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In the last decade, level-set methods have been actively developed for applications in
image registration, segmentation, tracking, and reconstruction. However, the development
of a wide variety of level-set PDEs and their numerical discretization schemes, coupled
with hybrid combinations of PDE terms, stopping criteria, and reinitialization strategies,
has created a software logistics problem. In the absence of an integrative design, current
toolkits support only specific types of level-set implementations which restrict future
algorithm development since extensions require significant code duplication and effort.
In the new NIH/NLM Insight Toolkit (ITK) v4 architecture, we implemented a level-set
software design that is flexible to different numerical (continuous, discrete, and sparse)
and grid representations (point, mesh, and image-based). Given that a generic PDE is
a summation of different terms, we used a set of linked containers to which level-set
terms can be added or deleted at any point in the evolution process. This container-based
approach allows the user to explore and customize terms in the level-set equation
at compile-time in a flexible manner. The framework is optimized so that repeated
computations of common intensity functions (e.g., gradient and Hessians) across multiple
terms is eliminated. The framework further enables the evolution of multiple level-sets
for multi-object segmentation and processing of large datasets. For doing so, we restrict
level-set domains to subsets of the image domain and use multithreading strategies
to process groups of subdomains or level-set functions. Users can also select from a
variety of reinitialization policies and stopping criteria. Finally, we developed a visualization
framework that shows the evolution of a level-set in real-time to help guide algorithm
development and parameter optimization. We demonstrate the power of our new
framework using confocal microscopy images of cells in a developing zebrafish embryo.
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1. INTRODUCTION
The automated identification of anatomical structures found in
medical and microscopy images is an important step in any
imaging-based quantitative analysis pipeline. Large variations in
image quality arising from differences in acquisition protocols,
anisotropic point-spread functions, and image noise complicate
the task of automated image analysis tools. To overcome the dis-
advantages associated with simple heuristic methods, a class of
methods for contour evolution known as geometric active con-
tour models, or level-sets, have been actively developed (Osher
and Sethian, 1988; Sethian, 1999). Level-sets have become a
preferred method for addressing a number of image science prob-
lems (Tsai and Osher, 2004) including denoising (Rudin et al.,
1992; Dibos and Koepfler, 1998; Vese and Osher, 2004), reg-
istration (Vemuri et al., 2000, 2003; Droske and Ring, 2006),
segmentation (Caselles et al., 1995; Malladi et al., 1995; Leventon
et al., 2000; Cremers et al., 2006), tracking (Dufour et al., 2005;
Dydenko et al., 2006; Dzyubachyk et al., 2010), and surface recon-
struction (Zhao et al., 2001; Nilsson et al., 2005). Level-set meth-
ods represent the presumptive boundary C of an object of interest
as the zero level-line of a higher dimensional implicit function

C(t) = {(x, y)|φ(x, y, t) = 0}, also called the level-set function.
For example, the boundary C can be arbitrarily initialized along
with an initial level-set function φ0(x, y) constructed as a signed
distance function to C. In Figure 1A, we plot the zero curve of a
level-set function initialized with a square. Then, the evolution
of the level-set function to match the true object boundary is
governed by setting speed functions or via the minimization of
energy functionals (Figures 1B–D). In a basic formulation, the
evolution equation of the level-set function can be specified as
follows:

∂φ

∂t
+ F|∇φ| = 0 (1)

φ(x, y, 0) = φ0(x, y)

The function F is called the speed function and depends on
the image data I as well as φ. An advantage of the level-set
method, especially for medical imagery, is its natural ability to
incorporate information on object shape, texture, and color dis-
tribution into the segmentation process. Level-sets also avoid
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FIGURE 1 | (A–D) Iterative stages of active contour (red) evolution using
level-sets for the segmentation of objects (cells in this case) in images.
The underlying image is a 2D confocal microscopy section showing
nuclei (H2B:GFP) in the zebrafish inner ear. (E) The level-set function is

typically defined over the entire 2D image domain. Different
narrow-band representations are shown in (F) Whitaker, (G) Shi, and
(H) Malcolm. The Whitaker method uses 5 layers, Shi uses 2, and
Malcolm uses 1 layer.

the problem of explicit parameterization of the object bound-
ary, a problem with parametric active contour approaches such
as snakes (Kass et al., 1988), thus providing flexibility in the
segmentation of objects with topological changes, cusps, and cor-
ners. Furthermore, the same level-set formulation applied on 2D
images naturally extends to an N-dimensional image. Given the
large number of level-set methods already developed, we refer
to (Osher and Fedkiw, 2004) for a complete exposition of the
level-set calculus. We next discuss the major classes of level-sets
methods and how they impact the development of a generic
software system.

2. BACKGROUND
In general, there are two main classes of the level-set methodology
that arise from using a variational approach that minimizes an
energy functional: (i) edge-based and (ii) region-based methods.

2.1. EDGE-BASED LEVEL-SETS
The goal of edge-based approaches is to evolve the contour until
it finds an object edge where its speed is gradually reduced to 0.
An edge-based level-set based on mean curvature motion is given
by (Caselles et al., 1993):

∂φ

∂t
= g(∇I)|∇φ|

(
div

( ∇φ

|∇φ|
)

+ ν

)
(2)

φ(x, y, 0) = φ0(x, y)

where ν ≥ 0 is a constant. The update equation is constructed
from the image intensity (I), gradient (∇I), and edge function
g(∇I). The edge function g(∇I) is designed to have values close to

0 at the boundary and large values elsewhere. The zero level-curve

of this level-set moves with a speed of g(I)|∇φ|
(

div
( ∇φ

|∇φ|
)

+ ν
)

and stops on the object boundary where g approaches zero. The
constant term ensures the level-set always advances toward the

object boundary even when the curvature (div
( ∇φ

|∇φ|
)

