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One of the major outcomes of neuroscientific research are models of Neural Network
Structures (NNSs). Descriptions of these models usually consist of a non-standardized
mixture of text, figures, and other means of visual information communication in print
media. However, as neuroscience is an interdisciplinary domain by nature, a standardized
way of consistently representing models of NNSs is required. While generic descriptions
of such models in textual form have recently been developed, a formalized way of
schematically expressing them does not exist to date. Hence, in this paper we present
Neural Schematics as a concept inspired by similar approaches from other disciplines
for a generic two dimensional representation of said structures. After introducing NNSs
in general, a set of current visualizations of models of NNSs is reviewed and analyzed
for what information they convey and how their elements are rendered. This analysis
then allows for the definition of general items and symbols to consistently represent
these models as Neural Schematics on a two dimensional plane. We will illustrate the
possibilities an agreed upon standard can yield on sampled diagrams transformed into
Neural Schematics and an example application for the design and modeling of large-scale
NNSs.
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INTRODUCTION
One of the major outcomes of neuroscientific research are models
of Neural Network Structures (NNSs) that have to be commu-
nicated to the research community. In scientific publications,
descriptions of these models usually consist of a non-standardized
mixture of text, figures, and other means of visual information
communication in print media (Nordlie et al., 2009). However,
as neuroscience is an interdisciplinary domain by nature where
researchers from biology, psychology, mathematics, physics, com-
puter science, or electrical engineering have to cooperate, a
standardized way of consistently representing neural network
models is required to communicate their concepts without obsta-
cles. But whereas generic descriptions of such models in textual
form have recently been developed (Davison et al., 2009; Gleeson
et al., 2010), graphical representations of neural structures in the
research field of neuroscience remain diverse.

Nordlie et al. noted that “one may choose from a [] variety of
styles for [] diagrams, and it is not a priori clear which style is best.”
(cf. Nordlie et al., 2009, p. 15) and stated that (computational)
neuroscientists “mostly [rely] on box-and-arrow diagrams [] using
ad hoc notations with conflicting use of symbols” (cf. Nordlie and
Plesser, 2010, p. 1). Consequently they presented Connectivity
Pattern Tables (CPTs) as a means to generalize representations of
the connectivity of neural networks. In the same line of argument,
Djurfeldt (2012) presented the Connection-set Algebra (CSA) as
another approach to express neural network connectivity without
ambiguity.

We herewith propose Neural Schematics as a generic two
dimensional schematic representation of large-scale NNSs. The

idea of Neural Schematics is inspired by similar approaches
from engineering as well as de-facto standards from natural sci-
ences. An example from schematics in engineering are standards
in electrical engineering such as the IEEE 1 Std 315-1975
“Graphic Symbols for Electrical and Electronics Diagrams” (IEEE,
1975) or the IEEE Std 91-1984 “Graphic Symbols for Logic
Functions” (IEEE, 1984) and its application in the graphical rep-
resentation of electric and electronic circuitry. These schematics
are made editable via schematic editors and have correspond-
ing textual representations such as the Hardware Description
Languages (HDLs) like SystemC (IEEE, 2005), VHDL (IEEE,
1999) or SystemVerilog (IEEE, 2012). For the natural sci-
ences we might look at systems biology with the Systems Biology
Graphical Notation (SBGN) (Novere et al., 2009), its textual form
Systems Biology Markup Language (SBML)(Hucka et al., 2003),
and editors that enable schematic editing such as, for example,
the CellDesigner (Funahashi et al., 2008).

To develop the concept of Neural Schematics we will first
describe in Materials and Methods a general modeling approach
for NNSs to introduce a common terminology. This is followed
by a summary of the selection process of diagram samples depict-
ing NNSs and the specification of the elements we will scan NNS
samples for. A set of guidelines for the development of the Neural
Schematics concludes this section.

As Results we will first search the sampled figures as well as
their references for the structural information provided and then
compare these findings to determine what the Neural Schematics

1Institute of Electrical and Electronics Engineers.
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should comprise. These results are subsequently used to develop
the concept of the Neural Schematics. As proof-of-concept a sub-
set of the samples is then redrawn and a mock-up of a modeling
software tool is presented to illustrate a further application for
the Neural Schematic concept. As a textual representation of the
Neural Schematics is essential for the concept’s diffusion into the
research community, we furthermore reason and suggest the use
of PyNN as such. In the last section we will conclude with a
discussion of the concept and its applications.

MATERIALS AND METHODS
To guide the analysis of schematic drawings of NNSs, we estab-
lish a common terminology by describing a modeling approach
for NNSs (1). Afterwards the sample selection and analysis pro-
cess is specified (2) and definition guidelines for the symbols and
elements of Neural Schematics are stated (3).

