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The frequency and volume of newly-published scientific literature is quickly making
manual maintenance of publicly-available databases of primary data unrealistic and costly.
Although machine learning (ML) can be useful for developing automated approaches
to identifying scientific publications containing relevant information for a database,
developing such tools necessitates manually annotating an unrealistic number of
documents. One approach to this problem, active learning (AL), builds classification
models by iteratively identifying documents that provide the most information to a
classifier. Although this approach has been shown to be effective for related problems,
in the context of scientific databases curation, it falls short. We present Virk, an
AL system that, while being trained, simultaneously learns a classification model and
identifies documents having information of interest for a knowledge base. Our approach
uses a support vector machine (SVM) classifier with input features derived from
neuroscience-related publications from the primary literature. Using our approach, we
were able to increase the size of the Neuron Registry, a knowledge base of neuron-related
information, by a factor of 90%, a knowledge base of neuron-related information, in 3
months. Using standard biocuration methods, it would have taken between 1 and 2 years
to make the same number of contributions to the Neuron Registry. Here, we describe
the system pipeline in detail, and evaluate its performance against other approaches to
sampling in AL.
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1. INTRODUCTION
In 2008, Howe and colleagues proposed that in the next 5 years
the field of biocuration should create a mechanism by which
community-based curation efforts can be facilitated (Howe et al.,
2008). This challenge has been taken on and applied in already
successful online databases, such as FlyBase 1, the online repos-
itory of drosophila genetic information, and GrainGenes 2, a
browser for the triticeae and avena genomes, but is not so easily
translated to new databases and knowledge bases, which nei-
ther have an active contributing community, nor are able to
support the professional staff to maintain them. As the neuroin-
formatics community begins to rely more on online resources
containing structured information that can be used for large-scale
mathematical modeling and simulation, the ability to efficiently
create a new database and expand it to the point that it is a
useful resource to the research community will increase in impor-
tance, even as the amount of information that must be manually
searched through increases with the increasing rates of publi-
cation. It is because of this that the community must turn to
automated techniques that have demonstrated their effective-
ness in the field of machine learning (ML). Such techniques,

1http://flybase.org/.
2http://wheat.pw.usda.gov/GG2/index.shtml.

in the ML community, are known as recommender systems
(Resnick and Varian, 1997).

The process of manually curating data from published papers
into computationally-accessible databases is an important (and
mostly unacknowledged) bottleneck for developers of neu-
roinformatics resources. For example, the first version of the
CoCoMac system [Collations of Connectivity data on the Macaque
brain 3 (Stephan et al., 2001)] is a neuroinformatics database
project concerned with inter-area connections in the cerebral cor-
tex of the Macaque. It is a mature solution for a problem that was
under consideration by national committees as far back as 1989
(L.W. Swanson, personal communication). CoCoMac currently
contains roughly 2.0 × 104 connection reports, reflecting the
dedicated effort of a small curation team over years of work. Due
to the machine-readable nature of much of the data in their field,
bioinformatics systems in molecular biology are usually larger by
several orders of magnitude. The Uniprot KB release for February
2013, for example, contains 3.03 × 107 entries. Naturally, this
difference is due to many factors, including the levels of avail-
able resources for curation, the general utility of the data being
housed, and the relative size of user communities. In any case,
the rate-determining step for developing knowledge bases in any

3http://cocomac.org.
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domain of application is the speed of curation. Thus, accelerating
that process is an central goal to the data curation community.

To mitigate the problems associated with an increased need
for curated information, biocurators should adopt automated
approaches to identifying documents containing information rel-
evant to their particular knowledge base, such as active learning
(AL) systems. An extensive review of AL methods is available from
Burr Settles, (Settles, 2010) but, briefly, AL is a type of super-
vised ML framework, in which a classification algorithm works
collaboratively with an expert user to efficiently train a classifica-
tion model (in terms of the expert’s effort), by requesting expert
labels for the data (also known as gold-standard annotations)
for the data the AL system deems most informative. Such meth-
ods could be incredibly useful for neuroinformaticians starting
up new knowledge bases, helping them to efficiently create, for
example, a manuscript recommendation system that would allow
for spending more time reviewing manuscripts that are likely to
contain information of interest.