) becomes

negative, i.e.,
(

div
( ∇φ

|∇φ|
)

+ ν
)

remains positive. Another pop-

ular example of an edge-based level-set uses the strong image
gradient at the object boundary to slow down or stop the zero
curve (Malladi et al., 1993, 1994):

∂φ

∂t
= |∇φ|

(
−ν + ν

(M1 − M2)

)
(|∇G∗I| − M2) (3)

φ(x, y, 0) = φ0(x, y)

where ν is a constant, G is a Gaussian function, and M1 and
M2 are the maximum and minimum values of the image gradi-
ent (|∇G∗I|). In these level-sets, parts of the contour reach the
boundary and cross-over before the rest of the contour catches
up. In order to prevent the contour from over-shooting the edge
so that it remains trapped in a minimum along the boundary,
Kichenassamy et al. (1995) and Caselles et al. (1995) indepen-
dently proposed the geodesic active contour formulation. Here,
the underlying energy is representative of the contour length in a
Riemannian space with a metric induced by the image intensity:

∂φ

∂t
= |∇φ|div

(
g(I)

∇φ

|∇φ|
)

+ νg(|∇I|) (4)
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= g(I)|∇φ|div

( ∇φ

|∇φ|
)

+ ∇g(I) · ∇φ + νg(|∇I|)

φ(x, y, 0) = φ0(x, y)

The first (curvature) and last (propagation) terms in Equation 4
approach zero at the object boundary. The middle (advection)
term ensures that contour motion is always directed toward the
boundary.

Many additional variants of edge-based concepts have been
published. An abstract representation common to all edge-based
partial differential equation (PDE) is as follows:

∂φ

∂t
= −αA(x) · ∇φ − βP(x)|∇φ| + γZ(x)κ|∇φ| (5)

φ(x, y, 0) = φ0(x, y)

where A is an advection term, P is a propagation (expansion)
term, and Z is a spatial modifier term for the mean curvature κ.
The scalar constants α, β, and γ weight the relative influence of
each of the terms on the movement of the interface. Based on this
prevalent model in the early 2000s, level-sets were implemented
in the NIH/NLM Insight Toolkit (ITK) v3. As we show next,
this model is inadequate in its representation of region-based
level-sets.

2.2. REGION-BASED LEVEL-SETS
Region-based level-sets segment the image into objects based on
region statistics (rather than just object edges) of intensity, tex-
ture, or color values. For example, the region mean intensity for
foreground (c1) and background (c2) is a popularly used statis-
tic for defining an energy functional F whose minimization leads
to an optimal segmentation of the foreground (Chan and Vese,
1999, 2001):

F(c1, c2, φ) =
∫

Inside(C)

(I(x) − c1)
2dx

+
∫

Outside(C)

(I(x) − c2)
2dx + ν · Area(C) (6)

+μ · Length(C)

Minimizing the energy functional using the standard gradient
descent (or steepest descent) method leads to the following
gradient-flow equation:

∂φ

∂t
= δe(φ)

[
μ.div

( ∇φ

|∇φ|
)

− ν − λ1(I − c1)
2 (7)

+ λ2(I − c2)
2
]

c1 =
∫
�

I(x, y).H(φ(x, y))dxdy∫
�

H(φ(x, y))dxdy

c2 =
∫
�

I(x, y).(1 − H(φ(x, y)))dxdy∫
�

(1 − H(φ(x, y)))dxdy

φ(x, y, 0) = φ0(x, y)

where H is the Heaviside function, δe is the smoothed Dirac-Delta
function, and μ and ν regularize the curve length and fore-
ground area, respectively. To account for image inhomogeneities
and large gradients that may be present in an image, piecewise-
smooth extensions were proposed in Tsai et al. (2001); Vese and
Chan (2002); Li et al. (2008). In these extensions, local intensity-
functions are defined in place of using constants c1 and c2 and the
energy functional was defined in terms of the fit with respect to
these functions. Nevertheless, the final equation form is similar to
Equation 7.

Within the last decade, region-based techniques, as well as
graph-partitioning-based active contours (Sumengen et al., 2004;
Sumengen and Manjunath, 2006), have emerged. These new
methods do not ascribe to the same generic PDE (Equation 5)
used in ITKv3 framework. The addition of region-based meth-
ods in the ITKv3 framework required us to duplicate significant
amounts of code (Mosaliganti et al., 2009a,b,c). Although edge
and region-based methodologies arise from different strategies,
our new software design and implementation in the ITK v4 com-
bines the two hierarchies seamlessly with minimal code duplica-
tion. New terms can also be easily added and require no changes
in the evolution and update classes.

2.3. NARROW-BAND METHODS
One of the primary disadvantages with using level-set methods
for image segmentation is that they are slow and memory-
intensive. The level-set function is typically discretized on the
entire image grid to hold floating-point values (Figure 1E and
Movie_Dense_S1.mov) although only the position of the zero
level-curve is of primary interest. Therefore, a key develop-
ment in reducing computational cost has been the emer-
gence of narrow-band algorithms (Whitaker, 1998; Malcolm
et al., 2008; Shi and Karl, 2008). These methods evolve the
level-set function in a layer around the zero level-set (sparse-
field) alone as opposed to its solution on the entire image
domain (dense). While the Whitaker method (Whitaker, 1998)
(Figure 1F and Movie_Whitaker_S2.mov) uses 5 layers around
the zero level-curve, the Shi and Karl (2008) (Figure 1G and
Movie_Shi_S3.mov) and Malcolm et al. (2008) (Figure 1H
and Movie_Malcolm_S4.mov) implementations use 2 and 1,
respectively. Together, they provide a significantly faster and
less memory-intensive implementation although the trade-off
is that the solution is only maintained around the zero level-
curve. They may also lead to a different local solution closer
to the initialization contour compared to the dense case. In
current software systems, narrow-band implementations derive
from the dense case and thus use an image-based repre-
sentation and do not fully exploit the speed and memory
enhancement possible. In our new software design, we derive
the sparse level-set formulations in a separate hierarchy that
represents the level-set function as linearized lists of pix-
els with floating-point values. The pixels map onto a label
image stored in run-length encoded format. By introducing
suitable narrow-band base classes, we have allowed for future
enhancements and new narrow-band representations to be intro-
duced without much effort or code-duplication in the ITKv4
framework.
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2.4. REINITIALIZATION AND STOPPING CRITERION
During the evolution of the level-set function, the differential
movement of different level-curves can cause the function to
develop gradients that are too steep and/or too flat. This neg-
atively impacts the numerical stability in subsequent iterations
leading to unpredictable outcomes. Therefore, one needs to per-
form a distance reinitialization step at the end of every few itera-
tions, such that the zero level-curve location remains unchanged.
One way to perform such an initialization is to evolve the PDE to
a steady-state according to Sussman et al. (1994):

