the project. A less uncompromising, but nevertheless useful
tool for making warnings stand out in Autotools-based projects is
the AM_SILENT_RULES macro, which makes the output of the
build system substantially less verbose, but still informative and
hence all kinds of warnings and error messages become signifi-
cantly easier to spot. Other build systems also implement similar
facilities. However, this approach still requires humans to track
warnings, which makes it less attractive. Conversely, the Jenkins
warning collection as illustrated in Figure 4 does not require any
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Table 1 | Summary of data collected by Jenkins build jobs and presented in the on-line web interface or stored in Jenkins home directory for

further processing.

Information source Collected data Explanation

Version control system Committed changes Most jobs are set to monitor version control systems for new commits, hence, when such
commits are identified, authors and commit messages are recorded for further reference. For
instance, if a build fails, the commit author can be notified directly

Source code Static analysis Jenkins can be made to run various static code analysis tools and parse their output.
Examples of such tools include SLoC counters and style checkers such as duplicate/dead
code analyzers and bug/vulnerability discovery tools; historical information can be used to plot
trends and/or compute build “health” indicators

Build logs

Compiler warnings
Compilers often emit warnings to draw users’ attention to potential problems with the code;
upon completion of a build, the log can be scanned for warnings emitted by known compilers
(GCC, LLVM, etc.)

Test results
Many test suites produce reports in machine-readable format, most notably JUnit; if the
format is supported by Jenkins, test results can be collected and parsed automatically upon
every build

Coverage metrics
Some test suites (or compilers) include instrumentation for tracking code paths that have
been exercised during the test suite run; if the report format is supported by Jenkins, this
information can be collected to asses the quality of the test suite

Build results

Build duration
The amount of time that the build takes is recorded and can be used as a rough performance
indicator

Build status
The exit codes of the build scripts are recorded and analyzed; if non-zero, the build is marked
as failed. Additionally, build can be marked as unstable (or failed) if the compilation succeeds,
but there are test failures or other problems such as an excessive amount of warnings, or
code coverage drops below a user-defined threshold, etc.

Weather report
The build status history for a particular job is represented as a “weather report,” which shows
how many builds have failed in succession and thereby provides means to asses the “health”
of the code base

additional efforts on the part of the developer. Warnings are
collected automatically and plotted as a trend, new and fixed
warnings are recorded and can be easily examined. Finally, the
administrator can set a threshold amount of warnings to mark the
build as failed whenever it is exceeded, analogous to the “-Werror”
feature of GCC.

3.1.2. Matrix builds
The more powerful and feature-rich a project becomes, the harder
it is to test it properly. It often happens that some additional func-
tionality is added that depends on an optional library, however, it
is important to make sure that the software can still be compiled
and remain functional in its basic configuration. Alternatively,
sometimes certain functionality is provided by several competing
packages (i.e., SQL-compatible database engines or different MPI
implementations) and it is necessary to test the software against
each of these packages to be confident that possible subtle imple-
mentation details do not affect the results (Gronenschild et al.,
2012). Finally, software may be deployed on a variety of architec-
tures (the most common example are x86-based 32-bit and 64-bit
CPUs) and implicit low-level assumptions such as the sizes of the
primitive types, may lead to compilation errors or even incorrect
computation results on some of the platforms.

Clearly, it is impossible to put the responsibility for this kind
of testing on the shoulders of the developers every time they make
a change to the code base. Even with just three binary choices, the
number of possible combinations amounts to eight, which rapidly
adds up to an unacceptable waiting time even if a single build
takes a relatively short amount of time. In addition, the developer
has to track which combinations he has already tried, and this also
becomes impractical very quickly.

This is where the matrix builds come in: the administrator only
needs to define the “axes” of parameters by entering all possi-
ble values thereof, or by tagging groups of slaves with particular
labels. Examples of parameter axes might include build options,
such as “--with-mpi” or “--without-mpi,” or the architectures
or operating systems of the build slaves. Using this information,
Jenkins will generate all possible combinations of parameters and
intelligently schedule builds to optimize the utilization of the
slaves. Build results are presented in a summary table as illustrated
on Figure 5 which gives easy access to the detailed information
about each individual build.

Unfortunately, with the number of builds grows the waiting
time until all of them are completed. One strategy to avoid the
dramatic increase in response time without putting more strain
on the budget is to define canary and touchstone builds. In the
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FIGURE 3 | Jenkins build job summary that aggregates information

about the jobs registered with a particular view. The table in the
middle shows for each job the build status (green balls for successful
and stable builds, yellow for unstable builds, red for failed builds [not
shown], and gray for disabled jobs), a weather report that includes

several indicators, such as stability, test results, code coverage, and
static analysis (not illustrated), etc., as well as links to the individual
pages of the last successful and last failed builds. On the left-hand side
there is an additional table that shows the build queue and the current
status of the available builders.

former case, the CI server does not execute dependent build jobs if
the canary build (that is supposed to be reasonably fast) fails, thus
sparing resources for other useful builds. In the latter case, several
manually specified (most important) builds from the matrix are
always executed first in order to provide developers with rapid
feedback on build failures; remaining builds are carried out as free
slots become available.