MODELING LARGE-SCALE NEURAL NETWORK STRUCTURES
A model of a NNS describes in an abstract manner a functional
principle of the Central Nervous System of the vertebrate brain.
We assume a Cortex centered modeling approach and thus other
regions of the brain are Non-Cortical Regions (NCRs).

From a cytological point of view the Cortex is a structure made
up of layers of tissue with a layering perpendicular to its surface.
These layers are differentiated by the morphological distinctive-
ness and connectivity of the neurons they contain (Ramón y
Cajal, 1904) and are numbered starting below the Cortex’s
surface with Layer I counting upward when moving down into
the Cortex’s matter to Layer VI as the lowest.

The surface of the Cortex can be partitioned into areas as
first introduced by Brodmann (1909). This division, which was
primarily based on histological criteria, was later proven as also
functionally related and is still being refined today (Wallace et al.,
2004). Dedicated areas handle a specific information process-
ing task. Among the areas there is a hierarchy according to the
complexity of the task, starting from lower cortical areas doing
preprocessing to the higher cortical areas performing associative
tasks.

Elements in the Cortex or NCRs might be grouped into func-
tional units that can subdivide an area or NCR, such as the
Cortical Column (Mountcastle, 1997) that subdivides areas in the
Cortex. A unit is a canonical hierarchical element, i.e., it can be a
super-unit or sub-unit to other units.

A compound of functionally related neurons that belong to the
same morphological/electrophysiological cell class might in a model
be grouped together to a population, as for example in Douglas
et al. (1998) or Haeusler and Maass (2007). These populations
are connected via projections, with a projection leaving a popula-
tion as efferent and entering a population as afferent. A projection
bundles synaptic connections between neurons of a population.
All synaptic connections of a projection are of the same excitation
type,2 which are either excitatory or inhibitory.

Populations and projections might have additional attributes.
Additional attributes related to the group of neurons are for

2We consider the excitation type a property of the synaptic connection rather
than of the presynaptic neuron.

instance neuron model parameters and spatial distribution of
the neurons. For a projection, additional attributes might be the
weights, dynamics, and delays of its synaptic connections as well
as its synaptic connection density.

SAMPLE SELECTION AND ANALYSIS PROCESS
We will analyze a set of sample diagrams to determine in detail
what these have in common and, hence, what should be express-
ible with standardized schematic elements.

The samples resemble a merely randomly drawn set of six neu-
ral network models that are scanned for the information they
convey and what graphical elements the authors utilized for that
purpose. For a comparative analysis we will primarily but not
exclusively search for elements as introduced with the description
of the modeling approach, such as:

• populations,
• neuronal attributes,
• projections,
• synaptic attributes,
• layers,
• areas,
• NCRs,
• units.

Secondly, we will look for any additional attributes of pro-
jections and populations or any other structural information
provided in a figure or in its reference. By comparison of the
found features we can then isolate the set of elements required
for Neural Schematics.

DEFINITION GUIDELINES
For the evaluation of the rendering styles of the sample diagrams
and the definition of symbols and elements for Neural Schematics
we have chosen the following guidelines: (1) base the concept
upon the schematic style for electrical circuitry, (2) favor simplic-
ity over visual distinctiveness, and (3) with application primarily
for visual modeling in CAD3 applications and secondly for figures
in publications.

RESULTS
The concept of Neural Schematics is now developed stepwise. First
the sampled graphical NNS representations are introduced and
analyzed (1). Subsequently we compare the analysis results to
isolate the required Neural Schematic features (2). Following the
comparison we define items and symbols to graphically represent
said features on a two dimensional plane (3) and then redraw a
subset of the sampled NNSs (4). An illustrative application for
Neural Schematics and a proposal for its textual representation (5)
conclude the results.

SAMPLE ANALYSIS
The first sample, shown in Figure 1, depicts a general NNS of
Thalamocortical regions and was taken from Destexhe (2009).
Squares represent different regions such as the Cortex or the

3Computer Aided Design.
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FIGURE 1 | A schematic of Thalamocortical regions, taken

from Destexhe (2009).

NCR of the Thalamus. Circles within the regions stand for single
neurons with inter- and intra-regional projections rendered as
directed edges between single neurons. A row of circles represents
a population of cells, with a label on the right side of the popula-
tion holding its cell type. Here PY stands for Pyramidal cells, IN
for inhibitory Interneurons, TC for Thalamocortical, and RE for
Thalamic Reticular neurons. The filling color of the circles repre-
senting neuron signifies the excitation type of the efferents with
dark gray for excitatory and light gray for inhibitory. The edges
are labeled with the projection’s connection density in percent
and a synapse receptor type. The latter is implicitly denoting a
projection’s excitation type as the pointer tips of the edges are the
same for both types. Furthermore, a certain degree of locality of
the connections is implied by the connectivity drawing style.

