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Neurodegenerative diseases present a wide and complex range of biological and clinical
features. Animal models are key to translational research, yet typically only exhibit a
subset of disease features rather than being precise replicas of the disease. Consequently,
connecting animal to human conditions using direct data-mining strategies has proven
challenging, particularly for diseases of the nervous system, with its complicated anatomy
and physiology. To address this challenge we have explored the use of ontologies to create
formal descriptions of structural phenotypes across scales that are machine processable
and amenable to logical inference. As proof of concept, we built a Neurodegenerative
Disease Phenotype Ontology (NDPO) and an associated Phenotype Knowledge Base
(PKB) using an entity-quality model that incorporates descriptions for both human
disease phenotypes and those of animal models. Entities are drawn from community
ontologies made available through the Neuroscience Information Framework (NIF) and
qualities are drawn from the Phenotype and Trait Ontology (PATO). We generated ∼1200
structured phenotype statements describing structural alterations at the subcellular,
cellular and gross anatomical levels observed in 11 human neurodegenerative conditions
and associated animal models. PhenoSim, an open source tool for comparing phenotypes,
was used to issue a series of competency questions to compare individual phenotypes
among organisms and to determine which animal models recapitulate phenotypic aspects
of the human disease in aggregate. Overall, the system was able to use relationships
within the ontology to bridge phenotypes across scales, returning non-trivial matches
based on common subsumers that were meaningful to a neuroscientist with an advanced
knowledge of neuroanatomy. The system can be used both to compare individual
phenotypes and also phenotypes in aggregate. This proof of concept suggests that
expressing complex phenotypes using formal ontologies provides considerable benefit
for comparing phenotypes across scales and species.
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INTRODUCTION
Model systems are the cornerstones of translational research. The
number of model organisms is increasing, as governments and
other agencies have invested heavily in the creation of compre-
hensive panels of genetically modified organisms for the study of
disease (Guan et al., 2010; Ringwald and Eppig, 2011). Building
informatics resources that make maximal use of these model
systems by promoting discovery of appropriate systems and com-
parisons among them has been challenging. The need for such
systems has been recognized by the model organism databases
(Blake et al., 2011; Shimoyama et al., 2011) and programs such as
the Link Animal Models to Human Disease Initiative [LAMHDI
(http://lamhdi.org)]. Such systems seek to provide the means
to select appropriate animal models for analysis and to identify
common mechanisms across conditions. These systems generally
make use of homologous genes to relate models (e.g., LAMHDI),
or contain assertions that animal X is a model of disease Y (e.g.,
Mouse Genome Database; Blake et al., 2011).

The above approaches, while valuable, are limited by the
complexity of disease-related phenotypes, particularly in the
nervous system with its myriad of cell types and functional
systems. The relationship between gene and model system
and disease phenotype is not straightforward (Strohman, 2002;
Houle et al., 2010; Doelken et al., 2013), even when the
gene(s) underlying a disease are known. At the most basic
level, molecular networks are involved in multiple processes
within a cell and because the spatial and temporal organiza-
tion of molecular networks may differ across cell types, body
systems and organisms, mutations in a given gene may give
rise to multiple phenotypes. This phenomenon is common-
place in neurodegenerative diseases where the affected gene may
be widely expressed, while the regional and cellular pathol-
ogy are much more restricted. Conversely, mutations in mul-
tiple genes contained within similar pathways or cell types
may give rise to the same phenotype at a macromolecular
scale.
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Selection of appropriate models and mining of model systems
to look for common molecular pathways related to human disease
requires more effective means for searching for and comparing
phenotypes. However, phenotypic descriptions tend to represent
combinations of complex structural features and physiological
processes spanning multiple spatial and temporal scales, often
involving multiple anatomical or functional systems. Comparison
among phenotypes, even for relatively straightforward examples,
usually requires a significant amount of human knowledge and
effort (Gupta et al., 2003). Consider a statement in one study that
pigmented cells in the substantia nigra degenerate in the human
and in another study that tyrosine hydroxylase-expressing cells in
the mouse are decreased in number. Understanding that these
two phenotypes are highly similar requires the knowledge that:
(1) pigmented cells in the substantia nigra of human express
dopamine; (2) that tyrosine hydroxylase is a marker for dopamin-
ergic cells; and (3) that “degenerated” and “decreased in number”
are related to one another, in that degeneration at the tissue level
often involves decrease in number of cells. Such comparisons are
also confounded by the cultural practices of different popula-
tions of researchers leading to the use of different vocabularies
for describing their results. These differences may be particularly
significant when crossing between clinical terminologies used to
describe patients and basic science vocabularies used to describe
phenotypes in experimental assays.

Because of their inherent complexity, most descriptions of
phenotypes in the literature or on-line databases are currently
expressed in free text. Free text is notoriously difficult to parse,
even for well-defined entities such as genes and organisms
(Washington et al., 2009), making free-text phenotype descrip-
tions largely opaque to modern computational methods. In order
to provide a more effective means for comparing phenotypes
among organisms, groups have been working on the development
of formal ontologies for phenotype descriptions. An ontology
encodes human knowledge by defining concepts and relation-
ships within a domain in a way that makes them machine process-
able (Munn and Smith, 2008). Ontologies such as the Mammalian
Phenotype Ontology (MPO; Smith et al., 2005b) and the Human
Phenotype Ontology (Robinson and Mundlos, 2010) provide for-
mal descriptions of phenotypes in human and model systems.
Phenotype descriptions are arranged in hierarchies so that infor-
mation systems can use the ontology to group related phenotypes
under common subsumers, e.g., “degenerated substantia nigra” is
a type of “abnormality of the midbrain.”

The existing community phenotype ontologies are designed
to provide broad coverage of major phenotypes associated with
mammalian model systems and human diseases. However, the
available phenotype annotations are often not of sufficient
granularity to cover the array of affected entities and relative
quantitative phenotypes encountered during an experimental
investigation, particularly for the varied and heterogenous phe-
notypes encountered in the nervous system. For example, the
Mouse Genome Informatics (MGI) database (Blake et al., 2011)
annotation of Tg(Prnp-SNCA∗A53T)83Vle (a transgenic mouse
incorporating a human alpha synuclein variant implicated in
Parkinson’s Disease) described in Giasson et al. (2002) includes
the MPO term “alpha-synuclein inclusion body” (MPO identifier

MP:00084931) but uses free text to provide additional detail, such
as the fact that the inclusion bodies are observed in the spinal
cord, brainstem, cerebellum, and thalamus. An information sys-
tem thus looking for mice that have abnormal cellular aggregates
in cerebellar cells would have to parse a considerable amount
of text and infer knowledge that inclusion bodies are contained
within cells. Ideally the phenotype annotation would provide a
computable means of linking to the anatomical systems affected,
and the qualitative nature of the change in these systems.

The need for tools for flexible phenotype descriptions led to
the construction of the Phenotype and Trait ontology (PATO;
Gkoutos et al., 2005). PATO is an ontology of qualities that can
be combined with any independent ontological entity to provide
a formal description of a phenotype (Mungall et al., 2010; Chen
et al., 2012). For example, statements such as swollen mitochon-
drion can be represented as an entity that is a kind of “mito-
chondrion” (Gene Ontology identifier GO:0005739) that has a
“swollen” (PATO:0001851) quality. This EQ (entity + quality)
approach can be extended to include the types of nested and
relational expressions typically encountered in an experiment,
e.g., that neurons in the substantia nigra have increased num-
bers of abnormal protein aggregates compared to neurons in the
locus coeruleus. If these EQ descriptions are expressed using a
logical formalism such as the Web Ontology Language (OWL)
then we can use automated reasoners to compute relationships
between them (Mungall et al., 2010). When combined with
semantic-similarity based algorithms, we can measure the degree
of similarity between two entities based on their phenotype. An
example of a system that combines reasoning and semantic sim-
ilarity over large phenotypic datasets is the Mouse Finder, which
has previously been used to link animal models to human diseases
(Washington et al., 2009; Chen et al., 2012).