3.2. IMPROVEMENTS TO THE NEST DEVELOPMENT WORKFLOW
We set up our CI system, built as described in section 2, to
regularly poll the VCS hosting the main official NEST source
tree. Whenever changes are detected, the latest source code is
downloaded from the VCS to a build executor machine and
the following actions are performed: the build system is boot-
strapped, NEST is built and installed in a temporary location and
a test suite run is initiated. The builds are performed on a volatile
file system (tmpfs), since compilation and linking is generally an
I/O-intensive operation and hence doing it completely in-RAM
dramatically speeds up the process. NEST is built in a variety of
configurations to make sure that code changes do not inadver-
tently cause regressions for some less often used combinations of
features (Figure 5). Test reports (in JUnit format) as well as build
logs are recorded and archived on Jenkins master node for further
analysis.

Build logs are then subjected to an automated search for
GCC/LD or LLVM Clang warnings, which are recorded and
used to plot trends, compute “weather” indicators and create

table-based presentation with breakdowns according to affected
source files, etc. Same goes for test suite reports, which are also
used to plot trends and create tabular test result representations
that enable developers to easily check for the backtraces of failing
tests, asses the average amount of time required to run particu-
lar test sets and so on (see Figures 4 and 6). Beyond the much
improved overview of our code base obtained through these
measures, the introduction of the CI-based workflow has very
positively affected the development practices within the NEST
project, illustrated in sections 3.2.1 and 3.2.2.

3.2.1. Merge workflow
One of the most important advantages of the new workflow
that we experienced is related to merges. Large changes integrat-
ing substantial new functionality that can potentially affect vast
amounts of code are usually carried out in branches, which allows
developers to experiment with new simulation techniques with-
out jeopardizing the stability of the main code base. However,
the more radical the changes, the longer it takes to implement
them, especially with limited resources at hand. Therefore, as the
development of the main code base goes on, branches diverge
further and further from the trunk, making the ultimate merge
of the branch back into the trunk an increasingly painful and
complicated process.

We conducted one such major merge (Kunkel et al., 2012)
shortly after putting our CI server into production and opted to
use it as an opportunity to experiment with CI-based workflows.
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FIGURE 4 | Jenkins build job view featuring the build job set up

specifically for the “10K Project” branch mentioned in the main text

(section 3.2.1). The build history bar on the left side shows the outcomes of
the recent builds and provides links to the detailed information, i.e., which
changes triggered the build, detailed build log, etc. Additionally two trend

graphs are present on the right side: compiler warnings and test result
trends. The compiler warnings graph shows the evolution of the number of
warnings over time, but does not discriminate particular kinds of warnings.
The test result graph shows the proportion of failing tests (red area stacked
under the green one) over the past 65 builds.

To this end, we created a number of dedicated build jobs for
the branch in question, subsequently replaced by a single matrix
build. All of the core developers got together in the same room
and the CI status page was projected on a wall screen as the merge
was being worked on. This way the developers were provided
with instantaneous feedback with regards to the current status of
the branch and as soon as issues arose, the problem spots were
quickly identified and fixed. Moreover, the system was collecting
and displaying statistics on the numbers of (yet) failing tests after
integrating every new block of changes, which made it easy to
maintain a good understanding of which areas still require pri-
ority developer attention despite the rapidly changing situation.
Overall, this new setting tremendously improved our produc-
tivity and relieved a lot of stress usually associated with such
merges.

3.2.2. Turnaround time for resolving broken builds
An indirect, but important, advantage of CI is related to the fol-
lowing human factor: the earlier the developer is notified of an
issue with the patch that was just committed, the easier it is for
him or her to associate this regression with specific changes in
code that could have caused the problem and fix it. If the regres-
sion is discovered much later or by a different developer, it usually
takes much more time and effort to find out the root cause of the
problem and eliminate it.

In absence of a CI server, obviously, no such statistics have been
regularly collected and hence without concrete numbers most

evidence for apparent improvements with the introduction of CI
would forcibly remain anecdotal. Therefore, in order to obtain a
quantitative assessment of how much the development workflow
of NEST has been enhanced by implementing CI, we conducted
the following experiment: we examined every single revision of
the NEST source code that is compatible with the GCC 4.3 com-
piler, covering a period of around 4 years (r7732–r9712). For each
revision we made a clean checkout, bootstrapped the build sys-
tem, configured NEST with default parameters, built and installed
the executable, and ran the test suite. Whenever any of these steps
failed, the whole build was regarded as failed. Individual test fail-
ures as such were not considered, the build was marked as failed
only if the test suite failed to launch. The builds were carried out
in parallel on a local HPC grid in order to obtain the results within
reasonable amount of time.