A substantial body of work has demonstrated the effective-
ness of AL and recommender systems for efficiently developing
document classifiers that have been incrementally trained on
gold-standard data. Mohamed and colleagues, for example, used
AL to develop a protein–protein interaction predictor (Mohamed
et al., 2010), and Arens, in conjunction with a support vec-
tor machine (SVM) classifier, used AL for learning document
ranking functions in a biomedical information retrieval task
(Arens, 2010). SVMs and AL have also been paired together
for the identification of documents that are eligible for inclu-
sion in a systematic review (Wallace et al., 2010). Here, Wallace
and colleagues adapted previously-developed AL strategies for
biomedical document classification by taking into account the
commonly-observed highly-skewed class distribution in such
publications.

The work presented here describes an AL-based approach to
rapidly developing specialized knowledge bases deriving their
information from scientific publications, all while simultane-
ously training a classification model that can be used to iden-
tify new documents, as in a traditional supervised document
classification-type framework. Our workflow involved a few sim-
ple modifications of the traditional AL workflow, incorporating
the steps needed to identify publications of interest within a
corpus without corrupting the AL classification model by giv-
ing it a false picture of the class distribution in the data set.
Our procedure can be easily adopted by informaticians lack-
ing the labeled training data necessary to train a classifier who
wish to use ML to develop a knowledge base. Because of the
International Neuroinformatics Coordinating Facility’s (INCF)
emphasis of developing computationally-accessible resources that
can be used in multi-level models of neuroscientific data (Cannon
et al., 2007), to evaluate our system we focused our efforts on
an under-populated knowledge base containing neuron-related
information extracted from the neuroscience literaturebase.

The Neuron Registry (NR) is a community-curated knowl-
edge base under the direction of the Neuron Registry Task Force
(NRTF 4), a part of the INCF Program on Ontologies of Neural

4http://pons.neurocommons.org/page/Neuron_registry.

Structures (PONS). The primary goal of the NRTF is to create
the infrastructure for a machine-readable knowledge base of neu-
ronal cell types, providing a formal means for describing and
quantifying existing cell types from their properties, and populat-
ing it with information that has been extracted from the primary
literature. It’s curator interface can be accessed at5.

As a community-curated knowledge base, growth of the NR
is contingent upon user submissions—the problem of adding
new information to the system has been largely left to the people
who use it. For knowledge bases that already have a strong user-
base and an active community (e.g., Wikipedia), new submissions
are frequently being made. This makes sense—Wikipedia is one
of the more frequently-accessed web sites in the world; for a
less-well-known resource, such as the NR (which has contribu-
tions from only 13 individuals, to date), some level of usefulness
will need to be demonstrated before it becomes a resource to
which researchers are regularly willing to submit new informa-
tion (Burge et al., 2012). Given the broad scope of information
that is relevant to the NR, a great many more contributions will
need to be made before it can be used as a reliable, repository
of the community’s neuron-related knowledge. This is a com-
mon problem in informatics, in general, and neuroinformatics in
particular. New web-based resources are frequently created and
made publicly available for use in others’ research. Initially, the
creation and maintenance of such resources is often supported by
the grant that lead to their creation, but it is uncommon for funds
to be available for the continued maintenance of a resource that
has not already demonstrated meaningful contributions to the
research community (Ambert and Cohen, 2012). This can lead
to the gradual decline of a resource, to the point where it is no
longer a reliable, up-to-date snapshot of the community’s knowl-
edge. For example, this happened with the well-known CoCoMac
database, which was unable to keep up with the pace of the pub-
lished literature on Macaque connectivity beyond 2008, because
of increasing rates of publication and limited resources (Kötter,
personal communication; 2009). Thus, informaticians interested
in creating accessible knowledge bases for the research commu-
nity are left with a dilemma: how can they create a resource and
deploy it with sufficient information, without spending a great
deal of time and money on curating the information they wish
to include before the user community has been established? From
the ML community, the answer to such a problem has been AL
and recommender systems.