In this study, we explored the use of the EQ approach to the
challenging problem of representation and comparison of struc-
tural phenotypes encountered in neurodegenerative disease and
associated animal models. This work was motivated by the need
to develop annotation tools for microscopic imaging data avail-
able through the Cell Centered Database (http://ccdb.ucsd.edu)
and other imaging databases, to ensure that the content of these
images are exposed in a way that facilitates interlinking with other
data through a common semantic framework (Lam et al., 2007;
Imam et al., 2012). We built an ontology of multi-scale structural
phenotypes observed in humans with a disease and animal mod-
els. We have used PATO in conjunction with the Neuroscience
Information Framework (NIF) ontologies (Bug et al., 2008; Imam
et al., 2012) for the neurological entities. The NIF Standard
(NIFSTD) is a set of modular ontologies built largely from com-
munity ontologies covering the major domains of neuroscience,
including diseases, brain regions, cells, and subcellular parts.
Relations between the entities of these modules (e.g., cell type to
brain region, or cell type to neurotransmitters or markers such
as tyrosine hydroxylase) are contained within separate bridging
modules, providing an integrated multiscale view of entities of

1For references to terms that appear in an ontology, we supply the ontology
name, e.g., Gene Ontology and the unique identifier for the class name.
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relevance to neuroscience (Imam et al., 2012). We then employed
a combination of reasoning and semantic similarity methods,
using the PhenoSim framework (previously implemented as part
of OBD; Washington et al., 2009) to compute similarities among
phenotypes. We show that the system is capable of representing
diverse phenotypes using a flexible grammar and using knowl-
edge encoded within community ontologies to retrieve relevant
phenotypes across anatomical scales and organisms. Finally, we
show that this approach lays the groundwork for designing a sys-
tem to effectively match animal models to human disease based
on structural phenotypes.

MATERIALS AND METHODS
ONTOLOGY CONSTRUCTION
NDPO and PKB were constructed using Protégé 3.3.1 and 4.0
(http://protege.stanford.edu/). Both NDPO and PKB use the
Basic Formal Ontology as an upper ontology and relations from
the OBO Relations Ontology (Smith et al., 2005a), following the
pattern laid down in (Mungall et al., 2010).

NDPO imports the NIFSTD ontology for anatomical enti-
ties and PATO. The NIFSTD in turn imports many community
ontologies or contains cross-references to them (Mungall et al.,
2010). When necessary, additional entities were added to the base
modules, and additional relations were added between modules
in the form of bridge files (Imam et al., 2012). We used the
OWL version of PATO generated by the OBO Foundry (http://
purl.org/obo/owl/PATO). Organisms and phenotypes are mod-
eled in the NDPO as OWL class level expressions. For exam-
ple, the class “Human with Alzheimer’s disease” is specified in
OWL as:

Class: “Human with Alzheimer’s disease”
EquivalentTo: Human and bearer_of some “Alzheimer’s disease”

. . .

Each of the individual phenotypes is then defined using equiv-
alence axioms (see Table 1 for examples). See Horridge (2011)
for an explanation of terminology related to building and using
ontologies.

Table 1 | Phenotype representations from NDPO involving the substantia nigra of a representative individual with parkinson’s disease.

Textual description OWL expression and EQ expression References

Neurons decreased in number in the substantia nigra pars
compacta

“Has fewer parts of type” and “inheres in” some “substantia
nigra pars compacta” toward some neuron

PMID:12971891

Neurons decreased in number in the substantia nigra “Has fewer parts of type” and “inheres in” some “substantia
nigra and toward some neuron”

PMID: 9617789

Dopaminergic cells decreased in number in the substantia
nigra

“Has fewer parts of type” and toward some “substantia nigra
dopaminergic cell”

Not recorded

Substantia nigra dopamine cells decreased in number “Has fewer parts of type” and toward some “substantia nigra
dopaminergic cell”

Not recorded

Degeneration of substantia nigra dopaminergic cells Degenerate and “inheres in” some “substantia nigra
dopaminergic cell”

PMID: 11253364

Dopaminergic cells containing neuromelanin decreased in
number in the substantia nigra pars compacta

“Has fewer parts of type” and toward some “substantia nigra
dopaminergic cell” and “has part” neuromelanin

PMID: 19086884

Substantia nigra pars compacta depigmentation “Has fewer parts of type” and “inheres in” “substantia nigra
pars compacta” toward some neuromelanin

PMID: 12971891

Substantia nigra pars compacta decreased in volume “Decreased volume” and “inheres in” some “substantia nigra
pars compacta”

PMID: 17978822

Substantia nigra pars compacta degenerated Degenerate and “inheres in” some “substantia nigra pars
compacta”

PMID: 16772866

Substantia nigra decreased in volume Decreased volume and “inheres in” some “substantia nigra” PMID: 18941719

Atrophy of midbrain Atrophied and “inheres in” some midbrain PMID: 18941719

Midbrain degenerated Degenerate and “inheres in” some midbrain PMID: 20308987

The first column shows a succinct textual summary of the phenotype, typically extracted directly from the paper (reference). The second column shows the OWL

class expression (written in Manchester Syntax) used to define each phenotype. The design pattern from Mungall et al. (2010) is used, with PATO used for the

phenotypic quality, and NIFSTD used as a source of entities. The relation “inheres in” is used to represent the affected entity, and for relational qualities the

“toward” relation is used to indicate the additional entity. Thus, “‘has fewer parts of type’ and inheres in some substantia nigra pars compacta and toward some

neuron” translates to “Neurons are decreased in number in the substantia nigra pars compacta (column 1).”
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Each class in NDPO is identified via a globally unique and
meaningless identifier expressed as a URI, and is also assigned a
human readable label. For ease of reading, we use these human
readable labels in this report.

RATIONALE FOR DESIGN
The NDPO is not designed to function as a diagnostic system,
but as a means to look for common phenotypes occurring among
organisms that are linked to processes relevant to disease. Thus,
no particular weighting is given to hallmark features of a disease,
nor did we attempt to create deep models of the disease pro-
cess. We followed the basic model established by the Ontology
of General Medical Science (Scheuermann et al., 2009) by treat-
ing disease as a dependent continuant. A dependent continuant
cannot exist independently of the entity that bears it. We thus
modeled structural phenotypes observed in humans that bear a
disease, rather than modeling the disease itself (Gupta et al., 2003;
Scheuermann et al., 2009).

PHENOTYPE SIMILARITY CALCULATION
We used a variation of the methods described in Washington et al.
(2009) for finding organisms that were closely related via similar
phenotypes. We ported the original implementation (which relied
on a relational database backend) to a new system that uses the
OWL API (Horridge and Bechhofer, 2009) called OWLSim (avail-
able from: http://code.google.com/p/owltools/wiki/OwlSim). We
configured this to work with our phenotype descriptions, and call
this configuration “PhenoSim.”

The OWLSim comparison metrics rely on the inferred
attributes shared between any two given phenotypes. The inferred
attributes of a phenotype are the set of classes in the reflexive
transitive closure of the phenotype, calculated by recursively fol-
lowing all OWL equivalence or subclass axioms to either classes
or anonymous class expressions. We extend the path from class
intersections to each element of the intersection, and each exis-
tential restriction to the filler expression. This can be expressed
more formally as the construction of a graph of pairwise edges
<X,Y> from the total set of axioms and class expressions in an
ontology:

1. Add edge <X,Y> for every SubClassOf(X,Y) or
EquivalentClasses(X,Y) axiom

2. Add edge <X,Y> if there exists a class expression X, and X =
ObjectIntersectionOf(L), and X is a member of L

3. Add edge <X,Y> if there exists a class expression X, and X =
ObjectSomeValuesFrom(part_of,Y)

We calculate the set of inferred attributes from a phenotype P by
finding the closure of all edges emanating from P, including P in
the set.