As can be seen on Figure 7, before the introduction of CI the
time to fix failures was very variable, and some issues remained
unsolved for days. The cloud spreads toward the upper right cor-
ner of the plot, which is consistent with the expectation that severe
breakages would require more time and take more attempts to get
fixed. In contrast, since the developers started getting instant noti-
fications of build failures from the CI system, no failure remained
unresolved for more than half an hour (see Figure 7, inset).

3.3. BENEFITS FOR OTHER ASSOCIATED PROJECTS
Besides NEST proper, we provide hosted CI services to a num-
ber of other projects. Our contribution was recognized as a very
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FIGURE 5 | Matrix build set up for the main branch of NEST. Every time a change is committed to the repository, all major configurations are built, installed
and tested to catch regressions in the functionality in a timely manner.

FIGURE 6 | Jenkins detailed test report view also featuring links to

other details pages, such as build log (console output), information

on which changes triggered the build, historical trends for test

results, and warning analysis, etc. For failed tests, one can
immediately check out the return code or exception raised (depending

upon which information is provided by the JUnit generator) or browse to
the details page which provides a full backtrace. Tests are aggregated in
packages and for each package the total duration, total number of tests,
as well as the amount of failed and skipped tests are reported in the
summary table.
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FIGURE 7 | Scatter plot illustrating the relationship between the

number of commits and the amount time that it took to fix a build

failure. Failures that occurred between September, 2008 and September,
2011 are marked with blue circles, failures that happened since October,
2011 (when instant build failure notifications were enabled thanks to the
CI system) are marked with magenta diamonds; time values are
represented on a logarithmic scale, while the numbers of commits are
equally spaced. The inset shows the same data in the form of a
cumulative histogram: the proportion of build failures on the vertical axis
is plotted against the time until the failure is resolved on the horizontal
axis (logarithmic scale). The blue area corresponds to the blue circles on
the scatter plot (failures that occurred before the introduction of CI
notifications) and the pink area corresponds to the magenta diamonds
(failures that happened thereafter).

useful and important one by all of the participants. Even in case
of Fiji, where a CI system already creates nightly builds, we were
able to identify new bugs. This was because our setup is man-
aged externally to Fiji project and some common assumptions
of the developers that apply to their own setting do not hold
for our system. Additionally, we are providing Windows builds
for every commit for Fiji project, which were previously not
available.

In the case of the PyNN and Sumatra projects, we were able
to leverage the power of code coverage metrics. These projects
are implemented in Python, which can be easily instrumented
to collect code coverage information without any changes to the
project test suite, thanks to an add-on “coverage.py” library by
Ned Batchelder. Using coverage metrics, the problem spots in the
test suites could be easily identified and scheduled to be better
covered with additional tests.

For Midnight Commander (mc), in addition to a regular
job that builds development branches and enforces consistent
code indentation policy, we set up a static analysis job using
Clang Static Analyzer, which is a perfect match since this project
mostly consists of pure C code. As a result, a large number of

possible issues of different severity have been identified, ranging
from ignored return values to null pointer dereferences and
logic mistakes. Leveraging this positive experience, we intend to
apply similar static analysis techniques to NEST code base in the
future.

3.4. COST ESTIMATES
The infrastructure necessary to implement CI may be provi-
sioned in multiple ways. For instance, one may opt to use a
cloud provider alone (such as Amazon, Linode, and others) or
in conjunction with a “CI-in-a-Cloud” offering from companies
providing CI as a hosted service, like CloudBees, ShiningPanda,
etc. These offers are quite attractive from the prospective of scien-
tific software developers, for whom infrastructure maintenance is
typically not the major focus, because setup, administration and
hardware maintenance tasks are all abstracted away by the cloud
provider.

Since many such providers have a free starter plan, and
are especially welcoming to open source software projects, this
could be a very interesting opportunity for the developers that
only want to try this new workflow out without making large
investments or time-consuming commitments upfront, when the
scale of the benefits is not yet clear. CloudBees, in particu-
lar, offer BuildHive service (https://buildhive.cloudbees.com) as
a part of their DEV@cloud platform for free to open-source
projects; this service integrates with GitHub (https://github.

com, the social coding platform also available free of charge
for hosting public code repositories) and can be used to not
only automatically build and test newly committed code, but
also validate pull requests coming from project contributors, all
with minimal effort. A similar community service exists under
the name of Travis CI (http://travis-ci.org): it also integrates
with GitHub and provides support for a number of different
development platforms, including Python, Ruby, C/C++, and
others.

It should be borne in mind, however, that convenient as they
are, cloud services can quickly become rather costly. Careful con-
sideration must be therefore given to determining the point at
which purchasing a dedicated infrastructure would be a more
economical solution. Additionally, instant scalability, the biggest
advantage of cloud-based services, does not really play a role
in the case of providing CI and so would not justify increased
costs. We performed a rough estimate of the needs of the NEST
project for the month of June 2012 and ended up with a figure
of at least 60 h of production building and testing per month
(3 projects × 15 builds each × 8 configurations × 10 min per
build), excluding research builds, static analysis, etc. According
to the current CloudBees DEV@cloud pricing, this would cost
us around $250 (∼e200) per year and we would be limited by
two parallel executors at every point in time (which means that
matrix builds would take a substantially larger amount of time to
complete).