Although AL has been shown to be useful for identifying doc-
uments that will provide the most information to a supervised
classification system, no one has yet used AL for simultaneously
identifying new documents containing relevant information for a
knowledge base while training a new document classifier for later
use in updating the knowledge base. Although the relatively new
field of ontology learning addresses a similar issue [for a review,
see Subramaniyaswamy et al. (2013) and Wong et al. (2012)], by
simultaneously creating an ontology while the learning process
is going on, this approach has yet to be adopted in the realm
of AL for document classification. While the creation of a data
set for training document classifiers is useful to the biocuration

5http://incfnrci.appspot.com/.
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community (for a review, see Hirschman et al., 2012), it should
also be possible to use AL to streamline the process of identify-
ing an initial set of documents containing information of interest
to under-developed knowledge bases lacking sufficient data for
training a classifier. There are two main hurdles to achieving this
goal. First, a system needs to simultaneously identify documents
that are likely to contain information of interest while identi-
fying documents on which it cannot reliably make a judgment.
Second, the existing methods for evaluating AL systems have been
designed to work with a large, fixed corpus of data already anno-
tated, which is not available for our purposes—no annotated full
text corpus of neuron-related documents has been made available
to the public. What’s more, existing evaluation metrics primar-
ily focus on the accuracy of the classifier being built and the rate
at which it was able to achieve peak performance (Settles, 2010).
While these aspects of the proposed system are important, we
are also interested in the point at which the maximum number
of relevant documents are identified at the minimum amount
of annotation effort—this trade-off does not exist in typical AL
applications.

Here, we present and evaluate Virk, an AL system that is
able to rapidly bootstrap knowledge base development. Over
the course of our experiments, we dramatically increase the
coverage of the NR, which will make it possible for the knowl-
edge base to be a more useful resource to neuroscientists, and
to create a unique, publicly-available expert-curated document
collection for the neurosciences that will be useful to neurosci-
entists and text-mining researchers in the future. We describe
our gold-standard-trained recommender system that was used
to contribute to the NR, demonstrating, for the first time, that,
with minimal effort spent on tuning a classification system, an
AL system can provide meaningful contributions to the biocura-
tion workflow. Importantly, our system is designed to specifically
address bottlenecks in the NR curation workflow. As a tool pri-
marily designed for bootstrapping the start-up of new knowledge
bases, the Virk system will help developers deal with the signifi-
cant volume of publication they must review, but for which they
may have no prior information that can help them efficiently
prioritize how they should do their reading. Virk will help biocu-
rators by interactively re-ordering a list of publications in terms
of their likely relevance, updating its judgments after receiving
feedback from the curation staff.

2. MATERIALS AND METHODS
2.1. COLLECTING A FULL TEXT NEURON-RELATED DOCUMENT SET
In practice, the procedure used to collect a document corpus is
going to differ from use case to use case. In some applications
(e.g., systematic review), the user may already have a large col-
lection of unlabeled documents (Ananiadou et al., 2009; Cohen
et al., 2010a). In other applications, it may not be necessary
to ensure that a document collection that is narrow in focus is
obtained. However, because, in this study, we are interested in
evaluating the AL process for a neuron-related knowledge base,
and we did not have any full text publications available to us ahead
of time, we manually acquired our corpus. Data collection pro-
ceeded in two main stages: journal selection, and article selection.
First, we determined which neuroscience-related journals to use

to build our document corpus. Our primary goal was to build a
document collection adequately representing the diversity of the
neuroscience literature, so that our classifier would be exposed to
articles reflecting the diversity of neuroscience (e.g., neuroimag-
ing, computational neuroscience, and behavior), in addition to
documents specifically containing information on neuron-related
experiments. At the same time, we wanted to obtain a sufficient
number of documents containing information relevant to the NR.
Thus, we downloaded the all entries in vertebrate neuron category
on NeuroLex6, an online, community-curated neuroscience lex-
icon, and found which journals most often include these terms
within the MEDLINE records of the research articles they publish.
We wanted to be certain that the articles we eventually included in
our corpus had complete MEDLINE records and were representa-
tive of the sorts of terminology used in newly-published research,
so we decided to limit our document selection to those published
during the year 2010.

PubMed7 queries were constructed for each selected NeuroLex
term, each taking the form “NEURON,” where NEURON corre-
sponded to an entry in the NeuroLex (e.g., “Amygdala basolateral
nuclear complex pyramidal neuron”). We rank-ordered the jour-
nals, in terms of their frequency of using NeuroLex terms in
2010. The top eight journals are listed in Table 1. We limited
our selected journals to eight, because the ninth journal was the
Proceeds of the National Academy of Science, which would have
doubled the size of our corpus and would have also diluted the
concentration of annotatable information by adding many non-
neuroscience articles (e.g., geology or astronomy).Column n2010

in Table 1 shows the number of publications associated with
that particular journal in 2010. The complete MEDLINE records
for all 5932 articles included in Table 1 were downloaded and

Table 1 | Table of PubMed results by the top nine-matching journals in

the data set, based on performing queries with the NeuroLex terms.