Prior to calculating the closure of each phenotype, we pre-
reasoned the combined ontology and asserted all directly inferred
axioms.

We use two methods for computing the similarity between any
two phenotypes—the Jaccard Similarity (SimJ), and the infor-
mation content (IC) of the Least Common Subsumers (LCS).
The SimJ between two phenotypes p and q is the ratio of shared

attributes vs. total attributes, and is calculated as:

simJ(p, q) = |ap ⋂
aq|

|ap
⋃

aq|

where ap is the inferred attributes of phenotype p.
The second method for measuring the similarity of two phe-

notypes is IC based, and provides a measure of how unusual or
“surprising” the set of attributes in common is. We first define
the LCS phenotype of a pair of phenotypes x and y as the most
specific set of all shared attributes:

LCS(x, y) = {
a|a ∈ ax ∩ ay,¬∃a′ :

[a′ ∈ ax ∩ ay, path(a, a′),¬path(a′, a)]}

here, path(a,a′) holds if there is a reflexive path in the graph
between a and a′, as described above. The LCS can be thought of
as the most compositional description of the phenotype that sub-
sumes x and y. To calculate the IC of the LCS we need to know
the set OP, which is the set of all pairwise mappings between
organisms and phenotypes

ICS(x, y) = − log2

( |{o|(o, p) ∈ OP, sub(p, LCS(x, y))|
|{o|(o, p) ∈ OP}|

)

The relation sub(p, A) holds if p is subsumed by the conjunction
of attribute set A:

sub(p, A) ⇔ ¬∃a ∈ A, a /∈ pa

The IC is higher for less frequent LCS’s. Thus, a match in which
the combination of attributes held in common is rare, or involves
highly granular terms, will score more highly than those involving
more frequent terms or less granular terms.

Both IC and SimJ give a measure of similarity between a pair of
phenotypes. We are interested in similarity at the organism level,
and an organism can have multiple phenotypes, so we needed a
means of aggregating the set of all phenotype pairs for each of the
two organisms. We use two methods—taking the maximum score
from the set of all phenotype pairs, and finding the average of the
best matching pairs. We use the prefix Max and Avg for each of
these respectively.

We focus on 4 organism-matching scores in particular:
The MaxIC is the maximum IC of the best matching pair of

phenotypes:

MaxIC(o1, o2) = max
{

s|(o1, p1) ∈ OP, (o2, p2)

∈ OP, s = ICS(p1, p2)
}

The MaxSimJ is the maximum SimJ for the best matching pair
of phenotypes:

MaxSimJ(o1, o2) = max
{

s|(o1, p1) ∈ OP, (o2, p2)

∈ OP, s = SimJ(p1, p2)
}
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The AvgIC is the average IC of all best-matching pairs of
phenotypes:

AvgIC(o1, o2) = avg
{

s| (o1p1) ∈ OP, (o2, p2) ∈ OP,

s = ICS(p1, p2),

((¬∃p3 : o1, p3) ∈ OP, ICS(o1, p3) > s) ∧ (¬∃p3 : o2, p3)

∈ OP, ICS(o2, p3) > s))
}

The AvgSimJ is the average SimJ of all best-matching pairs of
phenotypes:

AvgSimJ(o1, o2) = avg
{

s|(o1, p1) ∈ OP, (o2, p2) ∈ OP,

s = SimJ(p1, p2),

((¬∃p3 : o1, p3) ∈ OP, ICS(o1, p3) > s) ∧ (¬∃p3 : o2, p3)

∈ OP, SimJ(o2, p3) > s))
}

From these we derive a combined score:

Combined(o1, o2) = AvgSimJ(o1, o2) + AvgSimJ(o2, o1)

+ MaxIC(o1, o2)

WEB-BASED FRONT END
We created a web interface for browsing organisms, diseases,
phenotypes, and phenotype matches called the PKB-Browser,
available at (http://berkeleybop.org/pkb/). This interface provides
query capability through key word searches, and allows the user to
browse and compare the contents of the knowledge base without
the need to know formal query languages like SPARQL.

The PKB Browser is constructed using the Thea OWL
Library (Vassiliadis et al., 2009) and Clio Patria (http://cliopatria.
swi-prolog.org/home). The PKB browser is a prototype interface
that is freely available but is in beta release. We are currently
in the process of ingesting the data using NIF DISCO data
integration framework [Marenco et al., 2010] and porting the
user interface to the Monarch Initiative (http://monarchinitiative.
org/) platform.

RESULTS
To enable comparison of phenotypes across species and scale,
we constructed: (1) a Neurodegenerative Disease Phenotype
Ontology (NDPO) focused on human disease; and (2) the
Phenotype Knowledge Base (PKB), describing phenotypes
observed primarily in model organisms. Both of these resources
use PATO and the NIFSTD ontologies as building blocks to
create more complex expressions. The original NDPO was devel-
oped to create tools for structured annotations of microscopic
imaging data contained in the Cell Centered Database [(http://
ccdb.ucsd.edu) Figure 1] and Whole Brain Catalog (http://
wholebraincatalog.org/). As the number of publically available
data on neurodegenerative disease within these resources is still
small, we used phenotypes reported in the literature to develop
and test the model, focusing on phenotypes involving struc-
tural alterations at the tissue, cellular, and subcellular levels and

excluding descriptions of dynamic processes. Both NDPO and
PKB are encoded in OWL; NDPO consists primarily of class-level
logical statements about the types of entities affected, whereas
PKB consists primarily of instance-level statements about specific
organisms that exhibit the phenotypes. We thus refer to NDPO
as an ontology and to PKB as a knowledge base that uses NDPO,
noting that from a formal OWL perspective both are ontologies.

The model of NDPO/PKB is organism-centric; that is, all phe-
notypes are borne by a particular organism (Figure 1). The model
does not include any explicit assertions about the relationship of
a phenotype to a disease process; rather diseases and phenotypes
are correlated through the agency of the organism.

THE NEURODEGENERATIVE DISEASE PHENOTYPE ONTOLOGY (NDPO)
The NDPO (http://ontology.neuinfo.org/NDPO/NDPO.owl)
contains statements associating neurodegenerative diseases with
their characteristic phenotypes. These statements were curated
from multiple literature sources, and entered into NDPO using a
standard template. We assigned phenotypes to reference entities
representing a “composite” human with a particular disease, e.g.,
Human with Parkinson’s disease, bearing phenotypes typically
associated with that disease. These phenotypes represent gener-
ally accepted features of a particular disease, such as would be
contained within a review article.

PHENOTYPE KNOWLEDGE BASE (PKB)
The PKB (http://ontology.neuinfo.org/NDPO/PKB.owl) con-
tains statements associating individual organism instances with
phenotypes observed in those organisms. We collected statements
for both humans and animal models of neurodegenerative dis-
eases, using both scientific reports and CCDB images as sources.
Instance representations model a single individual in which a set
of phenotypes was observed, such as was described in a single sci-
entific report or a particular image set. The same organism may
have multiple phenotypes associated with it, provided that they
were contained within a single report, and there may be multi-
ple instances of the same organism. Organisms are represented as
instances of a class from the NIFSTD Organism ontology module,
which includes a Linnean taxonomy that goes down to the level of
individual strains. Each organism instance is provided with a label
such as Human with Alzheimer’s disease 050 or Sprague-Dawley
rat 528. Where possible, we utilize the official strain nomencla-
ture provided by the Mouse Genome Institute for mice (Linder,
2003). However, as these names are intricate and lengthy, each
mouse is also given a simple descriptive preferred label for ease of
reference.

Because neurodegenerative diseases evolve over time, we
encountered many phenotype descriptions that were linked to a
particular stage of a disease process or age of an organism. To han-
dle this case, we created temporal slices of an organism at each
time or particular stage, to represent each distinct temporal phe-
notype, e.g., PS19 mouse at age 60 days. However, in this version
of the PKB, no relationships are drawn among these temporal
slices; they are treated as separate organism instances.