At the same time, the price tag for a 1U infrastructure server
substantially better specced than Amazon’s “m1.small” instance
provided in this package is only around e500, even without any
special offers or academic discounts. Although this implies addi-
tional systems administration overheads, the upside of having
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one’s own machine lies in the ability to install any latest software
without being limited by the realms of a hosted offering. This may
be especially important for C/C++ projects that depend upon a
number of third-party libraries, which all need to be deployed to
the build slaves in a particular fashion.

Another attractive option for a project with a severely limited
budget to procure build machines at virtually zero additional cost
is to recycle hardware. University computer centers and institutes
which manage their own IT infrastructure regularly determine
that a given machine is no longer economically viable to be used
for its present function and that they would rather use the rack
space for something else. Such redundant machines can be read-
ily repurposed by a small lab or project that would not be able to
afford to buy the hardware new. To give a real-world example, a
part of the BCF HPC Grid (one rack of IBM eServer 326 machines
featuring 4 GB of RAM and 2 × AMD Opteron CPUs each) is now
being retired. Although these compute nodes are in perfect work-
ing condition, they have become too expensive to operate as a part
of a grid by modern standards, especially considering their power
consumption and concomitant need for cooling, manageability,
operating system support, etc.

These outdated machines, however, can make a perfect set of
builders for CI infrastructure similar to ours. In terms of admin-
istration, they can be centrally managed through Puppet just as
the virtual machines in our setting, since Puppet is completely
network transparent; in fact, managing networked computers is
its primary purpose. Regarding power efficiency, it is important
to consider that only the Jenkins master needs to remain online
for continued operation, whereas the slaves can be kept offline
most of the time and only started up on-demand using Wake-on-
LAN (WOL) by Jenkins sending magic packets to the required
machines as the builds are being scheduled. The only remain-
ing concern is finding an appropriate space to accommodate the
recycled hardware.

For the presently described research project, we deployed our
own virtualization-based CI infrastructure as described in sec-
tion 2. The rack space and cooling facilities are maintained
by Bernstein Center Freiburg, whereas the network infrastruc-
ture is provided by the Computing Center of the University of
Freiburg. The administrative labor is divided among the devel-
opers of NEST and associated projects, and a systems adminis-
trator at the Bernstein Center. The administrator is responsible
for keeping core virtualization infrastructure as described in
section 2 up and running, including software updates (approxi-
mately 10 h per month), whereas the maintenance of the build
jobs is delegated to the developers thanks to the authoriza-
tion and role distribution system mentioned in section 3.1. Of
course, the developers can also reduce the administrative work-
load by sending patches for the publicly available declarative
description of the infrastructure (see section 4.3), but are not
required to do so. We estimate that for someone already familiar
with virtualization and declarative configuration management,
it would take approximately 20–30 h to reproduce the solution
presented here on the basis of our documentation and Puppet
code. For someone without such prior experience, additional
time would be necessary to become familiar with the concepts
and tools.

In our case, the costs of the resulting system are dominated
by the price of the hardware (e8400 at the time of purchase in
August 2010). However, the system described in the present paper
is also used as a research prototype and its capacity is largely
excessive for smaller projects or projects requiring less flexibil-
ity. In such cases, an appropriate CI system could be set up on
a much less expensive machine (such as a typical 1U infrastruc-
ture server mentioned above). At the time of writing a com-
parable system-based, for instance, on SuperMicro X9DRW-iF
barebone would cost roughly e4200 without taking into account
any special offers or discounts usually available to academic
customers.

4. DISCUSSION
4.1. SUMMARY
NEST is a collaborative project to maintain and further develop
an efficient simulation technology for large heterogeneous net-
works of neurons that addresses the concerns for reproducibility
and correctness. From the inception of the project, the complexity
of the code has been growing steadily. Figure 8 shows the average
complexity per file of the NEST code base according to three dif-
ferent metrics. The metrics we selected are highly correlated, but
interestingly, in our case, the most primitive one, being the aver-
age count of functions per file, turned out to be a good predictor
for the two others, which are much harder to compute. This is
due to the average cyclomatic complexity and the number of non-
comment source statements per function remaining reasonably
stable over time (data not shown).

All three metrics agree that the complexity of the code has
almost tripled over the course of 15 years. NEST can no longer
be characterized as a piece of software that is being authored by a
few collaborating researchers from the same laboratory. Instead it
is a product that is developed by a large number of geographically
dispersed scientists who are working on the code simultaneously.
It therefore represents an excellent test case of a neuroinformatics
project having a strong need for new solutions to manage the
complexity of jointly maintaining such a large code base.