In the referenced publication the reader finds more details on
the cell classes of the modeled NNS. Although information on
regions is present in the image only, the publication provides layer
and area information for the cortical fraction of the NNS, here
Layer VI and Area 5 of cat, designating the experimental basis for
the connectivity of that NNS. No functional grouping into units
can be found.

A second sample was taken from Douglas and Martin (2004)
and is shown in Figure 2. The figure sketches a template for
excitatory Thalamocortical microcircuitry primarily based on
experimental data of Area 17 or the Primary Visual Cortex V1
of cat, see references in Douglas and Martin (2004). Circles
represent different populations labeled with the layer Lx and the
neuron type, e.g., P as pyramidal for the cortical populations and
Thal as thalamic or Sub for other sub-cortical regions as NCRs.
The vertical distribution of the nodes in the graph represents
a population’s area correspondence. Projections are exclusively
excitatory and are drawn as directed arrows of which the ones
rendered with thicker lines indicate local projections.

As a qualitative NNS such as the model communicated here
requires less information to be present in the figure as for a more
quantitative description, e.g., such as Figure 1, no additional
information can be found in the image or in the reference.

FIGURE 2 | A schematic of the microcircuitry of Thalamocortical

regions, taken from Douglas and Martin (2004).

In Figure 3 two graphical representations of a NNS located
in Area 17 of the Primary Visual Cortex V1 of cat including its
X/Y afferents from the dorsal Lateral Geniculate Nucleus (LGN),
as part of the NCR of the Thalamus, are shown that are both based
on the same experimental data.

The schematic on the left was taken from Binzegger et al.
(2004) and displays the fraction of the total synapses, that are
involved in the excitatory projections between populations on dif-
ferent layers. The populations are rendered as boxes and in general
labeled with the layer in which they are located. Arrows direct the
projections which are all of the same excitatory type. A projection
is visually attributed with its fraction of the total synaptic connec-
tions as a label. The projection with the largest fraction of synaptic
connections is highlighted. In the reference such schematics are
drawn likewise for projections between populations that are the
source of inhibitory projections, for projections from populations
that are the source of excitatory projections to populations that
are the source of inhibitory projections and vice versa using the
same projection style as for the image presented above, alternat-
ing the meaning of the arrow as either excitatory or inhibitory in
text. The area for which the microcircuitry was modeled is only
given in the reference. Morphological cell classes of the popula-
tions are also to be found in the reference where the receptor types
and the connection densities are indicated.

Figure 3 on the right, taken from Binzegger et al. (2009),
depicts a Cortical Graph of the same NNS. The graph shows the
complete set of projections. An arrow representing a projection
encodes in its gray-level the relative number of synapses between
the populations. Populations that are the source of excitatory pro-
jections are pictured as square shapes and sources of inhibitory
projections as circular shapes, with their sizes scaled according to
the number of neurons per populations. The population labels
denote the morphological cell class accompanied by the layer in
which they are located, and for a subset the preferred layer(s) of
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FIGURE 3 | A schematic of the Primary Visual Cortex V1 of cat on the left and its Cortical Graph on the right, taken from Binzegger et al. (2004) and

from Binzegger et al. (2009), respectively.

FIGURE 4 | A schematic of a Cortical Microcircuit Template, taken

from Haeusler and Maass (2007).

axonal innervation is given in parentheses. An additional scale
located left of the graph also indicates the layer of a population’s
spatial location.

The graph in Figure 4 depicts a Cortical Microcircuit Template
by Haeussler and Maass sampled from Haeusler and Maass
(2007). The graph is based on combined experimental data
from different cortical areas of different vertebrate species. It

FIGURE 5 | A schematic of a Synfire Chain with Feed Forward

Inhibition, taken from Kremkow et al. (2010).

shows the inhibitory and excitatory connectivity between pop-
ulations on different layers. A projection arrow’s thickness is
determined by the mean amplitude of the Postsynaptic Potential
(PSP) at the soma in [mV] as the first number and the con-
nection probability between the populations in percent as the
second number in parentheses. Populations are rendered as cir-
cular nodes. Node shapes are labeled starting with the layer in
which they reside followed by the excitation type of its effer-
ents. The reference gives further basic information on the mor-
phological cell types by distinguishing between pyramidal and
non-pyramidal cells. Different colors of the circles and arrows
denote excitatory types (red) and inhibitory types (black) as
well as afferent input “streams” (blue) and efferent intra-cortical
or thalamic output (green). In addition, the maximum spa-
tial intra-laminar distance between populations and information
on the modeled synaptic plasticity is provided in the refer-
ence.