Phenotypes were entered by various individuals, including the
authors of this paper, and summer student interns who worked
under our supervision. As is common with ontology development
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FIGURE 1 | Structured phenotype description derived from imaging data

stored in the CCDB (Accession #: MP6333). The phenotype statement
describing lipofuscin accumulation in a pyramidal cell from the cerebral cortex
of a patient with Alzheimer’s disease is shown at the top. The corresponding
image is shown on the left. The entire phenotype is recorded as a series of

statements, each depicted as a relationship (arrow) between two classes
(boxes). Each of the classes are derived from the NIFSTD ontologies; for ease
of understanding, the preferred label is displayed rather than the numerical
class name (e.g. birnlex_516 for “Human”). Classes are displayed in blue
while instances are displayed in pink.

and annotation, we evolved both the ontology representation and
our annotation standards over time. When possible, we tried to
back propagate these changes to the NDPO/PKB, but, as is also
common with information systems, we still find inconsistencies.
As the NDPO/PKB were built from the NIFSTD ontologies, which
itself imports community ontologies, the base ontologies are
undergoing constant evolution. For the analyses reported here,
we used the versions of the ontologies stated in the methods.

COMBINED KNOWLEDGE BASE AND BROWSER
The combination of PKB and NDPO contains 1260 phenotype
statements for 11 representative humans with disease and 90
models, representing macromolecular, subcellular, cellular, and
gross anatomical characterization of features observed in struc-
tural studies of these organisms (available at: http://berkeleybop.

org/pkb/organisms). Papers were chosen to include a representa-
tion of structural phenotypes across scales for brain and spinal
cord. Of the 11 human diseases modeled, we included explic-
itly asserted models for 6 of them. The majority of non-human
phenotypes were derived from mouse models, comprising 34
individuals, representing 14 distinct mutants. Our goal in select-
ing papers for inclusion was not to include a random sample,

but to ensure that the phenotype model could accommodate the
range of phenotypes reported by basic and clinical researchers,
and to test our ability to retrieve related phenotypes based on
region, cell types, subcellular structure, or macromolecular con-
stituent. Thus, we ensured that the knowledge base included
related phenotypes across scales. As many neurodegenerative dis-
orders are characterized as synucleopathies, we included multiple
animal models with modifications to one or more forms of synu-
clein, as these often display unique phenotypes. We constructed
a web-based browser called the Phenotype Knowledge Browser;
(http://berkeleybop.org/pkb/) that provides a collection of views
on top of the underlying OWL ontologies, allowing users to
navigate between diseases, organisms, and phenotypes.

Examples of typical phenotype annotations are shown in
Table 1, which extracts phenotype observations regarding the
substantia nigra from NDPO. As is evident, even with a more
structured representation, similar phenotypes are expressed in
multiple ways and at different anatomical scales, e.g., substantia
nigra pars compacta degenerates vs. substantia nigra degenerates,
reflecting the diversity of descriptions in the literature. Different
formulations of the same entities and qualifiers, e.g., dopamin-
ergic cells in the substantia nigra are decreased in number vs.
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substantia nigra dopaminergic cells are decreased in number were
coded as identical OWL statements when appropriate and where
the meaning of the author could be ascertained. When the exact
meaning could not be ascertained from similar entities or quali-
ties, e.g., degenerate, decreased in number, decreased in volume,
the original qualifiers were generally retained, leading to multiple
expressions of similar phenotypes. Additional classes and rela-
tionships were added to the NIFSTD ontologies when required in
order to provide the basic knowledge required to express or com-
pare phenotypes. Figure 2 illustrates some of the types of entities
and relationships between them that are required for comparing
many of the phenotypes listed in Table 1.

COMPARING PHENOTYPES
We used PhenoSim to compute and rank pairwise comparisons
between organisms, based on the semantic similarity and IC
between their associated phenotypes, as detailed in the methods.

The scores can be partitioned into 3 sets: reference disease vs. ref-
erence disease, reference vs. model, and model vs. model. Thus,
PhenoSim can be used to compare phenotypes from human
disease to human disease; human disease to animal model and
animal model to animal model. These pairings were then loaded
into the PKB browser.

We tested the ability to provide meaningful matches of both
individual and aggregate phenotypes by issuing a series of com-
petency questions via the PKB browser as described below. The
competency questions were designed to test whether PKB was
able to use the relationships recorded in the ontology to improve
retrieval compared to string search alone. Because PhenoSim
computes similarity and IC based on common subsumers, every
phenotype could potentially be comparable to another at a gross
level, just by virtue of them referencing some structure in the
brain. Thus, we evaluated the results as to whether the reasoning
process produced results that would be meaningful to someone

FIGURE 2 | Schematic of entity and quality relationships coded in the

core ontologies used to build the NDPO to provide the requisite

knowledge for comparing the phenotypes in Table 1. NIFSTD is built in a
modular form with each module covering a single domain of neuroscience,
e.g., gross anatomy, subcellular entities, cells, and molecules. NIFSTD has
been building bridge ontologies that span one or more of these modules.

For example, the NIFSTD cell bridge relates neurons to brain regions and
molecular entities. Entities drawn from the NIFSTD are shown in purple.
NIFSTD itself imports or cross references several community ontologies from
the Open Biological Ontologies (OBO) Foundry. These ontologies include
Chemicals of Biological Interest (Chebi), Gene Ontology (GO), and the PATO
qualities.
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knowledgeable in the domain (author Maryann E. Martone), the
number of false negatives and positives, and whether the scores
used to rank the similarity (Similarity score) and meaningful (IC)
were reliable predictors of the relevancy. In the following, we go
through specific examples of four types of use cases:

Use case 1: Find an individual phenotype (Q1)
Use case 2: Find organisms that share a particular phenotype
(Q2)
Use case 3: How do phenotypes compare overall for any two
organisms (Q3)
Use case 4: Which organisms share the most similarity across all
phenotypes to a given disease? (Q4)

Query 1 (Q1): Which organisms have phenotypes involving
GABAergic neurons/cellular inclusions?

PKB allows users to query for phenotypes involving a particular
entity, returning a list of organisms with phenotypes involv-
ing that entity (Figure 3). For Q1, as expected, PKB returned

phenotypes containing explicit reference to GABAergic neurons,
e.g., loss of medium striatal GABAergic neurons in the caudate
nucleus of a human with Huntington’s disease. As shown in
Figure 3, however, the NIFSTD ontology defines GABAergic neu-
ron as the equivalent class Neuron that uses neurotransmitter
GABA. Thus, PKB also returns phenotypes associated with neu-
ron classes for which the neurotransmitter is known to be GABA,
e.g., cerebellar Purkinje neurons, neostriatal medium spiny neu-
rons, regardless of whether GABA is explicitly mentioned. Note
also that PKB contains negative statements such as Lewy bodies
are not found in striatal GABA interneurons, because the type of
cells that are spared in neurodegenerative disease is an important
piece of information, both for capturing the total phenotype of
the disease and for looking at possible mechanisms of selective
vulnerability. At present, however, there is no way to refine the
query to obtain only the positive associations.

As a comparison, we searched for “GABAergic neuron” in
the Mammalian Phenotype and Human Phenotype ontology
through the NCBO Bioportal search function. The MPO returned
“abnormal GABAergic neuron morphology MP:0003245” with

FIGURE 3 | Results of query for all phenotypes involving GABAergic

neurons (Q1). Because the NIFSTD ontology provides classifications of
neurons by their neurotransmitters, PhenoSim is able to retrieve phenotypes

where GABA is not explicitly mentioned in the statements. All of the neurons
listed on the right use GABA as a neurotransmitter and are thus correctly
returned as GABAergic neurons.
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child “loss of GABAergic neuron; MP:0003246.” Although
the MPO contains numerous phenotypes involving types of
GABAergic neurons, e.g., Purkinje cells, medium spiny neuron,
only one specific cell type using GABA as a neurotransmitter was
returned, due to a reference to GABAergic neuron in the defini-
tion: “abnormal olfactory bulb periglomerular cell morphology;
MP:0009943.” No explicit relationship was recorded between
the more generic “GABAergic neuron” and the specific types
of cells using GABA as a neurotransmitter. Similarly a query
of PKB for “cellular inclusion,” retrieved phenotypes for Lewy
bodies, cellular inclusions, neurofibrillary tangles, Pick bodies,

among others, while MPO returned only for the string “cellular
inclusion.”