Journal n2010 Prevalence (%)

The Journal of Neuroscience 1457 26.4

Brain Research 1267 19.9

Neuroscience Letters 1056 27.3

Neuroscience 910 NA

The Journal of Physiology 495 14.4

The Journal of Comparative Neurology 276 NA

Hearing Research 256 6.1

Journal of Neurophysiology 215 5.8

Total 5932

n2010 denotes the number of 2010 publications associated with that journal. The

prevalence column denotes the percent representation of that journal in the

final data set. Two journals—Neuroscience, and The Journal of Comparative

Neurology, are not represented in the final data set, as we were unable to

download their articles.

6http://www.neurolex.org.
7http://www.ncbi.nlm.nih.gov/pubmed/.
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stored in a mongoDB database8. We chose a document-oriented
database for this work because they allow us to efficiently rep-
resent MEDLINE records, which often have fields that differ
from document to document. Since our University library had
subscriptions to the eight journals of interest, we attempted to
download the full text for each. Due to time constraints, we only
attempted to download each of the 5932 full text documents
once—if an error occurred, we simply skipped that document. In
all, we were able to successfully download 3336 of the documents
we were interested in. Since the approximately 2500 articles we
were unable to download were distributed amongst over six jour-
nals representative of the neuroscience literature, and 3336 was
likely to be an adequately-sized data set, no further attempt to
retrieve these articles was made.

The 3336 documents were associated with their respective
MEDLINE records in our database, and distributed into one of
four document pools, according to Figure 1.

2.2. PROCEDURE FOR ANNOTATING THE DOCUMENTS
One of the goals of this study was to build up a document
classification data set for identifying publications likely to con-
tain relevant information for the NR. The NR is a collec-
tion of neuron-related information, in the form of rows of
(neuron type, relation, value) tuples (e.g., CA1 pyramidal cell,
located in, CA1 stratum oriens), and an associated reference
(e.g., a PubMed identifier). Previous work has shown that hav-
ing well-defined annotation schema and criteria is important
for building up a consistent document collection for ML. Thus,
in collaboration with Giorgio Ascoli at the Neuron Registry,
we developed an annotation schema where an article was

8www.mongodb.org.

marked excluded unless it could meet the following inclusion
criteria:

1. The document appears in a peer-reviewed scientific journal.
2. The document is a primary source of the information in ques-

tion (i.e., a primary, citable communication of the information
in question (and not, for example, a review article).

3. The document contains all parts of the (Neuron Type,
Relation, Value, Publication ID) tuple.

4. The Neuron Type and Relation identified in the document in
question are found in the accepted set of values:

a. The Neuron Type must either map to one of the types listed
on neurolex.org9, or, if it’s not included, a strong case must
be able to made for needing to include it.

b. The relation must be an accepted NR relation type
(see Table 2).

5. The (Neuron Type, Relation, Value, Publication ID) tuple
must not already be included in the NR.

During the process described below, documents were annotated
for inclusion in the NR, and, if the document contained infor-
mation relevant to the NR, the specific text which led to this
judgment was extracted and the information was uploaded to the
NR website.

2.3. DEVELOPING AND TRAINING THE BASELINE CLASSIFIER
Hundred randomly-selected documents were annotated for the
Initial Training collection (Figure 1). We used these documents
to conduct a set of classification experiments that would help us

9http://neurolex.org/wiki/Neuron_Types_With_Definitions.

FIGURE 1 | Diagrammatic representation of the distribution of

documents in our corpus, and workflow diagram for annotation in the

active learning experiment. Documents were randomly allocated to either
the initial training, active learning pool, validation, or test collections. A total

of 962 documents were annotated during these experiments—670 during
the active learning procedure, 92 during the random validation experiments,
and an additional 200 for the hold-out test collection, used to evaluate the
Virk system against the random system.
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Table 2 | The list of accepted Neuron Registry neuron relation values

used for creating the annotated document collection.