In this paper, we present the combination of software and
techniques required to implement a new CI-based software devel-
opment workflow, highlight its advantages for sustainable devel-
opment of a code base and report the quantitative and qualitative
improvements to our code development practice. It is impor-
tant to emphasize that we did not simply install an “off the
shelf” system on our hardware and document this process, but
rather created a scalable open source design for deploying same
class of systems and are offering our code, documentation and
experiences to the neuroinformatics community.

By virtue of using virtualization to partition the host sys-
tem, it is already flexible enough that we were able to pro-
vide CI as a service to other projects, whereas by employing
a declarative configuration management solution, we made it
possible to readily re-use our code by projects having similar
needs. In fact, we have already received several external contri-
butions to our tools from individuals working in totally different
areas, such as the hosting industry, which underlines the impor-
tance of sharing code to promote its re-use across fields and
domains.
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4.2. FUTURE WORK
As extensions to our current work, we have identified a number
of other practices and instruments to investigate further. Many
of these are common in the software industry, but have yet to
establish themselves in the scientific software development com-
munity. Here we address two areas that enable the development
of better quality software for less effort: processes and tools. We
discuss these potential improvements from the point of view
of the NEST project, but they can be easily applied to other
neuroinformatics projects.

4.2.1. Development process
4.2.1.1. Continuous delivery. A natural extension to CI-based
workflow is a practice of continuous delivery, where any build is
considered as a potential release candidate as long it satisfies the
QA requirements. Here the decision to release or not is taken
on the basis of objective criteria, such as the amount of passing
tests (if the code base is sufficiently well-covered, the percentage
of passing tests after each commit becomes a reliable measure of
the projects condition) and other health indicators, as opposed
to deadlines or inherently subjective feelings of the release engi-
neers. Therefore, changes in release strategy are the next logical
step after successful implementation of a CI-based workflow.
By adding few bits of automation, releases can be safely cut
directly from the CI system, which will remove error-prone man-
ual steps from the release process and save valuable time to the
developers.

Since one of the important goals for us is to provide the access
to the latest features and bugfixes as soon as they are available,

two release feeds can be made available: a “stable” feed, where
releases are cherry-picked by release managers from the CI builds
which received the most positive feedback, taking mainly their
feature-completeness into account, and an “unstable” feed that
has all the latest commits and passes all tests, but potentially
containing features that are highly experimental in nature, incom-
pletely implemented and tested, or have interfaces that are subject
to change.

4.2.1.2. Code review. Another important practice that may dra-
matically improve the quality of code submissions is a cen-
tralized code review solution. In recent years, several code
review tools, such as Gerrit (http://code.google.com/p/gerrit/),
have been gaining momentum, among others, thanks to pro-
visions for tight integration with CI workflows and DVCSs.
Gerrit in particular can act as a “smart” Git server that gen-
erates web-based code review interface from pushes to the
repository and triggers CI to automatically test the incoming
changes.

Effectively, this provides the developers with an easy way to
access the CI build farm and testing facilities before the change is
actually integrated (in addition to a convenient interface for solic-
iting reviews from their colleagues and line-by-line commenting
of the changes), without the extra complexity of having to main-
tain developers’ own build jobs in the CI system, additional access
credentials, etc. In turn, the ability to run full integration tests ear-
lier (“in the background”) as the code is being developed results
in higher quality submissions. It also encourages the developers to
break down their changes into smaller chunks that can be easily

FIGURE 8 | The evolution in time of the average complexity per file of the

NEST simulator code base. In this experiment we applied three different
industry-standard techniques for estimating the complexity of a code base to
every single revision recorded in the NEST version control repository.
Cyclomatic complexity is a metric that measures the number of linearly

independent paths through the source code (McCabe, 1976); the definition of
“non-commenting source statement” is available at the homepage of
CppNcss (http://cppncss.sourceforge.net/reference.html), the software that
we used to collect this metric; the number of functions per file was measured
according to the definition of function pertaining to the C++ standard.
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reviewed and tested, and reduces the load on their development
computers.

4.2.1.3. Performance monitoring. An interesting opportunity
that is created by the implementation of the automated testing
of every new change in a stable well-defined environment is the
systematic performance assessment of the software. Previously,
this was next to impossible due to the amount of labor required
and differences among developer machines that make it hard to
compare the benchmark results, etc.

We plan to add an additional component to the NEST test suite
that consists of tests that are designed to measure the required
CPU time and amount of memory needed to simulate several
key scenarios; the infrastructure to plot performance trends from
JUnit reports already exists in Jenkins. Note that unlike the other
modules of the test suite, the performance measurement module
is not primarily intended to be run by the developers as part of
their development practice, but only in well-defined benchmark-
ing environments. Similar solutions have already been employed
by a few open source projects, such as PyPy (http://speed.pypy.
org) and have proven to be of great utility to keep track of how
the performance of the code base evolves in time, attribute regres-
sions to changes in particular components and have them fixed
quickly. This approach can also supplement memory modeling-
based techniques (Kunkel et al., 2012) to guide development.