Q2: Which organisms share phenotypes involving pyramidal cells?

This query depends on the semantic similarities between pairs of
phenotypes computed by PhenoSim. The results include all phe-
notype matches that involve the class Pyramidal cell, or a subclass
or part of a pyramidal cell. The phenotype matches are com-
puted for all organisms, whether model or reference humans.
Representative results for this query are shown in Table 2,

Table 2 | Comparison of pyramidal cell phenotypes among all organisms.

Least common

subsumer

SimJ Organism A Phenotype A Organism B Phenotype B

Betz Cell * has fewer
parts of type

1 Human with Amyotrophic
Lateral Sclerosis

Betz Cell * has fewer
parts of type

Human with Multiple
System Atrophy

Betz Cell * has fewer
parts of type

Neocortex pyramidal cell
layer 5 * has fewer parts
of type

0.944 Human with Amyotrophic
Lateral Sclerosis

Betz Cell * has fewer
parts of type

5XFAD transgenic
mouse 2

Neocortex pyramidal
cell layer 5 * has fewer
parts of type

Neocortex pyramidal cell
layer 5 * has fewer parts
of type

0.944 Human with Multiple
System Atrophy

Betz Cell * has fewer
parts of type

5XFAD transgenic
mouse 2

Neocortex pyramidal
cell layer 5 * has fewer
parts of type

Pyramidal cell * has
fewer parts of type

0.882 Human with Huntingtons
disease

Pyramidal cell * has
fewer parts of type

5XFAD transgenic
mouse 2

Neocortex pyramidal
cell layer 5 * has fewer
parts of type

Pyramidal cell * has
fewer parts of type

0.833 Human with Amyotrophic
Lateral Sclerosis

Betz Cell * has fewer
parts of type

Human with Huntingtons
disease

Pyramidal cell * has
fewer parts of type

Pyramidal cell * has
fewer parts of type

0.833 Human with Huntingtons
disease

Pyramidal cell * has
fewer parts of type

Human with Multiple
System Atrophy

Betz Cell * has fewer
parts of type

Neocortex pyramidal cell
layer 5 Protein * has
number of

0.714 5XFAD transgenic mouse 1 Neocortex pyramidal cell
layer 5 * Beta-Amyloid *
has number of

R6/2 mouse 3 Neocortex pyramidal
cell layer 5 * Huntingtin
* has extra parts of type

Neocortex pyramidal cell
layer 5 normal * altered
number of

0.682 5XFAD transgenic mouse 2 Neocortex pyramidal cell
layer 5 * has fewer parts
of type

R6/2 mouse 3 Neocortex pyramidal
cell layer 5 * Huntingtin
* has extra parts of type

Neocortex pyramidal cell
layer 5 * normal * altered
number of

0.652 Human with Amyotrophic
Lateral Sclerosis

Betz Cell * has fewer
parts of type

R6/2 mouse 3 Neocortex pyramidal
cell layer 5 * Huntingtin
* has extra parts of type

Neocortex pyramidal cell
layer 5 * normal * altered
number of

0.652 Human with Multiple
System Atrophy

Betz Cell * has fewer
parts of type

R6/2 mouse 3 Neocortex pyramidal
cell layer 5 * Huntingtin
* has extra parts of type

Pyramidal cell Regional
part of hippocampal
formation has fewer
parts of type

0.645 Human with Brain ischemia Hippocampus CA1
pyramidal cell * has
fewer parts of type

5XFAD transgenic
mouse 2

Pyramidal cell *

Subiculum * has fewer
parts of type

A selection of phenotype comparisons involving pyramidal cells, selected from a larger set returned by PKB. The Least Common Subsumer (LCS) column shows

the set of attributes that are shared in common between Phenotype A from Organism A and Phenotype B from Organism B. A pairwise similarity score (SimJ) is

calculated for each match, with 1 being an exact match. For readability, only the entities and qualities are shown separated by an *, rather than the OWL expression.
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using the SimJ measure between pairs of phenotypes, which
scores each pairing between 0 (no similarity) and 1 (no discern-
able difference). For example, the first match shown in Table 2 is
between a human with Amyotrophic Lateral Sclerosis (ALS) and
a human with Multiple System Atrophy (MSA) both of which
involve a reduction in the number of Betz cells, a large pyrami-
dal cell found in motor cortex. In this case, the two phenotype
descriptions are identical, so the score is 1.

Similarity is determined in part on the number of shared
metrics between any two phenotypes, utilizing the asserted and
inferred relationships for the entities/qualities in the underlying
ontologies. Thus, the second highest scoring match in Table 2
is between a phenotype involving a reduction in Betz cells in
a Human with ALS and a reduction of cells in Neocortex pyra-
midal cell layer 5 in a 5XFAD transgenic mouse. The match is
high scoring, as Betz cells are a type of layer 5 pyramidal cell,
but scores less than would an exact match. In this case, the least
common subsumer that relates these pairs is Neocortex pyra-
midal cell layer 5 has fewer parts of type. Note that the more
generic phenotype Pyramidal cell has fewer parts of type, i.e.,
there is a reduction in the number of pyramidal cells, in a
Human with Huntington’s disease (result 4), is ranked slightly
lower in similarity to a reduction in neocortex pyramidal cell
layer 5 neurons in the 5XFAD transgenic mouse 2 because
pyramidal cell is a more generic subsumer than a neocortex
pyramidal cell.

Q3: How does the phenotype of a weaver mouse compare to a
patient with Huntington’s disease?

The PKB browser lets a user compare the phenotypes of
any two organisms within the database by providing a list
of phenotypes matched according to the least common sub-
sumer. Matches are ranked according to overall similarity
(SimJ) and to the IC, a reflection in part of the gran-
ularity of the common subsumer. A single phenotype can
match to more than one phenotype, based on different
subsumers.

The results for the comparison of the weaver mouse, a murine
mutant with several motor defects and degeneration of the
substantia nigra and cerebellum, and a human with Huntington’s
Disease, also characterized by motor disturbances and damage
to the basal ganglia, is shown in Table 3. Although there is no
presumed genetic linkage between the two organisms, they do
share some functional similarities that reflect damage to common
systems of the brain. For this use case, we examined the pairwise
matches returned from PhenoSim and classified them according
to whether they were (1) Plausible and useful (green); (2)
Plausible but not useful (orange); (3) Neither plausible or useful
(white). For those phenotypes for which PhenoSim returned
no matches, we ranked them as to whether we would have
matched them with another phenotype based on our knowledge
of anatomy.

Table 3 | Comparison of aggregate phenotypes between a representative patient with Huntington’s disease and an instance of the weaver

mouse (073).