Figure 5 depicts a Synfire Chain with Feed Forward Inhibition
(FFI) of Kremkow et al. (2010) as a template of a NNS based
on combined experimental data from different cortical areas of
different vertebrate species.
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The model depicts a horizontal chain where each chain
element consists of a population of Regular Spiking (RS) neu-
rons, rendered as triangle shaped nodes, that is inhibited verti-
cally by a population of Fast Spiking (FS) neurons, the circular
shaped nodes. The aggregation of populations to a chain ele-
ment as a unit is labeled a group. The stimulus population
of the chain is represented by a square shaped node visually
accompanied by a diagram illustrating the stimulus generating
function. Projections between populations are represented by
arrows where the excitation types of the connections are differ-
entiated by color, i.e., red for excitatory and blue for inhibitory,
and shape of the pointer tip, i.e., square-cut for excitatory and
circular for inhibitory, additionally labeled with + and −, respec-
tively. Not shown in the figure but given in the reference are
synaptic delays and connection densities as attributes of the
projections.

In Figure 6 three differently rendered schematics of the same
NNS are shown to illustrate the diversity of visualizations.

The underlying NNS is an Attractor Network model of corti-
cal Associative Memory function based on Cortical Columns as
described by Fransén and Lansner (1998) as a general model of
the neocortical memory function. The model consists of pop-
ulations in different layers, with excitatory as well as inhibitory
projections in between the populations and organizational units.
The schematics have been taken and are sorted in this order from
Fransén and Lansner (1998) as Figure 6 top, from Lansner (2009)
as Figure 6 center, and from Lundqvist et al. (2010) as Figure 6
bottom.

In the first schematic, Figure 6 top, the cortical layers are
shown implicitly but were assigned names in the reference, with
the higher cortical layers II/III at the top and the afferents from
layer IV at the bottom. As the neurons are modeled as multi-
compartment elements, the populations are rendered as complex
shapes to illustrate the location of synaptic buttons. The neuron
cell classes of the populations, although visually distinguishable in
the image, are only specified in the reference. Projections between

FIGURE 6 | Schematics of the Associative Memory Model in Layers II and III of the Neocortex, taken from Fransén and Lansner (1998), Lansner

(2009), and Lundqvist et al. (2010) from top to bottom in this order.
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the populations show the direction via a circular pointer tip,
where its filling denotes the connections excitation type: without
filling for excitatory and with filling for inhibitory synapses. Solid
highlighting demarcates a functional unit.

In Figure 6 center the ordering of the layers and the label-
ing of the areas remains the same as in the schematic before. As
the referenced publication is mainly concerned with the princi-
ple of the model, the populations are now rendered in simpler
shapes which are now shaded with a color gradient. The excita-
tion type is indicated by colors with red for excitatory and blue
for inhibitory. Arrows are again used for projections, but in con-
trast to the schematic of Figure 6 top the pointer tips now only
indicate their direction.

The schematic in Figure 6 bottom is a slightly modified variant
of the drawing before. The pointer tips are now rendered as circles,
thegradienthighlightingwasreplacedbyplainhighlightingandthe
projections are in addition visually attributed with the connection
densities and average PSP amplitudes as measured at the soma.

COMPARISON
By comparing the information found for the individual NNS
descriptions, the common elements can be identified. A swift
comparison already shows that the figures provide, although
using different graphical styles, a common set of information.
Table 1 lists the samples and summarizes what information were
found for each in its figure as well as in its reference.

When looking at the table it can be seen that the authors of the
figures used primarily populations and projections as the lowest
level of abstraction. Single neurons were utilized only in Figure 1
and there presumably to illustrate the locality of the synaptic

connectivity pattern as in the publication itself (Destexhe, 2009)
the focus is foremost on the population’s level. Therefore we
will use populations and projections also as the lowest level of
abstraction for Neural Schematics.

All the authors of the analyzed figures used cell classes either
to label a population, transported this information via distinctive
geometrical shapes, or provided this information in the corre-
sponding reference. Consequently we will include the cell class
information in the Neural Schematic concept. The same accounts
for the synaptic excitation type which, is again mediated in different
ways, but present.

As only Figure 1 provided the synaptic receptor types with the
purpose of expressing the excitation type and other references
provided that information only in text, we do not include these
in Neural Schematics.