∂φ

∂t
+ sign(φ0)(|∇φ| − 1) = 0 (8)

φ(x, y, 0) = φ0(x, y)

where φ0 represents the level-set function before the reinitial-
ization. The end result will be a signed distance function to the
interface (φ0 = 0). Another approach is to solve the Eikonal
equation using fast-marching methods (Peng et al., 1999):

|∇φ| = 1 (9)

φ(x, y, t) = 0 ⇐⇒ φ0(x, y) = 0

In this method, the signed distance function is used to fix the
level-set function in a narrow band around the zero curve as
boundary conditions. Fast marching methods are then used to
solve the Eikonal equation.

In another development, Li et al. defined a new term in the
equation that automatically maintains the level-set function to a
signed distance function (Li et al., 2005).

P(φ) =
∫

�

1

2
(|∇φ| − 1)2dxdy (10)

The addition of this energy followed by the steepest descent

flow leads to the addition of a new term (�φ − div
( ∇φ

|∇φ|
)
) =

div
[
(1 − 1

|∇φ| )∇φ
]

. In regions where |∇φ| > 1, this term causes

an outward diffusion of level-curves. Similarly, where |∇φ| < 1,
there is an inward diffusion of level-curves. The term approaches
zero when |∇φ| = 1 leading to a solution of the Eikonal equation.

Similar to the reinitialization problem, the stopping criterion
also presents several choices to the user. The evolution of a level-
set function is typically halted by a threshold set on the number of
iterations (N), and/or by assessing the reduction in the variational
energy, and/or by assessing the change in the level-set function,
and/or by checking to see if the level-set has reached certain
pre-set boundary points. In order to let users explore the above
strategies and possibly develop new ones, we implemented reini-
tialization and stopping base classes that serve as plugins into the
level-set evolution framework in ITK v4. This provides complete
flexibility to the user in developing a customized implementation
of level-sets without restrictions from the design.

2.5. MULTI-OBJECT AND MULTIPHASE METHODS
In biomedical and biological image analysis applications, one
is often interested in segmenting more than a single object (of

the same or different kind) from a given image. This espe-
cially happens when the objects to be segmented are adjacent
to each other and the delineation of one object automatically
affects the neighboring object. For example, in MRI imagery,
white and gray matter regions in the brain have a common
interface. Moreover, spatial constraints often specify relation-
ships between classes of level-sets. For example, microscopy
images depict thousands of cells in terms of their plasma mem-
branes, nuclear membranes, organelles, and proteins. Here, the
nucleus and organelles are always contained within the mem-
brane. In such situations, concurrently interacting and evolving
level-sets provide optimal and efficient image segmentation solu-
tions. Multi-object methods (Dufour et al., 2005; Mosaliganti
et al., 2009a,c) use a unique level-set function per anatomical
structure in the image. Overlaps among the level-set functions
can be penalized or encouraged through a special term placed
in each of the level-set update equations. Another strategy is to
use multiphase methods, where different phases of the set of
level-set functions (+ and − parts) encode a unique anatomi-
cal structure (Vese and Chan, 2002). While multiphase strategies
work well for a small number of objects, multi-object strategies
are more suitable for the case of a larger number of objects.
In our new software framework, we enable the solution for a
large system of level-set equations. No restriction is placed on
the type of level-sets (dense or sparse). Each level-set function
may evolve according to a different update equation specified
by the user. Furthermore, the number of level-set functions in
the system may dynamically change during iterations (say, from
cell division or from a cell entering or exiting the field-of-view
during tracking). The individual terms of the update equations
can also dynamically change. Thus, accounting for such flex-
ibility in the design allows one to fully exploit the level-set
techniques.

3. METHODS
The goal of the new inheritance framework is to permit the
implementation of a variety of level-set methods with minimal
code-duplication and allow end-users to explore and customize
the method to their data. The new framework is designed to
be modular, and therefore, reduces the effort needed to expand
the level-set code base. An overview of the level-set algorithm
with components of our framework is provided in Figure 2.
Corresponding class inheritance diagrams for the components are
shown in Figures 3, 5. We elaborate on the components of the
new framework next.

3.1. DOMAIN REPRESENTATION
While the level-set function has typically been implemented
on underlying image grids, it also theoretically extends to
unstructured grids or surface meshes and continuous repre-
sentations. In the popular ITK v3 framework, for example,
an image representation was used throughout the code which
impedes the development of mesh-based level-set segmenta-
tion methods. Additionally, in a continuous representation, the
level-set function is not discretized on a grid but instead rep-
resented analytically in terms of linear combination of base
functions [e.g., radial basis functions (Bernard et al., 2007;
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FIGURE 2 | Components of the level-set framework. (A) An overview of
the basic level-set algorithm is provided. (B) Individual level-set domains are
assumed to be subsets of the image domain. (C) The domain is partitioned
into a label-map that specifies the interacting level-set ids and the

corresponding subregion. (D) Level-set functions, equations, and, terms are
stored in a container format. During iteration, the computation of the level-set
updates are multithreaded either in terms of processing individual domains or
individual level-set functions.