Accepted Neuron Registry neuron relations

Expresses protein Does not express protein

Has molecule Does not have molecule

Makes contact to Does not make contact to

Receives contact from Does not receive contact from

Located in Not located in

Has current Has firing pattern

Has part Lacks part

Has orientation Generates

Has mRNA transcript Expresses gene

Lacks quality Has quality

Has size Has shape

The list was generated by examining entries already annotated into the neuron

registry, and by manual examination of neuroscience publications.

determine the feature types and modeling approaches used by the
AL classifier. Our intention was to create a classifier that could
make accurate classification judgements without using many
enriched-engineered features (e.g., named entity recognition, or
part of speech tagging). We made an a priori decision to use a
SVM classifier with linear kernel (Fan et al., 2008), using default
parameter settings, as we have used this for a baseline classifier
in previous work (Cohen, 2008; Ambert and Cohen, 2009, 2011;
Cohen et al., 2009, 2010c). Our goal in developing the baseline
classifier was not to create a highly-optimized classifier tuned to
work on neuroscience publications. Rather, we aimed to identify,
from amongst a set of simple feature types and feature modeling
approaches, a system that performed well on the initial train-
ing corpus (e.g., an area under the receiver-operator curve—or
AUC—greater than 0.75), and which was not complicate—both
performance and parsimony motivated our decision. To this end,
our choices were informed by simple comparison of AUCs, not
statistical analysis of the results presented in Table 3.

Another motivation for the present experiments was to create
a document corpus that could be used for supervised document
classification experiments down the road. If a more complex clas-
sifier using engineered features were used here, it’s possible that
the selections it makes could affect the results of those future
experiments. Thus, to focus on the AL process in our work,
we aimed to use the simplest possible classification pipeline. We
decided there were three aspects of our classification system we
could optimize for the baseline classifier: input features, feature
normalization, and modeling type. The input features we investi-
gated were all combinations of Medical Subject Headings (MeSH
terms), abstract unigrams, and title unigrams (as obtained from
the associated MEDLINE record), and full text unigrams (as
obtained from the above-described pdf-to-text extraction pro-
cedure). No other fields in the MEDLINE record were used in
this study, however, if any of that information appears in the
full text (e.g., author names), that information would be rep-
resented in the full text feature set. In our approach, we define
unigrams as individual space- or punctuation-separated words.

We intentionally leave the question of whether more complex fea-
ture types (e.g., bigrams, or named entity recognition-derived
features) to future work, once a corpus has been created. We
considered two feature vector normalization techniques—one in
which the features from different sections of the document are
simply combined into a single larger vector of greater dimen-
sion, and another which applies L2 normalization to the vector
components:

|x| =
√√√√ n∑

k = 1

|xk|2, (1)

where x is a vector of length n. Finally, we considered two fea-
ture modeling methods: binary, and mutual information-based.
In binary feature modeling, each document in the training col-
lection is represented as an n-length vector of 0′ s and 1′ s, where
n corresponds to the unique set of features in the training col-
lection, and a given index in each document’s vector maps to
the same feature. When applying the training model to unseen
data, then, only the features that were observed in the training
collection are used to make the classification judgment—any pre-
viously unseen features are ignored. Mutual Information-based
feature modeling is similar, however, the role of each index of the
vector in this method corresponds to the mutual information of
that feature for distinguishing between the two classes, where we
define mutual information, or information gain, of feature j in all
documents as

IGx.j = H(x.j) − H(x.j|yi), (2)

where x is a feature matrix with dimensions i (number
documents) x j (number of features), . denotes performing some
operation over all elements of that dimension, and yi corresponds
to the true class label y of document i, and H(x.j) is the entropy
of feature j in the collection of documents, defined as

H(x.j) = −
∑

p(x.j) log p(x.j) (3)

The results from our baseline classifier experiments are shown
in Table 3. As is shown there, the two top-performing systems,
in terms of the area under the ROC curve (AUC), a standard
measure of performance for a binary classifier, observed on five
repetitions of two-way cross-validation (5 × 2 cross-validation;
a method for assessing the performance of a classification sys-
tem) using the 100 manually-annotated documents from the
Initial Training collection (Figure 1), used features from the title,
abstract, and MeSH terms from each paper, and binary feature
modeling using either the default or normalizing feature combin-
ers. We intentionally selected 5 × 2 cross-validation, as we have
observed int he past that this approach is less affected by differ-
ence in class prevalence (Cohen et al., 2009; Ambert and Cohen,
2011). The default mode for combining features involved simply
combining all features into a binary vector, while the normaliza-
tion approach involves also normalizing the length of the vector
to 1. Since the difference between the two top-performing systems
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Table 3 | Summary of area under the ROC curve (AUC) results

observed in the baseline classifier cross-validation (five repetitions of

two-way; 5 × 2) experiments.