The strength of a projection can be indicated via the effective
synaptic strength or the synaptic connection density. Only two
of the figures included the average synaptic weights as the mean
amplitude of the PSP, but all images or its references provided
information on the synaptic connection density. To have at least
one projection property expressing its strength visually we will
include the synaptic connection density.

Dynamic attributes of synaptic connectivity such as plasticity
or transmission delays were not present in any of the analyzed
figures. However, Haeusler and Maass (2007) and Lansner (2009)
provided information on plasticity, but only the first actually
includes it in the model. Information on transmission delays
in the model where solely given in Kremkow et al. (2010). We
assume that the reason why the authors did not find it necessary
to include these details in the figure is to put the focus of the

Table 1 | Comparison of sample features; vertically grouped are neuronal, synaptic as well as spatial features of NNSs; horizontal lines in the

data fields group examples that represent the same NNS concept; symbols denote that information is: �—available in the original drawing

and further explained in text, ��—available in the referenced publication, �—not available.
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1 � � � � � � � � � �� �� � �a � � Destexhe, 2009

2 � � � �� � � �� � � � � � �b � � Douglas and Martin, 2004

3 left � �� � �� � �� �� � � � �� � � � � Binzegger et al., 2004

3 right. � � � � � � � � � � �� �� �c � � Binzegger et al., 2009

4 � �� � � �d � � �� � � �� � ��e � � Haeusler and Maass, 2007

5 � � � � � �� � � �� � �� � � � ��f Kremkow et al., 2010

6 top � � � � � �� �� � � �� � � �g � � Fransén and Lansner, 1998

6 center � � � � � � �� �� � �� � � � � � Lansner, 2009

6 bottom � � � � �d � �� � � �� � � � � � Lundqvist et al., 2010

aLocality of synaptic connections.
bLocality of projection.
cPreferred layer of axonal innervation.
d Mean amplitude of PSP.
eMaximum intra-laminar distance of recording sites.
f Stimulus generating function.
gLocation of synaptic buttons.
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graphical representation of the model on the static structure
rather than its dynamic properties. We will therefore not include
dynamic properties in the Neural Schematic concept.

Layer information is for all but one sample provided either
as label of populations, via spatial positioning of populations,
as backdrop to the schematic/graph, or given in the reference.
Hence, this information will be included in the concept to be
developed.

We will also incorporate areas and NCRs as this information is
helpful in identifying the neuroanatomical correspondence, thus
implicitly providing a spatial localization of a NNS. For the same
reason units to logically group elements will also be included.

Some figures provided additional spatial information:

• the locality of the synaptic connectivity structure as present
in Figure 1 and which will not be expressible in Neural
Schematics as its level of abstraction is below the populations
and projections,

• the locality of projections as shown in Figure 2 and which will
be contained implicitly in the area and layer information,

• the preferred layer of axonal innervation of efferents leav-
ing the NNS annotated via the population labels in Figure 3
right which will be rendered as projections into specific
layers,

• the maximum intra-laminar distance of recording sites which
is in that detail considered not relevant for a NNS model, and

• the location of synaptic buttons which is again below the level
of abstraction of the Neural Schematics.

Only Figure 5 displayed uncategorized information that will
not be present in a Neural Schematic.

DEFINING SYMBOLS OF NEURAL SCHEMATICS
For the set of elements that where chosen above as to be included
in the Neural Schematics we will now define the graphical elements
for a generic 2-D schematic representation of NNSs.

We begin with populations and projections as the basic elements
to describe a NNS. Subsequently, elements for layers, areas, NCRs,
andunitsare introducedtoannotatefurtherstructural information
to the Neural Schematics.

Following the definition guidelines given above, no features
of graphical elements, i.e., the size of a shape or the thickness
of a line, will be scaled according to attribute values to keep the
Neural Schematics concept as simple as possible. However, lines
might in general be of arbitrary thickness but proportional for
all elements.

Populations—are represented by rectangles of arbitrary
size and proportions, drawn with solid lines as shown in
Figure 7 top. Although in the samples analyzed circles are
the preferred shape for a population, we choose the rectangle
using the graphical symbol for a logic function (IEEE, 1984)
as a template as it enables the possibility to define a side for
afferents and efferents.