Gelas et al., 2007), splines (Bernard et al., 2009)]. Such an
underlying representation may still use the same energy for-
mulation and equation terms. Thus, modularizing the level-
set code base such that the term and equation classes do
not directly depend on the domain representation is essen-
tial for building a common framework. We next detail how
the level-set function is defined to account for all such
representations.

3.2. LEVEL-SET FUNCTION
Our code is heavily templated to allow for a great deal of
flexibility in level-set methods in an efficient manner. In
our new framework, we define an abstract level-set func-
tion base class (itk::LevelSetBase) inheriting from
itk::DataObject based on 4 template parameters
(Figure 3A).

template< class TInput, unsigned int
VDimension, typename TOutput,

class TDomain > class LevelSetBase :
public DataObject

where TInput defines the input type where the level-set func-
tion will be evaluated, VDimension is dimension of the input
space, TOutput is the returned type when evaluating the level-set
function (for the general case when it is not a scalar), TDomain
is the discretization of the level-set function (e.g., ImageBase or
QuadEdgeMesh). In the case of an image representation, this spe-
cializes as only the first three parameters and inherits from the
itk::ImageBase class:

template< class TInput, unsigned int
VDimension, class TOutput > class
LevelSetImage : public LevelSetBase<
TInput, VDimension, TOutput, ImageBase<
VDimension > >

While this definition accounts for an image representation
(continuous or discrete), we further specialize into a discrete
image representation with TInput as itk::Index to enable
the traditional image-discretized implementation of the level-set
method.

template< typename TOutput, unsigned int
VDimension >
class DiscreteLevelSetImage : public
LevelSetImage< Index< VDimension >,
VDimension, TOutput >

All of the above level-set function classes implement specific
member functions for returning the level-set value [φ(x, y)], gra-
dient (∇φ), Hessian (∇2φ), Laplacian (φxx + φyy), gradient norm

(|∇φ|), and mean curvature (κ = div( ∇φ
|∇φ| )) given its underly-

ing representation (continuous or discrete image or mesh). Thus,
the level-set equation, term, and evolution classes are indepen-
dent of the underlying domain representation which facilitates
the implementation of a wide variety of level-set methods.

The level-set quantities are stored as specific instances of a
templated class itk::LevelSetBase::DataType<T>.
The template parameter T determines whether the stored
member variable is a scalar, vector, or tensor. The class
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FIGURE 3 | Inheritance diagrams for (A) Domain partitioning classes, (B) Level-set function, and (C) Level-set equation term classes in the ITK v4

framework.

contains three member variables that store the quan-
tity name, value, and a Boolean flag indicating if it had
already been computed. The level-set quantities are then
collectively instantiated inside a special structure called
itk::LevelSetBase::LevelSetDataType. When
computing the update in a level-set equation (Figure 2A), the
different terms in the equation repetitively compute the level-set
quantities. Therefore, by passing the LevelSetDataType object
among various terms, we ensure that level-set quantities are
computed exactly once, cached, and reused. This significantly
reduces the computations involved for calculating each term and
the update overall.

The discrete image representation itk::Discre
teLevelSetImage is then specialized into the dense
(itk::LevelSetDenseImage) and sparse (itk::
LevelSetSparseImage) cases, which in turn was spe-
cialized into three sparse representations (itk::Whitaker
SparseLevelSetImage, itk::ShiSparseLevelSet
Image, and itk::MalcolmSparseLevelSetImage)
(Figures 1E–H, 3B). The sparse representation (also some-
times called as narrow-band) discretizes the level-set function
only around the zero level-curve. The number of layers
and their update schemes differ among the three variants.
A layer is defined as a map data-structure that links image
indices to level-set function values. Each layer is associated
with a unique id and the set of all the layers are stored as
another map data-structure linking the id values to the layer.
Additionally, all the sparse-field classes store a label-map
(run-length image encoding) of the layers which significantly
reduces the amount of memory used over a regular image
(Lehmann, 2007).

3.2.1. Image to level-set adaptors
For the convenience of end-users, adaptors for converting from
binary images to level-set function objects were developed in ITK
v4. The supplied binary image could be the output of a prepro-
cessing segmentation pipeline. We consider the dense level-set
function as well as the three types of sparse-field representations:
(1) Whitaker, (2) Shi, and (3) Malcolm. The adaptor base class
is templated over the input image type and the output level-set
function type. It contains member variables for the input image
and the computed level-set function representation and a pure
virtual member function for computing the level-set function.

template< class TInputImage, class
TLevelSet > class

BinaryImageToLevelSetImageAdaptorBase :
public Object

The derived class itk::BinaryImageToLevelSetImage
Adaptor uses the partial template specialization mechanism
for defining the virtual member function corresponding to each
level-set representations.