LCS IC SimJ Human with Huntingtons disease Weaver mouse 073

Astrocyte Basal ganglia has extra
parts of type

5.20945 0.652174 Astrocyte Caudate nucleus has extra
parts of type, Astrocyte Putamen has
extra parts of type

Astrocyte Substantia nigra pars compacta
has extra parts of type

Basal ganglia degenerate 4.20945 0.6 Substantia nigra degenerate Striatum Axon Terminal degenerate

Neuron GABA Principal neuron
role has fewer parts of type

4.79442 0.6 Neostriatum enkephalin medium
spiny neuron has fewer parts of type

Cerebellum Purkinje cell Cerebellum has
fewer parts of type

Astrocyte Regional part of
forebrain has extra parts of type

3.98706 0.6 Astrocyte Subthalamus has extra
parts of type

Astrocyte Substantia nigra pars compacta
has extra parts of type

Neuron Glutamate has fewer
parts of type

5.20945 0.521739 Cortex (general) pyramidal cell has
fewer parts of type

Cerebellum granule cell Cerebellum has
fewer parts of type

Striatum Regional Part Of Neuron
decreased size

5.20945 0.5 Striatum Neuron Process dystrophic Striatum Axon Terminal degenerate

Astrocyte has extra parts of type 3.20945 0.5 Astrocyte Centriole has extra parts of
type

Astrocyte Substantia nigra pars compacta
has extra parts of type

Astrocyte Regional part of
forebrain has extra parts of type

3.98706 0.461538 Astrocyte Hippocampus has extra
parts of type

Astrocyte Substantia nigra pars compacta
has extra parts of type

Macroglial Cell Regional part of
forebrain has extra parts of type

3.79442 0.458333 Oligodendrocyte Tail of caudate
nucleus has extra parts of type

Astrocyte Substantia nigra pars compacta
has extra parts of type

Neuron Cerebellum lacks parts or
has fewer parts of type

4.79442 0.44 Cellular Inclusion Nucleus lacks all
parts of type IntersectionOf(Neuron
part_of some Cerebellum)

Cerebellum granule cell Cerebellum has
fewer parts of type

Only the top 10 results, as ranked by similarity score (SimJ) are shown here. Comparisons were evaluated according to whether they were plausible and meaningful

(green), plausible but not meaningful (orange), or neither plausible or meaningful (white).
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The top 10 matches according to overall similarity score are
shown in Table 3. Of the 36 matches returned, we ranked 22 to
be plausible and useful. By plausible and useful, we mean that
someone with relevant expertise would accept the basis of com-
parison and find it relevant for understanding the commonalities
between the two organisms. For example, the most similar match
in Table 3 indicates that there is a reactive astrocytosis in differ-
ent components of the basal ganglia. Although there are different
components affected in the two (striatal components in HD; sub-
stantia nigra in the weaver mouse), all three nuclei are highly
interconnected. Seven out of 36 results were ranked as plausi-
ble but not useful. By plausible but not useful, we mean that the
basis on which the comparison was returned was sound, but the
match was not deemed to provide information that was relevant.
For example, the match between a loss of cortical pyramidal neu-
rons (HD) and cerebellar granule cells (weaver) reflects the fact
that both are glutamatergic neurons. While true, there are many
glutamatergic neurons in the brain, and we currently have no
reason to suspect that these particular neuron types share other
features or that there is a general vulnerability in glutamatergic
neurons in these conditions. In contrast, the match between phe-
notypes involving degeneration of GABAergic projection neurons
was considered both plausible and useful. In this case, a researcher
would take note of these phenotypes, in that the two neuron types
share both neurotransmitter and projection type and GABAergic
projection neurons are not that common in the CNS. Finally, 5
out of 36 matches were deemed neither plausible or useful. Some
of these matches involved entities that were not comparable or
notable, e.g., that astrocytes had increased numbers of centri-
oles (HD) and were increased in number in the substantia nigra
pars compacta (weaver). It is true that both involved an astro-
cyte and an increase in number, but the subject and object were
not deemed meaningful. In another case, astrocytes were noted
to be increased in number in the forebrain, due to an increase in
astrocytes in the hippocampus (HD) and in the substantia nigra
(weaver). However, as the substantia nigra is not considered a
forebrain structure, this reasoning was noted to be in error.

An additional 37 phenotypes for HD were deemed to have no
similar phenotypes compared to the weaver mouse (not shown).
Of these, 6 were noted as somewhat similar to phenotypes
available for the weaver mouse. For example, MEM would have
noted the phenotype “Temporal lobe has fewer parts of type
dopamine transporter” in the patient with HD as evidence that
projections from the mesocortical dopaminergic system may be
compromised. This projection arises from dopaminergic cells in
the midbrain. However, as of this writing, the knowledge base
does not incorporate any knowledge about connectivity among
brain regions.

Q4: Which mouse model is the best overall match for a given disease?

The previous two examples provide comparisons of individ-
ual phenotypes across organisms. We also investigated whether
PhenoSim could reliably measure the strength of overall com-
parisons between organisms based on the aggregate of their
associated phenotypes. The disease view in the PKB interface pro-
vides a table with the list of current human diseases modeled in

NDPO, and the best predicted match among organisms from PKB
for each condition (Table 4), based on a combination of similarity
strength and IC. Although PKB contains phenotypes from mul-
tiple types of model organisms, the current coverage in PKB is
most extensive for mouse models. We thus restricted our analysis
to this species.

An examination of the top mouse match for each disease
showed that the results of the phenotype matching were gener-
ally successful; that is, the top phenotype matches were judged to
be correct, meaningful and useful. For a given disease, PhenoSim
ranked matches against animal models that have been developed
specifically as models of a particular disease highly (designated
by an ∗ in the mouse description column of Table 4). This
result is not particularly surprising, as descriptions of the pheno-
types associated with the asserted models tend to focus on those
pathologies associated with the disease, and thus provide evidence
of phenotypes that are similar to those found in human disease.

For those disorders for which PKB did not contain asserted
models, PhenoSim still returned organisms that shared a number
of significant phenotypic similarities with the human condi-
tion. For example, Down Syndrome and Lewy Body Disease
were matched against instances of mouse models containing
alterations of genes encoding proteins known to be affected in
the disorder; MAPT (encoding tau) for Down Syndrome and
SNCA (encoding alpha-synuclein) for Lewy Body Disease. Down
Syndrome is characterized in later stages by the same types of
pathological changes observed in Alzheimer’s disease, including
the neurofibrillary tangles containing hyperphosphorylated tau
protein (Hanger et al., 1991). Lewy Body disease, like Parkinson’s
disease, is considered a synucleinopathy (Litvan, 1999). The top
matches returned for Lewy Body disease include abnormal aggre-
gates of synuclein, a component of Lewy Bodies, in various parts
of the neuron and in particular brain regions.

In another case, Progressive Supranuclear Palsy (PSP) was
matched against an instance of the Weaver mouse mutant, based
on observations that the number of neurons is reduced in the
cerebellum and substantia nigra pars compacta (data not shown).
Apropos of the example given in the introduction, PhenoSim
correctly returned a match between the loss of neuromelanin
containing cells in the midbrain of PSP patients and the loss of
dopaminergic cells in the midbrain of the weaver mouse mutant.
Substantia nigra dopaminergic cells in humans are characterized
by the presence of neuromelanin. Note that for both PSP and
Down syndrome, the best matches are not reciprocal, that is,
while the human with disease matches best to these mouse mod-
els, the mouse models have better matches to other conditions.

Not all organism matches were deemed to be successful. MSA
is also considered to be a synucleinopathy, but was matched to
an instance of the superoxide dismutase (SOD) knockout rather
than any of the synuclein mice. Examination of the phenotypes
recorded for MSA, however, indicated that the annotators had
entered only a few phenotypes that specifically mentioned synu-
clein, in contrast to Lewy Body Disease. Examination of the top
phenotype matches returned from PhenoSim for MSA and the
SOD knockout showed matches at a level too generic to be inter-
esting. The top-scoring match in this case was for the presence of
increased p25 protein in oligodendrocytes of MSA patients and
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Table 4 | Overall best mouse matches to human disease.