Furthermore, as the number of categories for cell classes is
currently not definite, see Markram et al. (2004) for example,
we suggest a consistent naming scheme for populations rather

FIGURE 7 | A population object template shown at the top and

three population examples at the bottom. Following the template, a
population is rendered as a rectangle and labeled with the
electrophysiological cell class and/or the morphological type of its neurons;
the afferent projections enter a population element on the left side
relative to its label and the efferent projections leave it on the right side.

than introducing distinct shapes as in Figure 5 or 6 for the
variety of population types. A naming of populations based on
the cell classes differentiated by the morphology and electro-
physiological properties of the cells in a population combines
the naming conventions used in some of the analyzed samples.
A population is hence named after its neuron’s electrophysio-
logical class or a name describing its spiking behavior in normal
typeset and/or its neurons morphological type as well as any
other descriptive class in italic typeset. Other attributes of a
population, as reasoned above, are not shown in its graphical
representation.

Populations are the sources and/or sinks of projections
which originate at the right hand side relative to the label of
a population symbol and terminate at its left hand side.
Figure 7 bottom provides three examples of populations as
described above. On the left is a stimuli population named
POIS which might generate Poisson distributed pulses, in the
middle a population of cells with RS behavior and Pyramidal
(PYR) morphology thus also named PYR, and on the right a
population of motor cells with Unipolar (UNI) morphology
thus named UNI.
Projections—connect populations as solid lines as

shown in Figure 8 left. To denote the excitation type of a
projection, an empty circle is added at the termination of an
inhibitory afferent to a population similar to a negated input
to a graphical symbol for a logic function (IEEE, 1984). Colors
are not applied as to first keep the concept as simple as possible
and, second, although common, their use is ambiguous, e.g.,
some use red for the excitatory type as in Figure 5 or 6 while
others use the same color for the inhibitory type as in Figure 4.
In addition and on the contrary to all the analyzed samples,
no arrow ends or similar shapes are required to signal the
direction of a projection as they are already directed by the
defined sides for incoming and outgoing connections on a
population.

As reasoned in the comparison, the connection density is
used as a means of expressing a projection’s strength as a label,
if given. Other attributes of a projection, as mentioned above,
are not shown in its graphical representation.
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FIGURE 8 | Projection template shown on the left and examples on

the right. Following its template a projection is rendered as a line and
might be labeled with its connection density, its direction is defined by
the convention on which side projections enter/leave populations. An
inhibitory projection is marked by an empty circle at its end.

FIGURE 9 | Illustration of the rendering scheme for cortical layers,

areas, NCRs, and functional units. Layer boundaries are demarcated by
dotted horizontal lines as shown on the right and any Area or NCR is
differentiated by vertical lines. Layer, Areas, and NCRs share the same
dotted line style. A dashed square, here grouping the two populations
within the Area, represents a functional unit.

Unlike the connections in electrical circuitry projections,
these connections are one-to-one, i.e., they do not branch or
join. Projections that have no origin are considered inputs
to the NNS and projections that do not terminate represent
outputs of a NNS, respectively. A population might project
onto itself the same way as it projects onto other populations.

Figure 8 right depicts an example of a population with its
projections; it shows to the left hand side of the population
symbol an excitatory inbound projection with a connection
density of 0.5, an inhibitory incoming projection with a con-
nection density of 0.1, and an incoming excitatory feedback
loop that is the projection of a population onto itself with a
connection density of 0.2. On the right hand side, in addition
to the feedback loop, a second outgoing projection with a
connection density of 0.2 is displayed.
Layers—might be integrated in a NNS’s graphical repre-

sentation, if this information is present as dotted horizontal
lines as in Figure 9. The layers are named on the right hand side
of the Neural Schematic with roman numerals in uppercase
letters of a monospace fontset in normal typeset. The ordering
of the layers is highest cortical layer on top.

FIGURE 10 | Neural Schematic of Thalamocortical regions,

following Destexhe (2009).

Areas—might be added to a Neural Schematic as dotted
vertical lines to delimit them as in Figure 9. Areas might be
partitioned by layer boundaries and are named above using a
monospace fontset in normal typeset.
NCRs—are rendered in the same visual style as areas but

must not contain layer boundaries.
Units—providetheoptiontoclusterpopulations function-

ally. A unit is represented by a rectangular shape of arbitrary size
and proportions, rendered using a dashed line style. Projections
to that logical unit may enter or leave the unit at arbitrary sides.
A unit’s name is determined by its function and set in normal
typeset. A unit might not be a pure hierarchical element as it
can house sub-units along with populations, as for example
in Figure 6 bottom.

SAMPLES REDRAWN
Three of the samples are now redrawn with the information of
the original figures combined where applicable with the details
given in the references to illustrate the Neural Schematics concept
of a unified formal 2-D graphical representation of NNSs.

Figure 10 shows the redrawn NNS of Figure 1 from Destexhe
(2009). The boxes of the original drawing dissolved into the
background elements of the Thalamus as NCR without layers on
the left and the Layer VI of Area 5 on the right.