3.3. RESTRICTED LEVEL-SET DOMAINS
The large computational costs associated with level-set methods is
a particularly severe problem in multi-level set implementations.
Typically, depending on the computing environment, one cannot
evolve more than tens of level-set functions without running into
memory problems. To address this problem, our new framework
handles level-set functions defined on a subset of the input image
domain (�). The interaction among level-set functions is limited
to those functions whose domains overlap (Figures 2B,C). A
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helper base class (LevelSetDomainPartitionBase) is
used to define the location and size of the level-set domains
relative to � (Figure 3A). The domain of each level-set function
is stored in a vector (m_LevelSetRegionVector). The class
contains two pure virtual methods AllocateListDomain()
and PopulateListDomain() that allocate and pop-
ulate a new data-structure (mesh or image) depending
on the underlying grid. Each grid point stores a list of
the active level-set function ids. The class is specialized to
LevelSetDomainPartitionImage in the case of a dis-
crete image grid and to LevelSetDomainPartitionMesh
for the case of meshes. For the case when there are thousands of
level-sets, populating a list image by checking overlap at each pixel
is time-consuming. Therefore, we further specialized into a class
itk::LevelSetDomainPartitionImageWithKdTree.
This class uses a Kd-tree data structure that contains the cen-
troids of the level-set domains. The Kd- tree is used to query
nearby level-set functions at each pixel and check for overlap.
This enables the simultaneous evolution of thousands of level-set
functions thereby expanding the applicability of level-set proce-
dures to tracking large numbers of objects and in large images.
Note that there is an initial overhead associated with building the
Kd-tree that can be avoided for cases involving a small number
of level-set functions.

The output of the helper class is to define an image of list
pixel types. Each list holds the ids of level-set functions active
at that pixel. By using another helper class (itk::Level
SetDomainMapImageFilter), the list image is further clus-
tered into sub-regions based on pixel types. Each sub-region has
the same set of active level-set ids and can therefore be iter-
ated upon for computing the update efficiently (Figure 2C). The
itk::LevelSetDomainMapImageFilter is a member of
the itk::LevelSetContainerBase.

As an illustrative example,Figure 4 shows the application of
the domain partitioning technique on a sample 2D confocal
image of the zebrafish ear. In Figure 4A, we show closely-packed
nuclei with varying intensities and noise. Figure 4B shows rect-
angular domains placed around each nuclei that define the extent
of the initialized level-set function. The rectangular domains
are subdivided to encode a unique level-set interaction within.
Figure 4C shows the final level-set function and Figure 4D shows
an overlay of the segmentation on the raw image. The small
rectangular domain of each level-set does not influence its evolu-
tion and final segmentation but dramatically reduces the memory
utilized and total running-time.

3.4. TERMS
The level-set equation is a weighted sum of terms. Each term
is a simple function of the level-set (e.g., gradient, Hessian,
divergence, etc.), the input image (intensity, gradient, etc.), or
involving the other level-set functions concurrently evolving in
the system. As mentioned before, level-set computations occur
repeatedly in each term and therefore values can be computed,
cached, and stored in the level-set object and shared among
the various terms. The term base class implements functions
[Evaluate(.)] for computing the contribution from a
term toward the level-set update. It also contains member

functions for initializing/updating term parameters before
[Initialize()]) and after [Update()] an iteration. While
these functions are used for updating parameters in a dense
level-set method, concurrent updating [UpdatePixel(.)]
is carried out in a sparse level-set method. This is because only
small incremental changes occur in the level-zero curve position
in a sparse level-set method. Concurrent updating ensures that
term parameters stay current and cuts down on computations
in between iterations. This further enhances the speedup from
using sparse level-set methods. The computed update is finally
scaled by a weight data member (m_Coefficient). The
term class also stores a level-set function identifier to supply the
computed update to the evolution of the corresponding level-set
function in the container. The term base class is templated using
two parameters, namely, the input image type and a container of
level-set functions (Figure 3C):

template< class TInputImage, class
TLevelSetContainer >
class LevelSetEquationTermBase : public
Object

Different types of terms arising from edge-based and
region-based level-set methods such as the propaga-
tion, Laplacian, advection, curvature, and region-based
terms described in Equations 4 and 7 derive directly from
LevelSetEquationTermBase:

template< class TInput, class
TLevelSetContainer>

class LevelSetEquationLaplacianTerm :
public LevelSetEquationTermBase< TInput,

TLevelSetContainer >

3.5. CONTAINER-BASED DESIGN
Consider a concurrently evolving system of level-set functions
{φ1, φ2, . . . ,φM} with input image I, and domain �. The generic
level-set equation (Ui) consists of a weighted summation of a
number of different terms Tij.

U1 : ∂φ1(p)

∂τ
=

K1∑
j = 1

α1j · T1j(I, {φi}M
i = 1)

U2 : ∂φ2(p)

∂τ
=

K2∑
j = 1

α2j · T2j(I, {φi}M
i = 1)

...

UM : ∂φM(p)

∂τ
=

KM∑
j = 1

αMj · TMj(I, {φi}M
i = 1)

The set of terms that constitute each equation may vary across all
the M equations. Additionally, the number of concurrently evolv-
ing level-set functions in the system may dynamically change.
To enable such flexibility, we used containers to store level-set
function objects, equation objects, and their constitutive terms
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FIGURE 4 | Cell segmentation using multiple level-sets defined on

subsets of the image domain. (A) 2D confocal image of cell
nuclei in the zebrafish ear. (B) Square domains defined around
approximate centers of each cell. (C) Visualization of the

overlapping level-set functions. (D) Final segmentation obtained using
the geodesic active contour method. The level-set used advection,
propagation, curvature, and overlap penalty terms with weights of
3, 3, 1, and 1000, respectively.

(Figure 2D). In each case, the container holds elements along
with an id that is common across the level-set function, equation,
and term containers. They are implemented as class templates,
which allows a great flexibility in the types supported as elements.
The container manages the storage space for its elements and pro-
vides member functions to access them, either directly or through
iterators (reference objects with similar properties to pointers) or
by using the id.