4.2.2. Development tools
4.2.2.1. Static and dynamic analysis. Given a large enough
developer/tester and user base, most bugs are quickly identi-
fied and fixed [otherwise known as Linus’s Law (Raymond,
1999)], and, likewise, perfect test coverage prevents serious issues
from sneaking into releases. Unfortunately, neither of these max-
ims generally applies to scientific software projects, limited by
the amount of the available resources and short of external
testers/users. Therefore, instead of solely relying on testing, one
should be actively looking to confront bugs and fix them, before
they result in a failed simulation or corrupted data analysis.
Taking advantage of the ability to easily automate systematic col-
lection and plotting of virtually any metric offered by the CI setup,
we would like to capitalize on static (Bessey et al., 2010) and
dynamic code analysis techniques.

For instance, we recently introduced weekly LLVM Clang
builds, which produce a set of concise and informative warnings
that do not overlap with those of GCC. Clang Static Analyzer,
unlike many other tools, especially the free ones (e.g., cppcheck,
http://cppcheck.sourceforge.net) uses the power of LLVM inter-
nal representation (IR) to identify execution patterns that are
often causes of bugs. Unfortunately, it does not yet properly
support C++ and, therefore, we are investigating alternative solu-
tions, including commercial tools (such as PVS-Studio, http://
www.viva64.com/en/pvs-studio/).

Another interesting option would be to research the inte-
gration with Valgrind (http://valgrind.org), a framework that
provides thread error detectors, instrumentation to track down
memory errors, etc., but at this point, its reports are hard to
interpret without manual assessment by a human, so additional
exploration is required to make it practical.

4.2.2.2. Testing and QA. In order to strengthen our QA pro-
cess, we have already introduced matrix builds described in
section 3.1.2 to cover the most important branches of NEST.
Next we will extend them to run the same sets of builds on
different CPU architectures: some differences in NEST behav-
iors on 32-bit and 64-bit machines have already been identified
in the test setting during the research phase of this project,
which drew our attention to code issues that would not have
been observable using a single architecture. Automating this
kind of testing with CI, as well as extending it to other pop-
ular architectures, such as ARM, POWER, etc., is one of our
priorities to ensure perfect reproducibility of simulations across
platforms.

However, as prevention is at least as important as diagnosis, we
feel that improving the quality of NEST test suite (Eppler et al.,
2009) itself is another obvious and important long-term goal. In
order to achieve it, we need to evolve the test suite in two main
directions: first, we need to make sure that the test suite covers the
whole simulator’s code base reasonably well, leaving no untested
“black holes” behind, and, second, that running it should not only
prove that well-behaved code passes the tests, but also that incorrect
code fails the tests. Ideally, the assessment of how close are we to
fulfill these two requirements should be unambiguously quantifi-
able, rather than based on personal opinions or intuitions of the
developers.

The first aim can be reached by adopting the metric known
as “code coverage,” as reported in section 3.3. For that, we would
need to introduce instrumentation into the NEST engine in order
to be able to collect code coverage information from all NEST
layers (C++, SLI, PyNEST) and feed it into Jenkins. This would
allow us to identify the weakest parts of the test suite and refine
it, guided by well-defined objectives and appropriately chosen
metrics.

The second issue can be addressed by adding support for fuzz
testing (Sutton et al., 2007) and mutation testing (Offutt, 1994) to
NEST. Fuzzing means providing random unexpected or invalid
data to the input of the program in order to reveal unhandled
exceptions such as crashes, failing assertions, etc. The concept of
mutation testing involves exposing the source code or compiled
byte-code to a mutagen, which will randomly introduce specific
changes to operators or opcodes, for instance, replace compari-
son operations with their negation (i.e., “>” → “≤”) or cause
other changes designed to mimic typical programming mistakes.
If the test suite is properly designed, such changes should entail
test failures. In the case that such failures do not occur, this sig-
nifies that the essential logic is not being properly covered. This
is a likely outcome, as the tests are designed by humans, who are
inherently cognitively biased by having prior expectations on how
a particular function might fail. Random mutations and fuzzed
input data remove this subjectivity and therefore have the poten-
tial to expose test coverage problems. However, such testing is a
time and resource consuming operation and therefore an ideal
subject for automation via CI.

4.3. OUTLOOK
The fundamental aim of NEST Initiative, as a major collab-
orative project in neuroinformatics, is to provide a modern

Frontiers in Neuroinformatics www.frontiersin.org January 2013 | Volume 6 | Article 31 | 14

http://speed.pypy.org
http://speed.pypy.org
http://cppcheck.sourceforge.net
http://www.viva64.com/en/pvs-studio/
http://www.viva64.com/en/pvs-studio/
http://valgrind.org
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


Zaytsev and Morrison Continuous integration in neuroinformatics

and efficient platform for carrying out point neuron simula-
tions larger and larger in scale, which integrates well with other
simulation software (Djurfeldt et al., 2010). On one hand, this
includes visualization solutions and models for population sig-
nals reconstructed from single spikes such as EEG/BOLD, etc.,
and on the other hand, detailed neuronal simulators that feed
information into NEST. In order to remain a solid foundation
to build upon, NEST must offer usable low-level and high-level
interfaces to all this functionality. Following from the require-
ments above, both the size and the complexity of the code base
of NEST will certainly keep growing in the future (Figure 8).
The same conclusion can be drawn for many neuroinformatics
projects.