The populations were renamed as listed in Table 2 accord-
ing to the naming scheme established by the Neural Schematics
concept. It is distinguished between the electrophysiological and
morphological cell classes with the information given either by
the original schematic or Destexhe (2009) to: RS/PYR for PY as
the cells with a PYR morphology and RS behavior, FS/NPYR for
IN as cells with a Non-Pyramidal (NPYR) morphology and FS
behavior, while TC and RE are used as general descriptive classes.

The connection densities added to the projections are now
expressed in relative numbers. The synaptic receptor types of
the projections are not incorporated in the redrawn figure since
projections for Neural Schematics fall in either the excitatory or
inhibitory category. Additional projections for the stimuli were
included in the Neural Schematic.
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Table 2 | Relabeling of the populations of Figure 1: left the original

label, middle the electrophysiological or spiking class, right the

morphological or other class.

Original Elektrophys./spiking Morph./other

PYR RS PYR

IN FS NPYR

TC – TC

RE – RE

FIGURE 11 | The Neural Schematic of a Synfire Chain with Feed

Forward Inhibition, after Kremkow et al. (2010).

Figure 11 depicts the redrawn model of Kremkow et al. (2010)
with its original shown in Figure 5. The population labels were
extended with the morphological cell class to RS/PYR and to
FS/NPYR. The projections now show the connection density
as given in the referenced publication. Details on the stimulus
as shown in the original schematic are no longer as defined
for the Neural Schematics. In contrast to the original figure,
the NNS in the Neural Schematic is drawn with three groups,
representing logical units instead of an unspecific number of
these.

One Hypercolumn unit of the schematic in Figure 6 bottom
of the Associative Memory model of the neocortical Layers II/III
was redrawn as shown in Figure 12. As only layer information for
that NNS is given, no area is shown. Populations are grouped to
Minicolumn units that are housed along with a further population
in a Hypercolumn unit.

The populations where renamed as listed in Table 3 to
RS/NPYR for RSNP as the Layer II/III Inhibitory Non-Pyramidal
or Double-Bouquet cells, FS/NPYR for Layer II/III Inhibitory
Non-Pyramidal or Basket cells for lateral inhibition, to RS/PYR
for the Layer II/III Pyramidal cells, and Layer IV Input
abstracted as STIM. The information on synaptic connec-
tion density is shown as in the original figure; however, the
synaptic strength represented by the mean PSP is no longer
displayed.

APPLICATION
TheNeuralSchematic’s levelofabstractionwith its focusonpopula-
tionsandprojectionsratherthansingleneuronsandsynapsesadvo-
cates itsapplicationtothevisualdesignofNNSs,thusenablingCAD
concepts within neuromorphic engineering. Modeling and simu-
lation software applications such asneuroConstruct (Gleeson
et al., 2007) orThopographica (Bednar, 2009) already offer the
possibility to design or edit neural network models via a graphical

FIGURE 12 | The Neural Schematic of the Associative Memory

model, following Lundqvist et al. (2010).

Table 3 | Relabeling of the populations for Figure 12: left the

original label, middle the electrophysiological or spiking class, right

the morphological or other class.

Original Elektrophys./spiking Morph./other

RSNP RS NPYR

Basket FS NPYR

PYR RS PYR

– – STIM

representation. The visualizations offered by these tools, however,
are neither schematics nor as general as Neural Schematics.

To underline the argument, a mock-up of an application 4 is
shown in Figure 13. A software tool here named Neural Architect
might utilize Neural Schematic views to model NNSs and set up
experiments for simulations/emulations. The GUI5 of the Neural
Architect includes an editor to visually design a NNS, as can be
seen on the right side in the background. Selecting a single Neural
Schematic element, here a population object might allow the
attribution of information to the element or modify its attributes
via an entry mask as shown on the left side. Additional menus of
the application might handle the experiment setup such as the
simulator/emulator settings, the probing, or the data streaming
of results.

Nordlie et al. (2009) assume that “[o]ne reason [that textual
descriptions of NNSs such as PyNN have not] yet caught on as a
means of widespread model exchange may be [the lack of] human-
comprehensible model descriptions [such as figures] that might be
included in publications” (cf. p. 16). The proximity of the PyNN
language’s sub-set of elements for the structural description of
NNSs to the Neural Schematics elements qualifies it to complement

4Realization using PyQt by www.riverbankcomputing.co.uk and
Qt from qt.digia.com
5Graphical User Interface.
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FIGURE 13 | A mock-up of a Neural Schematics application. A software here named Neural Architect is intended to model NNSs and setup
experiments for simulations on neuromorphic software simulators or emulations on neuromorphic emulator hardware, further description in text.