3.5.1. Level-set container
In the case of multiple level-set functions, a special container
class (itk::LevelSetContainerBase) was templated
over two input parameters, namely, identifier type of the level-set
function and the level function type (dense or sparse). The
class provides iterators (const and non-const) and member
functions for adding/removing individual level-set objects
[AddLevelSet() and GetLevelSet()] by using the
level-set identifier. Member functions also allow for copying
and performing logical comparisons among container objects.
A domain map filter (m_DomainMapFilter) is also instanti-
ated that describes how the domain is split among the different
level-set objects (see section 3.3).

template< class TIdentifier, class
TLevelSet >

class LevelSetContainerBase : public
Object

Using the partial template specialization mechanism, the class
itk::LevelSetContainer is specialized depending on
the type of the level-set function. The derived class imple-
ments a member function for allocating new memory and
copying individual level-set functions [CopyInformation
AndAllocate(.)]. For example, the following class special-
izes the definition for the dense level-set method:

template< class TIdentifier, class TImage >
class LevelSetContainer< TIdentifier,
LevelSetDenseImage< TImage > > :

public LevelSetContainerBase< TIdentifier,
LevelSetDenseImage< TImage > >

3.5.2. Term containers
For each level-set function defined by its identifier
(CurrentLevelSetId), a term container class is instan-
tiated that holds all the terms in its level-set equation. Using
AddTerm() and PushTerm() member functions, new
terms are introduced/removed from the level-set equation.
While calculating the update to a level-set, the term container
object is iterated and each term is evaluated and summed
up to yield the update. Thus, member functions for initial-
izing [InitializeParameters()], updating individual
term parameters [Update()], and evaluating all terms
[Evaluate()] are provided.

template< class TInputImage, class
TLevelSetContainer >

class LevelSetEquationTermContainer :
public Object

The class is templated over the input image type and the level-set
container type. The class is not derived further since there is no
further specialization of the individual terms. In a given term con-
tainer, the end-user can combine edge-based and region-based
terms for customizing the level-set method which is yet another
aspect of flexibility enabled by our framework.

3.5.3. Level-set equation container
For a system of level-set equations, each equation (Ui) cor-
responds to a unique term container. The class LevelSet
EquationContainer is templated over the type of the
term container. LevelSetEquationContainer holds the individual
term containers for all the level-set functions. A unique term
container can be referenced by the level-set function identifier (i)
through GetEquation() member function. New equations
can be added to the container using AddEquation(). While
calculating the update to a level-set, the equation container object
is iterated and each term container is in turn updated Update
InternalEquationTerms(). Thus, member functions
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FIGURE 5 | Inheritance mechanism for level-set evolution classes.

for initializing (InitializeParameters()) and updating
individual term parameters (Update()) are provided.

template< class TTermContainer >
class LevelSetEquationContainer : public
Object

3.6. LEVEL-SET EVOLUTION
The class itk::LevelSetEvolutionBase implements the
iterations in the level-set method in the Evolve() member
function. At the beginning of each iteration, update buffers
are allocated [AllocateUpdateBuffer()] and term
parameters are initialized [InitializeIteration()].
Assuming the stopping criterion function is not satisfied, the
iteration proceeds by computing the updates in the equation
container, which in turn calls the individual term contain-
ers. The updates are computed by stepping through smaller
domains where the active level-set function ids are known (from
section 3.3). This avoids the costly step of checking at each
pixel if a particular level-set is active. Based on the updates
computed, the overall time-step for evolving the level-set is
determined [ComputeTimeStepForNextIteration()].
Based on the time-step, the level-set functions are updated
[UpdateLevelSets()] and the term parameters are then
updated [UpdateEquations()]. Based on the change in the
level-set functions, the global change is accumulated and set as
input to the stopping criterion function. This function (described
next) determines whether the next iteration continues. The
base class is templated over the equation container type and the
level-set function type.

template< class TEquationContainer, class
TLevelSet >

class LevelSetEvolutionBase : public
Object

Dense and sparse-strategies are different in terms of how the
update buffers are setup. Sparse methods visit only the narrow

band layers while the dense method visits every pixel in the
level-set domain. Therefore, as before we use partial template
specialization to specialize the implementation depending on the
level-set representation.

Figure 6 shows the application of our framework to the auto-
mated segmentation of cells from 3D confocal images of a
developing zebrafish embryo expressing fluorescent proteins. The
images show nuclei in magenta and membranes in green. The
high-resolution images are of dimensions 1024 × 1024 × 72
with a pixel sampling of 0.2 μm × 0.2 μm × 1.0 μm. Using the
Chan and Vese (1999, 2001) region-based terms with weights set
to 1 (see section 2.2 and Equation 7) and an overlap penalty
term of 1000, we evolved a total of 946 level-sets (485 cells and
461 nuclei) (Dufour et al., 2005). Level-sets were initialized as
small spheres with a radius of 3.0 μm based on cell centers
that were previous identified by using a Hough transform for
identifying spherical objects. Figures 6A,B show the XY and XZ
planes. Membrane and nuclei segmentations are contoured in yel-
low and red, respectively. Figure 6C shows the domain partitions
from the nuclei level-sets alone. Figure 6D shows the a three-
dimensional rendering of the segmentation after 100 iterations of
the system.