Feature type Normalizing Default

Text Title Abstract MeSH IG Binary IG Binary

X X X X 0.737 0.711 0.678 0.680

X X X 0.713 0.798 0.705 0.797

X X 0.596 0.689 0.564 0.670

X X X 0.755 0.707 0.684 0.668

X X 0.755 0.707 0.664 0.668

X X 0.702 0.787 0.689 0.774

X 0.621 0.707 0.567 0.666

X X X 0.739 0.807 0.746 0.808

X X 0.706 0.662 0.775 0.659

X X 0.804 0.650 0.745 0.607

X 0.637 0.687 0.651 0.659

X X 0.675 0.797 0.802 0.801

X 0.638 0.627 0.699 0.635

X 0.751 0.640 0.726 0.600

An X in any of the four left columns indicates the inclusion of textual features

from that portion of the document. The four right-hand columns show the AUC

observed when using either the Normalizing Feature Combiner (columns five

and six), or the Default Feature Combiner (columns seven and eight), along with

either the Information Gain-based (IG) or binary modelers. The AUCs highlighted

in red denote the two top-scoring system configurations. The top-performing

baseline systems were both obtained from systems using unigrams derived

from documents’ title, abstract, and MeSH terms.

was small (0.001), we opted to use the simpler of the two—the one
using default feature combining—for our AL experiments.

2.4. THE ACTIVE LEARNING PROCEDURE
We had two simultaneous goals with our AL system: to learn
more about the efficiency of our ML approach in the domain
of neuron-related documents, and to identify the greatest num-
ber of annotatable documents for the NR as possible, in the least
amount of time, and with the fewest-possible total documents
examined. In a typical AL text-mining experiment, ML scientists
will use a corpus of documents that has already been anno-
tated for a particular task [e.g., the Reuters Corpus, as in Liere
and Tadepalli (1997); McCallum and Nigam (1998); Schohn and
Cohn (2000); Tong and Koller (2002); Bordes et al. (2005); and
Ertekin et al. (2007)]. This is because such studies are concerned
with coming to a greater understanding of what classification
approaches, modeling techniques, and input feature types lead to
best classifier performance in an AL framework. Here, as is often
the case with an under-developed or new knowledge base, we have
no gold standard available to us. If such a corpus were available,
we would simply train a document classifier using the data avail-
able, and use the classifier to identify newly-published documents
that contain information relevant to the NR. Although it would be
possible to create a classifier using the little data already in the NR,
it results in a classifier trained to identify documents containing
only a small set of neuron-related concepts (e.g., only documents
containing, for example, the word purkinje cell). This is because,

when only a small amount of data is available for a very broad
and terminologically-rich field, such as neuroscience, there is not
enough information available to create a general representation
of the sorts of documents that one is interested in. Often times,
the small amount of data available may be about a small set
of concepts for which there has been a great deal of research
(e.g., purkinje cells), making mentions of specific neuroanatomi-
cal features highly-predictive terms for a classifier built to identify
documents containing information that is similar to those already
included in the knowledge base. Ideally, a classifier would make its
judgments based on more general concepts, such as methods that
are often used in NR-relevant publications (e.g., patch-clamp), or
observation-related words associated with those types of meth-
ods (e.g., current), but, to learn these types of associations, the
classifier would need to be presented with many more examples
of relevant and irrelevant documents than were available to the
NR, (or, indeed, than often are available to many new knowledge
bases). Here we create a method for using AL to bootstrap the
development of a knowledge base while simultaneously training a
document classifier. To our knowledge, this is the first-published
method accomplishing this task.