Human disease # Best mouse match Mouse description IC SimJ Overall

Brain ischemia 27 5XFAD transgenic mouse 1 5 A beta mutations 4.18984 0.512734 10.497

Down syndrome 49 PS19 mouse 6 months of age Mutant tau 4.31912 0.479374 10.5929

Spinal muscular atrophy 49 Mouse with SMN1 mutated

gene

Mutant survival motor neuron
protein 1*

4.25612 0.44871 10.4992

Alzheimer’s disease 149 5XFAD transgenic mouse 1 5 A beta mutations* 4.27852 0.417583 10.4905

ALS 70 SOD1-G93A mouse Mutant superoxide
dismutase*

4.6353 0.389674 10.8194

Huntington’s disease 122 R6/2 mouse 2 Mutant huntingtin* 4.33642 0.371246 10.5021

Pick’s disease 72 PS19 mouse 6 months of

age

Mutant tau 4.35273 0.36528 10.5124

Parkinson’s disease 133 A53T15+ mouse Subject:

252

Mutant alpha synuclein* 4.16459 0.35803 10.317

Progressive supranuclear
palsy

50 Weaver mouse 073 Murine mutant 3.73619 0.333625 9.86423

Multiple system atrophy 102 SOD1-G93A mouse Mutant superoxide dismutase 4.28662 0.328572 10.4096

Lewy Body disease 47 A53T15+ mouse Subject: 252 Mutant alpha synuclein 4.03864 0.323762 10.1568

Mouse models in bold are reciprocal matches, i.e., the human with disease is the best match for the mouse model and vice versa. Mouse models that were

asserted to be models of the disease by the author of the article from which the phenotypes were taken are indicated by an *. #, number of phenotypes recorded

in NDPO/PKB.

increased cytochrome oxidase in neurons from the mouse model.
The common subsumer leading to the match was Increase in
some protein in nervous system cell. However, although PhenoSim
returned this match as the highest, we note that the SimJ score
for the highest match was only 0.52, compared to the top rated
matches in the more successful comparisons, which generally
were in the 0.8–1.0 range, and the overall similarity was ranked as
low. Thus, PhenoSim returned this as the best overall match avail-
able from available organisms, not necessarily a good match in an
absolute sense. However, we note that the comparison between
Lewy Body Disease and the A53T15+ mouse Subject: 252 was also
was ranked lower than the other comparisons, but was judged by
MEM as having been a successful match. Thus, with the current
state of the knowledge base, PhenoSim could not reliably predict
the strength of the match based on SimJ or IC scores without
examination of the individual phenotype comparisons. We note,
however, that when the knowledge base is more fully populated,
the reliability of these measures may improve.

DISCUSSION
Biomedical research is built upon the foundations of model sys-
tems that provide both insight into mechanisms of disease and
an assay system for testing possible treatments. Matching across
these systems at the level of the genes involved is served by
several current information systems such as the MGI database.
Comparing across systems at the level of phenotype has been
more of a challenge because phenotype space is essentially

unconstrained (Houle et al., 2010). Phenotypes occur across all
scales and temporal dimensions. There is no standard set of tests
or assays that reveal them and, until recently, no standard gram-
mar to describe them. Yet comparisons at the level of phenotype
likely represent the most critical link for finding relevant sys-
tems in which to test therapeutics and for revealing common
mechanisms among seemingly unrelated disorders.

Powerful new approaches are starting to be developed to
compare phenotypes and gene networks across species, using
orthologous phenotypes to identify common genetic networks
(McGary et al., 2010). These methods rely on the ability to group
similar phenotypes across studies, a process that is confounded
in the nervous system because of the multiplicity of nomencla-
tures for brain regions, classification schemes for neurons, and
anatomical scales at which these are studied and compared. The
cellular and subcellular signatures of neurological disorders are
also quite specific, with subpopulations of cells within a region
showing selective vulnerability. Even a general insult like cere-
bral ischemia disproportionately affects certain cell populations
within a subregion (Martone et al., 2000). Thus, a method to
identify commonalities among phenotypes within the nervous
system along multiple axes would be of significant benefit to
unraveling common molecular networks. It is important to note
that the ability to compare phenotypes within the nervous system
is not just important for identifying potential genetic networks,
but also to understand the cellular networks that underlie behav-
ior processes. Thus, even if two organisms do not share a genetic
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linkage, they may share a behavioral one that reflects the differ-
ent cellular networks that may contribute to behaviors like motor
planning and timing.

We employed formal ontologies as a tool to group and com-
pare phenotypes in neurodegenerative disease, building upon
the work of Gkoutos et al. (2005, 2009) and Washington et al.
(2009) to define phenotypes using the EQ model. The NIF and
other projects have been working with community ontologies to
express an information framework for neuroscience, that con-
tains general knowledge about the relationships between brain
regions, cell types, cell parts, and macromolecules (Lam et al.,
2007; Bug et al., 2008; Hamilton et al., 2012; Imam et al., 2012).
Through the definition of a generic template for describing any
structural phenotype, regardless of scale, with entities drawn
from the NIFSTD ontologies, we showed that we could express
structural phenotypes in a way that facilitated cross scale and
cross species comparisons between neurodegenerative disease and
associated models. We showed that as the underlying core ontolo-
gies evolved, the subsequent matches became more nuanced and
meaningful.

RATIONALE FOR DESIGN
The NDPO/PKB is not designed to function as a diagnostic sys-
tem, but as a means to facilitate comparing phenotypes, based
on knowledge about the entities that were noted in organisms
that bore the disease or were developed as models of a disease.
We thus modeled structural phenotypes observed in humans that
bear a disease, classifying it as a dependent continuant, rather
than modeling the disease itself. The assertion of disease as a
dependent continuant is more than a mere philosophical exer-
cise. Our concept of diseases as unitary entities is undergoing a
significant evolution in the era of personalized medicine, as we
focus more on the interactions of pathological processes with dis-
ease modifying genes and environmental factors. The assignment
of phenotype to organism allows the phenotype to be correlated
with any other variable operating at the level of the organism, e.g.,
genotype, history, and the environment in which the organism
lives, without having to carefully model the exact relationships
among them. Such relationships are difficult to specify in the case
of neurodegenerative diseases, and even more difficult to model
explicitly (Gupta et al., 2003; Scheuermann et al., 2009). Although
we have not yet implemented the experimental conditions under
which the phenotype was observed, the model, as elaborated in
Figure 1, easily allows this information to be represented in the
knowledge base.

Despite our evolution in views of disease, the concept of
disease diagnosis is still highly useful both in a clinical sense and
as a means of communicating. In our approach, we balance the
need for a canonical vs. more specific, contextual representations
not only through the use of the organism, but also through the
creation of the NDPO and the PKB respectively. The NDPO
is weighted heavily toward exemplar representations of human
disease as would be encountered in review articles and represents
the most common phenotypes associated with a disease. The
PKB, on the other hand, contains phenotype class expressions
derived from specific instances of organisms represented in the
primary scientific literature or in image data associated with a

particular study. The PKB thus provides the mechanism whereby
any observed phenotype measured in a human with a disease
diagnosis or animal model can be associated with a particular
disease, regardless of whether it is considered to be diagnostic for
the disease.

Unlike the popular Mammalian Phenotype Ontology, we
decompose our phenotype statements so that each entity and
quality can be used separately for logical reasoning. The decom-
position also provides a flexible language for describing nearly
any phenotype at the level of granularity at which it occurs.
Such specificity is critical when comparing nervous system phe-
notypes, because of the multiplicity of cell types within each brain
region and the selective targeting of certain neuronal populations.
Precomposed ontologies are, by necessity, focused on more gen-
eral phenotypes. Consider the following annotation of one of the
alpha synuclein overexpressing mice in the MGI resource anno-
tated with the MPO: abnormal myelination, neurodegeneration,
axon degeneration, abnormal nervous system morphology, gliosis,
astrocytosis, abnormal spinal nerve morphology, alpha-synuclein
inclusion body, loss of dopaminergic neurons. The PKB augments
these general features with very specific statements about the type
of cell and part of cell affected. It can be envisioned that build-
ing the NDPO and PKB using community ontologies like the
GO that each phenotype would be able to be classified under the
appropriate classes of the MPO.

An advantage of having each entity belong to its own hier-
archy is that each phenotype statement can be cross-compared
along multiple axes without manually having to assign it to
multiple hierarchies. Thus, the statement tyrosine hydroxylase con-
taining neurons are reduced in the substantia nigra can be classified
based on molecule, cell type, reduction of cell number, and brain
region. The richer the relationships within the ontology, the more
nuanced the reasoning. By building these statements from com-
munity ontologies, the NDPO/PKB benefits from the labor of
the community in defining these relationships. For example, the
Foundational Model of Anatomy (Rosse and Mejino, 2003), from
which NIFSTD draws, recently added the relationships between
Brodmann’s areas and the cerebral cortex (Turner et al., 2010).
Although this makes the system somewhat fluid, it also allows the
system to evolve as new knowledge is added without having to
reconfigure the system.