The concurrent segmentation of all cells and correspond-
ing cell nuclei in ITKv3 is intractable given that each level-set
function would occupy the same domain as the image and
946 level-set functions would not fit in memory. Secondly,
the level-sets would have to be segmented independently one
function at a time. This would lead to a running time of
many hours. Thirdly, level-set functions cannot interact with
each other. Figure 6E highlights these differences between ITKv3
and the new framework in regards to the segmentation prob-
lem. In order to make meaningful comparisons, we performed
domain partitioning in ITKv3 apriori by using region-of-interest
filters outside the level-set API. While a single level-set is
evolved at a time, several intermediate processing filters such
as those involved in computing level-set reinitialization are
intrinsically multithreaded. Thus, ITKv3 execution, is partially
multithreaded.
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FIGURE 6 | Demonstration of cell segmentation in large 3D

nuclear+membrane confocal microscopy data of a developing zebrafish

ear at 24 h post-fertilization. The images depict cell membranes in green
(membrane-targetted mCitrine) and nuclei in magenta (H2B-tdTomato). The
images are of dimensions 1024 × 1024 × 72 with a pixel sampling of 0.2 μm
× 0.2 μm × 1.0 μm. A total of 485 whole cells and 461 nuclei were
automatically identified by seeding level-sets at centers first identified by a
Hough transform. (A) XY and (B) XZ sections showing membrane and nuclei

segmentations in yellow and red contours, respectively. (C) A 3D
randomly-colored rendering of the individual level-set domains. (D) A 3D
rendering showing the segmentations all the ear cells with the tri-planar
cross-sections of the image data. (E) Performance comparison between the
old ITKv3 and the new ITKv4 frameworks, the number of threads used (T),
with domain-discretization (DD), and accounting for level-set overlaps. The
columns indicate if the framework can process multiple level-sets, if they
allow interaction, and their running times, respectively. NA, not available

In ITKv4, domain partitioning happens automatically and the
user exactly specifies the number of threads to use. We provided
running times for the procedure (≈21 min). DD refers to domain
partitioning and T refers to the number of threads used. We also
show running times without overlap (≈19 min) and with the
ITKv3 framework (≈41 min). Thus, our method improves signif-
icantly over ITKv3 in speed of computation even after external
domain discretization as well as ease of use and available options.
Finally, we also evolve geometrically interacting level-sets that
register a small increase in running time.

3.7. STOPPING CRITERION
The iterations in the level-set method end when the
functions finish evolving (converge) or when they satisfy

some user-defined criterion. A specialized stopping criterion
class (itk::StoppingCriterionBase) is implemented
and checked at the end of each iteration [IsSatis
fied()]. Typically, the method is terminated when there
is no appreciable change in the level-set function or in
the variational energy being minimized (itk::LevelSe
tEvolutionStoppingCriterion). In some applications,
it is more useful to set a higher-limit on the iteration num-
ber (itk::LevelSetEvolutionNumberOfIterations
StoppingCriterion). In other applications, the arrival at
a certain fraction of user-defined boundary points might be
more meaningful. Thus, the new design enables many such
approaches by allowing users to choose the appropriate stopping
criteria.
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3.8. USER-INTERACTION
In order to enable communication among filters and with graph-
ical user-interfaces (GUIs), we used the itk::EventObject
classes. These provide a standard coding interface for sending
and receiving messages indicating the initiation/termination of
processes and modification of filters. At the end of each itera-
tion of the level-set method, an event [IterationEvent()]
is triggered. This allows users to use observers (callbacks) on
the itk::LevelSetEvolution object to execute a com-
mand [AddObserver(const EventObject & event,
Command ∗)]. Examples of downstream operations may
include updating a progress bar in a visualization pipeline or in
an interactive level-set method where the user can seed or termi-
nate level-sets. This user-interaction implementation follows the
subject/observer design pattern.

3.9. VISUALIZATION
To enable the real-time visualization and recording of level-
set function evolution, we provide a pipeline linking our
level-set framework to The Visualization Toolkit (VTK). The
process of visualization consists of first mapping a level-set
function to a VTK dataset. The base class for converting
a itk::LevelSetFunction object is derived from
itk::ProcessObject and templated over the level-set
function type.

template< class TLevelSet >
class LevelSetToVTKImageDataBase : public
ProcessObject

Given the dense and three sparse-field representations of level-
set functions implemented (Figures 1E–H), we specialize a class
itk::LevelSetToVTKImageData for each type. In the
dense level-set, the underlying level-set function is sampled on
the image grid and passed to a VTK image defined on the same
grid. In the sparse cases, the label-maps storing the locations of
the sparse layers are converted into an ITK image and then to
a VTK image. Having mapped the level-set function to a VTK
image, the second step consists of developing suitable visualiza-
tion of the level-set function using an image actor, renderer, and
a rendering window that is annotated with the current iteration
number. For a dense level-set function, one way is to visualize
the level-set function with a simple colormap (itk::Visual
izeImageLevelSet). Another option, only available in a
two-dimensional case, is to visualize the level-set function as a ele-
vation map by using a surface mesh representation (itk::VTKV
isualize2DLevelSetAsElevationMap) (Figure 1E). At
each point (x, y) in the grid, the level-set function is eval-
uated [z = φ(x, y)] to build a set of interconnected vertices.
The mesh is color-mapped based on the height (z). A third
option is to visualize the level-curves (user-defined isoval-
ues) of the function (itk::VTKVisualizeImageLevel
SetIsoValues) (Figure 1D). For this, the marching squares
(in 2D), marching cubes (in 3D) algorithm are used to
extract contours/meshes from the image and then color-mapped.
For the sparse representations, visualization consists of ren-
dering the layers around the zero curve of the function

using a colormap (itk::vtkVisualize2DSparse-Level
SetLayersBase). Each layer is mapped to a unique user-
defined color (Figures 1F–H). Like before, the class is specialized
using partial template specialization for the three sparse rep-
resentations because they contain different numbers of layers.
Evolution of level-sets using the dense (Supplementary Movie
S1) and the three narrow-band representations (Supplementary
Movies S2-S4) can be visualized in real-time using the inter-
action classes described in Section 3.8 and the visualization
classes described above. The level-sets were initialized as a square
and segment the cell nuclei image shown in Figure 1 for 100
iterations.

4. IMPLEMENTATION AND DISCUSSION
We chose to implement our framework using C++ in the
NIH/NLM Insight Toolkit (ITK) v4 because of its solid software
engineering practices, permissive license, community-support,
and its popularity in the biomedical imaging community. The
level-set classes, examples, and associated tests have been inte-
grated into the ITKv4 toolkit. Detailed instructions for down-
loading ITK are available at: http://www.itk.org/Wiki/ITK/Git.
Instructions for compiling and installing ITK on all common
computer systems are available at: http://www.itk.org/ITK/help/
documentation.html.