A workflow diagram of our annotation procedure can be seen
in Figure 1. We trained our baseline classifier on the annotated
Initial Training sample, and classified all 1235 of the documents
in the AL pool. We rank-ordered these judgments in terms of con-
fidence, where a confidence of 1.0 is a document that our system
is highly confident is one containing annotatable information,
to 0.0, which is one the system is least confident the document
contains annotatable information (or, most confident that it does
not contain such information). There are a variety of AL sam-
ple selection methods that have been used in previous work (for
a review, see Settles, 2010). We chose this approach for its sim-
plicity and efficiency. From the rank-ordered list, we identified
30 documents—the top 20 highest confidence that were most
likely to contain annotatable information, and the 10 that the
classifier was least certain about (i.e., the 10 nearest to a confi-
dence value of 0.5). These numbers of documents were selected
because we thought they would provide the right balance of pos-
sible granularity in our performance metrics, while still being
small enough that we could detect changes in classifier perfor-
mance. All articles were read in full, and annotated as positive
or negative for containing information relevant to the NR (the
terms positive-class/relevant and negative-class/not relevant are
used interchangeably in this manuscript). For those found to
contain annotatable information, the relevant data was manually
extracted and uploaded to the NR. The annotated 10 uncertain
documents were then added to the documents from the Initial
Training sample (giving 110 annotated documents), the model
was re-trained, and the remaining documents in the AL pool were
re-classified (already-annotated documents are removed from the
AL pool). Importantly, any features observed in the new doc-
uments that were not already observed over previous iterations
were added to the classification model. The whole process was
repeated for 20 iterations. At each iteration, we encounter both
positive- and negative-class documents. Both classes of docu-
ments are included in the final data set that we have released for
use in text-mining and neuroinformatics research. We chose to
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only include the 10 uncertain documents, rather than using all
30 annotated at each iteration, in the data the model was trained
on because we hypothesized that, while adding all 30 documents
would likely help boost the model’s performance, in terms of
AUC, it wouldn’t necessarily help us pick the most useful docu-
ments for classifier training, and bias the classifier toward positive
prediction (see Discussion section).

This procedure highlights the dual-purpose of this set of exper-
iments: the 10 uncertain documents are akin to those that would
be added at each iteration of a typical AL experiment, while the
20 most likely relevant documents are identified at each iteration
of our procedure so that we are more likely to identify documents
containing actual annotatable information at each iteration.

2.5. EVALUATING THE DUAL-PURPOSE APPROACH TO USING ACTIVE
LEARNING

We evaluated our general approach in terms of the change in clas-
sifier performance over AL iterations, and the change in the ratio
of the ML-predicted relevant to truly relevant documents. The
former relates to the performance metrics often used in other
AL and text classification studies—change in AUC over learning
iterations. We chose AUC as a performance metric because we
were primarily interested in our system producing accurate rank-
orderings, rather than completely accurate predictions—that is,
it was more important to us that the top 20 documents that
were predicted to contain annotatable information actually con-
tained such information, than whether or not the SVM actually
predicted them as belonging to the positive class. The later perfor-
mance metric has to do with our goal of developing an AL system
that is able to bootstrap knowledge base development by identi-
fying publications that are likely to be relevant. We would expect
that, if our system is able to accomplish this task, the number of
truly relevant publications that it identifies would increase dur-
ing the initial stages of training, level out for a time, and then
begin to decline again, once the relevant documents in the AL
pool collection become more rare.

In order to determine whether the classifier would be better off
being trained by all 30 manually-annotated documents at each
iteration, rather than just the 10 uncertain documents, we ran
a set of experiments comparing the two possible approaches. To
do this, we annotated an additional 200 randomly-selected docu-
ments from the hold-out validation pool. We trained a classifier
using the documents that were selected up to each iteration in
the original run of AL experiments, classifying the 200 validation
documents using one of two methods—either a model which was
trained using only the 10 uncertain documents identified at each
iteration, or using a model trained on all 30 documents (the 10
uncertain documents, and the 20 predicted relevant ones).

Finally, we wished to compare the performance of our system
against a randomly-performing system not using an AL docu-
ment selection mechanism. To do this, we started a new AL system
from the same 100 documents selected to initialize the Virk sys-
tem, and then randomly selected 10 documents from the AL
document pool over 19 sampling iterations. If a selected doc-
ument had not previously been annotated, the document was
annotated, and, if it was a positive-class document, it was used to
add one or more annotations to the NR. To simulate the process

of random sampling over 190 iterations (10 rounds of 19 itera-
tions each), we randomly assigned each of these documents to one
iteration in each round. At each iteration of both systems, the sys-
tems were trained on their annotated training data and evaluated
against 200 randomly selected documents from the previously-
described 200 documents that were annotated from the hold-out
validation collection.