PKB and NDPO currently make no attempts to classify
changes observed as normal or abnormal, in contrast to the
MPO and the HPO. Thus, PhenoSim makes frequent and high
scoring matches between phenotypes based on LCS such as sub-
stantia nigra neurons lacks all parts of type cellular inclusions
(normal) and substantia nigra neurons lacks all parts of type neu-
romelanin (abnormal). Matching these two statements clearly
provides benefit to a researcher, who would note that the ani-
mal model and human disease may not be consistent. However,
right now, PhenoSim is using these statements as the basis on
which to assert similarity, not distinctions. We are currently con-
sidering changes to the model to try to address these types of
matches, possibly by including phenotypes associated with organ-
isms that do not bear a disease or utilizing ontologies like the
MPO/HPO to provide more explicit declarations of the abnormal
state.
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As PhenoSim utilizes knowledge encoded in the ontology
to improve search and comparison, it is not surprising that
PhenoSim performs better than string matching in retrieving rel-
evant results for categories such as GABAergic neuron, cellular
inclusion, or pyramidal cell. All matches were returned based on
explicit reasoning through common subsumption and the quality
of the results clearly depended upon the state of the ontolo-
gies. As more specific knowledge was added to the ontology, the
common subsumers tended to be more specific and relevant.
Many ontologies are built from fairly flat hierarchies followed
by the assignment of properties through which additional hier-
archies can be generated. Very flat ontologies, e.g., the large list of
proteins in the Protein Ontology, generally provide too broad cov-
erage to return meaningful results. In contrast, the current work
underway in NIF to provide a knowledge base of neurons based
on their properties (Hamilton et al., 2012) allowed PKB to com-
pute common subsumption based on equivalent classes for brain
region, transmitter type and projection role.

Although the explicit relationships within the ontology clearly
contributed to the quality of the results, an encouraging result
was the large number of plausible matches that were returned
where a human could clearly draw a relationship between the
entities and qualities compared, despite the lack of explicit rela-
tionships defined within the ontology. Common subsumers like
change in magnitude relative to some quantity for nervous system
cell frequently matched phenotypes involving opposite changes
in neuron and glial number. As marked gliosis and activation
of microglia are frequently observed in areas that show neu-
ronal or synaptic degeneration, these matches were considered
successful, even though the formal reasoning about relation-
ships among glia and neurons is not encoded in the ontology.
Because ontologies are labor intensive to construct and by neces-
sity have to be limited in scope, a system that relies exclusively on
explicitly encoded or inferred relationships would be of limited
utility. However, by specifying some basic top down princi-
ples, e.g., the relationships among different qualities related to
decreased, major classes of biological entities and a brain parton-
omy that could be used to group related structures, the system
performed better than would be likely on string matching alone.
These results also support the findings of Dahdul et al. (2010)
that even a course level of annotation using the PATO quali-
fiers can improve the ability of an information system to group
phenotypes.

Because the base ontologies drew relationships between closely
related entities and qualities, the use of ontologies for con-
structing phenotype descriptions was also able to mitigate some-
what against the variety of ways in which authors described
similar phenotypes and inconsistency of different annotators
in choosing appropriate qualities and terms to apply to data.
Such inconsistency is common in any system, and reflects dif-
ferent styles and expertise among annotators, the flexibility of
language, human error and the inevitable evolution of annota-
tion standards during the course of developing and populating
an information system (Dahdul et al., 2010; Turinsky et al.,
2010).

The conditions under which the knowledge base was con-
structed, including using students who were only modestly

trained in curation and ontology construction, was meant to
mimic a situation in which individuals of different levels of
expertise would be contributing to the knowledge base. In the
current state, a contributor has to have some training in OWL
and ontology editors. However, because the phenotype state-
ments rely on a common template, we can envision the creation
of image and literature annotation tools that allow researchers
to construct structured phenotype statements without formal
training. The aggregation of phenotypes from different labora-
tories working on common strains would be facilitated through
proper identification of the organisms used in a study through
the use of unique identifiers supplied by the model organism
databases.

TEMPORAL PROGRESSION
Neurodegenerative diseases are characterized by a long pro-
gression, typically manifesting themselves symptomatically in
humans late in maturity and well after the disease process is
underway. Phenotypes associated with the disease process may
change depending upon the stage of the disease and the age of
the organism. For researchers trying to select a model system or
to understand underlying disease processes, the age at which a
phenotype is present is a critical piece of information. As a partial
solution, we constructed temporal slices of organisms, essentially
noting phenotypes associated with an organism of a particular
age or age range. These temporal slices clearly indicate that a
phenotype occurs at a given time point, but because they are
not connected to each other through temporal relationships, we
cannot perform any reasoning. Neither do we capture temporal
characteristics likely to be important in comparing models and
disease, e.g., whether the pathological insult is chronic or acute.
Future plans include the use of Allen interval calculus (1983) to
capture these temporal relationships so that temporal relation-
ships among phenotypes can be inferred and used as a basis of
comparison among organisms.

CONCLUSIONS
We have implemented the EQ model to address the challeng-
ing problem of phenotype representation of neurodegenerative
disease and associated models. The initial results suggest that
the knowledge-based approach for expressing and comparing
multi-scale phenotypes is promising and that providing a tool
like PKB for computing and browsing similar phenotypes may
have utility for identifying relevant animal models and com-
monalities among phenotypes. The current knowledge base was
not designed for nor sufficiently populated to be used for unbi-
ased quantitative evaluation of phenotypic similarity. Indeed,
the tools and approach were constructed with the goal of pro-
viding researchers working independently a standard format for
reporting on phenotypes within published studies and imaging
to aid in search and comparison. A reasonable question would
be whether population of a common database through inde-
pendent contributions would ever lead to a resource that would
be of sufficient breadth and depth for deeper data mining, or
whether a more systematic strategy for population is required,
as is the case with most “omics” approaches (Cachat et al.,
2012). However, because phenotype space is unconstrained, we
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FIGURE 4 | Graphical representation of relationships among human disease phenotypes created using Cytoscape network visualization tool

(http://cytoscape.org/).

feel that exploration of more efficient and computable meth-
ods for representing the types of phenotypes published every
day in the scientific literature would aid in more effective uti-
lization of the information we have available and allow more
effective identification of commonalities and differences. Future
work will be directed toward refining the comparison metrics
to determine whether reliable ranking methods can be devel-
oped that would facilitate identification of common genetic
pathways.

As the amount of neuroscience data and discoveries related to
disease multiplies, it becomes increasingly important to express
this data and knowledge within a common framework (Akil et al.,
2011). The NIF was developed specifically for that purpose for
neuroscience via the NIFSTD ontologies. The NIFSTD recognizes
that to connect the various subdisciplines and scales of study
for the nervous system requires some level of formal semantics
as a way of organizing and comparing data. The goal of NIF is
thus to provide researchers with the building blocks in which to
create new data and knowledge in a way that promotes inter-
operability, not to restrict expression (Bug et al., 2008; Imam
et al., 2012). The ontologies that form the building blocks of the
NDPO/PKB essentially provide us with a simplified yet power-
ful language for composing phenotype statements in a way that
exposes them to the power of algorithmic tools for comparison,
similar to the array of tools for pathway analysis among molec-
ular entities or sequence comparison tools among thousands

of sequences genotypes (Figure 4). As the underlying ontolo-
gies continue to evolve, we expect that algorithms will perform
better, aiding basic and clinical researchers interested in select-
ing appropriate models and in exploiting the knowledge base
to derive new hypotheses about the molecular underpinnings of
disease.
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