After compiling and installing ITK, users can navi-
gate to the downloaded source directory and find a total
of 123 level-set classes at the following location: ITK/
Modules/Segmentation/LevelSetsv4/include. The level-
set visualization classes that work with the Visualization
Toolkit (VTK) are located at: ITK/Modules/Segmentation/
LevelSetsv4Visualization/include. Documentation for the
level-set classes detailing the member functions, variables,
and inheritance hierarchy is available online at: http://www.
itk.org/Doxygen44/html/group__ITKLevelSetsv4.html Each of
the level-set classes is subject to unit tests individually as well as
integrative tests. A total of 67 tests using simple datasets have
been created to test the framework automatically. The tests are
located at: ITK/Modules/Segmentation/LevelSetsv4/test. The
tests are automatically compiled when building ITK and also
provide further examples of code usage and API to new users.
Users can run the tests from the compiled binary directory. The
results of the automatic testing are reported on hundreds of
computers across the world on a daily basis at: http://open.cdash.

org/index.php?project=Insight. The results indicate whether
the tests successfully configured, compiled, and executed on the
remote system and also provide running times.

Additional examples of the level-set API used to generate
the results for this article (Figure 1 and Supplementary Movies
S1–S4) have been provided online in the ITKExamples repository:
https://github. com/InsightSoftwareConsortium/ITKExamples.
The repository includes 2D test image data and information for
compiling and running our code. Other examples of ITK APIs
and level-set code are also available online in a third repository
at:http://www.itk.org/Wiki/ITK/Examples#ImageSegmentation.
Finally, as open-source developers, we provide continuous
feedback and troubleshoot problems reported by users on the
ITK mailing lists:http://www.itk.org/ITK/help/mailing.html.
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Thus, our framework addresses a long-standing challenge in
the image analysis community for developing a state-of-the art
ITKv4 segmentation and analysis toolkit. Our framework achieves
the following goals:

4.1. SCALABILITY TO LARGE DATASETS AND EXTENSIBILITY TO NEW
METHODS

Current medical and microscopic imaging modalities feature
rich datasets that requires the continuous development of new
algorithms and performance optimization strategies to handle
large data. In our framework, we combined the two major
classes of edge-based and region-based methods seamlessly which
should promote the development and usage of hybrid meth-
ods. We refactored sparse-field implementations to enable the
addition of Whitaker, Malcolm, and Shi methods for improving
performance. We enabled the implementation of multi level-
set methods to handle multiple objects in images and also
implemented domain partitioning techniques for improved per-
formance. Thus, our framework supports large datasets, incorpo-
rates all the major level-set technologies, and enables the research
and development of new ideas in the near future.

4.2. ADAPTABILITY TO USER-CUSTOMIZATIONS AND DATASET
VARIATIONS

Our implementation allows the user to customize all aspects of
the level-set method. The user can optimize the number of level-
sets to use and specify how they interact. Users can specify the
exact terms in the level-set update equations and choose the reini-
tialization and stopping criteria to use after each iteration. The
large number of customization options available means that the
user is better equipped to handle the varying challenges presented
by different biomedical datasets. Users can also seed or terminate
level-set functions, or manipulate the terms and term weights at
the beginning of each iteration in the system. This paves the way
for the exploration and development of real-time level-set systems
in the future.

4.3. EFFICIENT PERFORMANCE BY MULTITHREADING, SPARSE-FIELD,
AND DOMAIN PARTITIONING STRATEGIES

The three sparse-field strategies significantly improve level-set
performance on large datasets. Domain partitioning significantly
reduces the memory utilized per level-set especially when the
objects occupy a small portion of the large input space. By
caching and reusing level-set quantities in the term calcula-
tions (see Section 3.2), we further improve performance. We
also implemented multithreaded execution of the iterations to
take advantage of multicore processor systems. Multithreading
is accomplished by allocating threads to iterate on (i) different
regions in the domain partitioned image or (ii) across individual
level-sets. This choice is decided at run-time depending on the
maximum number of threads available to the system, the num-
ber of level-sets initialized by the user, and the number of domain
partitions present.

5. FUTURE WORK
Currently, there is no other comprehensive framework or toolkit
similar to the ITK framework in terms of implementing a

multitude of level-set technologies in a scalable and efficient
manner. However, upon further testing we do find that ITKv3 per-
forms 2–2.5× faster for very basic segmentation using just one
thread. This speed difference appears to result from the use of
image iterators in ITKv3 compared with GetPixel() and SetPixel()
methods in ITKv4 so future work could see a speed improve-
ment by transitioning to image iterators. In the future, we plan to
develop user-friendly APIs for developers familiar with ITKv3 and
GUIs that will benefit new users. For the purpose of cell segmen-
tation in microscopy, we have already begun developing a image
analysis GUI called GoFigure2 (www.gofigure2.org). Currently,
level-set implementations and applications have been restricted
to discretized image domains. However, the level-set calculus is
quite generic and can be extended to unstructured grids like
meshes and analytically to continuous representations. Mesh seg-
mentations are useful, for example, to segment surfaces. In the
microscopy domain, this could serve to identify gene expression
patterns on fly embryo surfaces or morphogen gradients on the
tissue surfaces. Continuous representations can potentially give
rise to faster level-sets on high-resolution image datasets. Real-
time segmentation and tracking, and human-computer interac-
tive applications are another major problem domain that could
benefit from level-set appproaches. Real-time manipulation of
level-sets in terms of the number of functions, their individual
terms, and interactions can now be accomplished by our adaptive
design.
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