The goal of good scientific software development should not
simply be to create an application that is reliable in the sense of
compiling and running without crashing. To support high quality
science, it must also be reliable in terms of accuracy and gen-
erate results that can be independently reproduced and verified.
In the specific case of simulators, a major aspect is the require-
ment that the simulation of a model should accurately reproduce
the mathematical model it is based on, and that the presence of
approximations that would potentially cause deviations be made
explicit to the user.

The ideal way to achieve this goal is, of course, to end up
with a formal proof of correctness of the program. Unfortunately,
with currently available tools, this is hardly practical even for
small and primitive codes, let alone large scientific software
applications. It is only being carried out (at huge expense) in
areas where correctness is literally a matter of life and death,
such as aeronautics or energy. Consequently, our only remain-
ing option is to try to contain this complexity. One way to go
about it is to adopt new complexity control technologies as soon
as they are sufficiently mature; i.e., they have reached the point
at which it is practical to implement them in the setting of
research-oriented software projects run on tight budget by devel-
opers who didn’t major in applied software engineering (Wilson,
2006).

In the present paper we highlight one such method focusing
on software development workflows, CI. We believe that it has
become ripe and are hoping for its widespread adoption, as has
previously taken place with source control and unit tests, and
present our case study along with the designs and source code
such that our solution can be easily reproduced. Nevertheless, we
realize that not all projects, especially smaller ones, can imme-
diately afford to build such a system. A superficial survey of the
INCF Software Center (http://software.incf.org) revealed that out
of more than 300 projects, less than 10 explicitly mention that
they are using some form of CI, e.g., Slicer (CDash), NiPy and
Topographica (buildbot). This suggests that either the awareness
of CI is low in the neuroinformatics community, or that the
hurdles to implement it have been too high.

Therefore, as an experiment, we opted to provide CI as a
hosted service to a certain number of other neuroinformat-
ics projects. The feedback so far was overwhelmingly posi-
tive and the use of the described new workflow has benefited
all of the participants. However, this solution does not scale

due to the limited resources and manpower that we were able
to dedicate to this cause. Consequently, we conclude that the
availability of a centrally administered CI as a service offer is
crucial for further improving the quality of neuroinformatics
software, the increasing complexity of which constantly chal-
lenges the developers to remain in control over their code
bases. As a result of the current study, the Simulation Lab
Neuroscience at the Jülich Research Center, in collaboration
with the INCF, plans to establish a scaled-up version of the
solution presented here as a service to the neuroinformatics
community.

CI is of course not the only method of complexity control
that can be considered in the neuroinformatics context. Among
other noteworthy approaches, we can mention the drift toward
functional programming, where functions are designed such that
when executed they do not alter any global state of the running
software (or, in other words, do not have side effects). Wider
adoption of this technique would enable programmers to write
better tests, since pure functions can be covered much more eas-
ily. Additionally, it would simplify the verification of the crucial
parts of the software with automatic theorem provers and (more
realistically) boost the development of increasingly robust static
analysis tools of all kinds. At the same time, advanced instru-
mentation, such as coverage metrics and mutation testing, will
help to approach test suites in a principled fashion, guided by
informative measurements, while workflows and process part
will be covered by agile methodologies, CI and continuous
delivery.

We conclude that it is important to keep in mind that
CI is only one piece of the puzzle (Wilson et al., 2012),
albeit an important one. Given the ever increasing importance
of software for the advancement of neuroscientific research,
the problem of complexity management will require a proac-
tive approach toward identifying, adapting and exploiting
future techniques and technologies emerging in the software
industry.

ACKNOWLEDGMENTS
Partially funded by BMBF Grant 01GQ0830 to BFNT Freiburg,
the Helmholtz Alliance on Systems Biology (Germany), the Junior
Professor Program of Baden-Württemberg, and the Initiative
and Networking Fund of the Helmholtz Association. This work
would not have been possible without the Google Summer of
Code scholarship awarded to YVZ in 2011, we additionally thank
Raphael Ritz of the INCF for his assistance through this pro-
cess and Ulrich Egert for supporting the project. We warmly
thank the NEST Initiative, in particular Bernd Wiebelt, Jochen
Eppler, and Markus Diesmann, for their support and construc-
tive discussions, and the developers of the PyNN, Sumatra, Fiji,
and Midnight Commander projects. Finally we are grateful to
Kohsuke Kawaguchi for his insightful remarks on cost estimates
for CI infrastructures.