Neural Schematics as its preferred textual representation to stream
model information.

However, as the structural information describable with Neural
Schematics is not congruent with the PyNN capabilities, the
additional information such as the layers or the areas might have
to be annotated to the corresponding PyNN elements.

DISCUSSION
Neural Schematics, as presented, standardize the way concepts of
NNSs are visually transported. By analyzing a set of samples of
current NNS depictions and references for what their authors
intended to communicate and how they presented them, it is
ensured that the Neural Schematics concept includes required and
generally accepted means to express NNSs. It is still yet to be proven,
however, that the concept holds when applying Neural Schematics
to other NNSs, such as the examined ones, e.g., Johansson and
Lansner (2007), Izhikevich and Edelman (2008), Deco et al. (2010),
and Wagatsuma et al. (2011).

Due to the rule of projections entering a population on the left
side relative to its label, and leaving on the right, respectively, the
routing of the projections might cause a Neural Schematic to be in
that regard visually more complex than the original as is the case
when comparing Figure 6 with its Neural Schematic in Figure 12.
A possible way to reduce some of this visual complexity, although
noneof theanalyzeddrawingsutilizedcomparableelements,might
be the introduction of hierarchical units to enable a higher level
of describing NNSs. Hierarchical units are functional modules

that would underly the same routing constraints as populations
and hide their enclosed elements. Visual intricacies as introduced
by coloring, highlighting, scaling, or complex shapes, however,
are removed from the original figures.

Nevertheless, as the concept was developed with the constraints
that simplicity should dominate over visual distinctiveness and
that the Neural Schematics should be general to visually express
as many NNS concepts as possible in the same style, it does not
claim to be visually superior when compared to other diagram
styles and it is as such not intended to completely replace more
detailed illustrations of a specific NNS.

With its level of abstraction, i.e., having Populations and
Projections at the lowest level, the Neural Schematics suffice for the
communication of NNS concepts and descriptions not explicitly
requiring more detail, for example, its neuron models or the
connection structure inside a projection. This is in line with the
arguments given as good model description practice from Nordlie
et al. (2009) as it might ease the comprehension of a concept
when not showing attributes of populations or projections in
the schematic, but rather complement the figures with tables
or other means more suitable, providing additional information
such as CPTs.

The Neural Schematics concept furthermore provides the pos-
sibility to augment the logical setup of a NNS with spatial
information by adding layers, areas, NCRs, or implicitly provide
spatial information by grouping populations to units. Although
none of the analyzed figure samples provided other explicit spatial
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information at the Neural Schematic’s level of abstraction, a three
dimensional spatial positioning of NNS elements is arguable,
especially in the CAD context. However, from the authors’ point
of view such an extension of the Neural Schematics developed in
this paper is not inevitable as it would lead to a concept resulting
in visual representations of NNSs that are rather less suitable for
publishable figures.

CONCLUSION
We developed and presented Neural Schematics as a new unified
schematic representation of NNSs to further remove the obstacles
faced when communicating the ideas and concepts of NNS mod-
els. For common features of NNSs the Neural Schematics provide
elements that were developed based on a comparative analysis of
a set of samples from published graphical depictions of NNSs.
The practicability of the concept was illustrated with a subset of
the analyzed samples rendered as Neural Schematics.

Due to its routing conventions, a Neural Schematic might seem
confusing when first exposed to the concept, but with growing
acceptance and adaption the Neural Schematics might in general
be easier to read than interpreting a new style with each new figure
of a novel or even the same NNS. As an example supporting that
hypothesis we refer to schematics describing electronic circuitry
which underly similar conventions. These standards introduced
in the 1970’s and 1980’s have been around for more than three

decades now and are utilized to represent schematics of electrical
circuitry with millions of elements.

The authors hope that Neural Schematics might ease the
communication of novel NNS concepts and, supported by
software tools enabling the CAD concept of Visual Programming
of NNSs by providing functionality similar to the sketched
Neural Architect, boost the modeling sciences, just as standards
for schematics of electrical circuitry certainly did for VLSI6

design.
However, Sejnowski et al. (1988) characterized models of NNSs

as “provisional framework[s] for organizing possible ways of thinking
about the nervous system” (cf. p. 54) after which models and mod-
eling concepts continually change and so must the concepts that
are built around them. As such, we do agree that the concept of
Neural Schematics might undergo iterations in evolving or refining
it and therefore encourage a broader discussion concerning its
fields of application and welcome suggestions on modifications
to keep or even improve its general applicability.
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