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found online
at: https://github.com/nest.

Frontiers in Neuroinformatics www.frontiersin.org January 2013 | Volume 6 | Article 31 | 15

http://software.incf.org
https://github.com/nest
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


Zaytsev and Morrison Continuous integration in neuroinformatics

REFERENCES
Beck, K. (1999). Extreme Programming

Explained: Embrace Change. 1st
Edn. Reading, MA: Addison-Wesley
Professional.

Bessey, A., Block, K., Chelf, B., Chou,
A., Fulton, B., Hallem, S., et al.
(2010). A few billion lines of code
later: using static analysis to find
bugs in the real world. Commun.
ACM 53, 66–75.

Brown, A., and Wilson, G. (2011).
The Architecture Of Open Source
Applications. Mountain View, CA:
lulu.com.

Djurfeldt, M., Hjorth, J., Eppler,
J. M., Dudani, N., Helias, M.,
Potjans, T. C., et al. (2010). Run-
time interoperability between
neuronal network simulators
based on the MUSIC frame-
work. Neuroinformatics 8,
43–60.

Eppler, J. M., Kupper, R., Plesser,
H. E., and Diesmann, M.
(2009). “A testsuite for a neural

simulation engine,” in Proceedings
of the 2nd INCF Congress of
Neuroinformatics (Pilsen, Czech
Republic).

Gronenschild, Ed. H. B. M., Habets,
P., Jacobs, H. I. L., Mengelers, R.,
Rozendaal, N., van Os, J., et al.
(2012). The effects of FreeSurfer
version, workstation type, and
Macintosh operating system version
on anatomical volume and cortical
thickness measurements. PLoS ONE
7:e38234. doi: 10.1371/journal.
pone.0038234

Kunkel, S., Potjans, T. C., Eppler,
J. M., Plesser, H. E., Morrison, A.,
and Diesmann, M. (2012). Meeting
the memory challenges of brain-
scale network simulation. Front.
Neuroinform. 5:35. doi: 10.3389/
fninf.2011.00035

McCabe, T. (1976). A complexity
measure. IEEE T. Soft. Eng. 2,
308–320.

Offutt, A. (1994). “A practical sys-
tem for mutation testing: help

for the common programmer,” in
Test Conference, 1994. Proceedings,
International, (IEEE) (Washington,
DC), 824–830.

Raymond, E. S. (1999). The Cathedral
and the Bazaar – Musings on Linux
and Open Source by an Accidental
Revolutionary. Beijing, China:
O’Reilly.

Sutton, M., Greene, A., and Amini,
P. (2007). Fuzzing: Brute Force
Vulnerability Discovery. Upper
Saddle River, NJ: Addison-Wesley
Professional.

Wilson, G. (2006). Where’s the real
bottleneck in scientific comput-
ing? Scientists would do well to
pick up some tools widely used
in the software industry. Am Sci.
94, 5.

Wilson, G., Aruliah, D. A., Brown,
C. T., Chue Hong, N. P., Davis,
M., Guy, R. T., et al. (2012). Best
practices for scientific computing.
arXiv:1210.0530v3. Available online
at: http://arxiv.org/abs/1210.0530v3

Conflict of Interest Statement: The
authors declare that the research
was conducted in the absence of any
commercial or financial relationships
that could be construed as a potential
conflict of interest.

Received: 23 September 2012; accepted:
12 December 2012; published online: 03
January 2013.
Citation: Zaytsev YV and Morrison A
(2013) Increasing quality and manag-
ing complexity in neuroinformatics soft-
ware development with continuous inte-
gration. Front. Neuroinform. 6:31. doi:
10.3389/fninf.2012.00031
Copyright © 2013 Zaytsev and
Morrison. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License,
which permits use, distribution and
reproduction in other forums, provided
the original authors and source are
credited and subject to any copyright
notices concerning any third-party
graphics etc.

Frontiers in Neuroinformatics www.frontiersin.org January 2013 | Volume 6 | Article 31 | 16

http://arxiv.org/abs/1210.0530v3
http://dx.doi.org/10.3389/fninf.2012.00031
http://dx.doi.org/10.3389/fninf.2012.00031
http://dx.doi.org/10.3389/fninf.2012.00031
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

	Increasing quality and managing complexity in neuroinformatics software development with continuous integration
	Introduction
	General Overview
	Continuous Integration

	Materials and Methods
	Supporting Infrastructure: General Directions
	Supporting Infrastructure: Hardware and Software
	Continuous Integration Server

	Results
	General Overview
	Build log analysis
	Matrix builds

	Improvements to the Nest Development Workflow
	Merge workflow
	Turnaround time for resolving broken builds

	Benefits for Other Associated Projects
	Cost Estimates

	Discussion
	Summary
	Future Work
	Development process
	Continuous delivery
	Code review
	Performance monitoring

	Development tools
	Static and dynamic analysis
	Testing and QA


	Outlook

	Acknowledgments
	Supplementary Material
	References