3. RESULTS
Hundred randomly-selected documents were annotated for the
first iteration of training, of which eight were manually deter-
mined to contain NR-relevant information. Based on this, we
inferred an 8% positive sample inclusion rate (4.4–14.8%, 90%
CI, based on the binomial distribution) in the larger population
of potentially-included documents.

Over 20 iterations of AL, a total of 670 full text documents
were annotated, over the course of 4 months, for containing infor-
mation to include in the NR. Of those, 159 were identified for
inclusion, with the remaining 511 being excluded. Thus, after
20 iteration we observed a positive inclusion rate of approxi-
mately 24%—well outside the originally-projected inclusion rate
of between 4.4 and 14.8%. This, of course, is to be expected
from a system designed, in part, to identify positive-class doc-
uments. Figure 2 depicts the progress of our annotation and
AL procedure. From this figure, it is clear that there are differ-
ent perspectives from which one can assess performance of our
system—such as the rate at which positives are identified by Virk,
and the savings conferred by Virk over the random system. One
consequence of the system identifying a finite number of rel-
evant documents from a fixed pool is that, as the number of
positive-class documents in the pool depletes, the classification
task becomes more difficult as the positive documents become
more rare. To account for this, we evaluated our system in terms
of an adjusted positive inclusion rate, defined as

AIR =
npos20

20
n̂posRemaining

nRemaining

, (4)

where npos20 is the number of positive-class documents identi-
fied in a round of classification, and n̂posRemaining is the number
of positives estimated to remain in the AL pool, based on the
initially-estimated positive prevalence rate, and nRemaining is the
number of documents remaining in the AL pool. This metric will
adjust the fraction of positive-class documents found during one
iteration of AL by the number of positive-class documents that
are estimated to remain in the AL pool, thus accounting for the
change in difficulty of the task at each iteration.

In order to evaluate the effect of only using the 10 uncertain
documents to train our classifier (as opposed to all 30 annotated),
we ran an experiment to compare the relative performance (in
terms of AUC) of a system classifying a hold-out validation set of
200 documents using either a model trained on just the uncertain
documents at each iteration, versus one trained on all anno-
tated documents at each iteration. Of these 200 documents, 28
were found to contain relevant information for the NR, while the
remaining 172 did not. This resulted in a positive-prevalence rate
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FIGURE 2 | Performance statistics for the active learning system over

iterations of document curation. The gray bars show the cumulating
number of positively-annotated documents, while the black dotted line
indicate the total number of documents annotated at a given iteration
(increasing by 30 at each iteration after the first). The solid black line
intersected with solid red lines indicates the estimated number of

randomly-selected documents (±90% CI) that, at any iteration, would need to
be annotated in order to obtain the same number of positive documents
identified by Virk by that iteration. After three rounds of annotation, the
average number of documents that would have to be read for a given number
of positives is statistically significantly greater than that needing to be
annotated with the Virk system.

of 14%, which is within the 90% confidence interval of the origi-
nal estimated positive-prevalence rate conducted at the outset of
the study. The results of this experiment are shown in Figure 3.
In terms of AUC, the system trained using the all annotated doc-
uments consistently out-performs the one trained using only the
10 uncertain documents at each iteration, though both systems
begin to converge to similar values after 20 iterations. This implies
that, despite the fact that the classifier is getting trained on a cor-
pus of documents with a class-distribution different from that
of the larger population, the extra information contained in the
additional documents improved the ranking performance of the
classifier. Importantly, however, this does not reflect the impact
that this change in training samples might have on our abil-
ity to identify the most informative documents for subsequent
training, based on the most uncertain predictions of the clas-
sifier. With the lowest-confidence sample selection method that
we used here, including the 20 most confident documents in the
training would have raised the proportion of positive samples
in the training data. This likely would have biased the confi-
dence estimates upward, leading to the system being trained with
more negative documents and fewer positives. We will return
to this issue in the Discussion section. Prior to beginning this
study, there were 235 entries in the NR, derived from 16 different
journals, and submitted by 13 different authors. The NR devel-
opment team added the majority of these submissions between
April 2010, and April 2011. Over the course of 4 months of anno-
tation using Virk, an additional 257 annotations were added to
the NR (90% of the number of entries that it included prior to
our work). This expanded the NR coverage of NeuroLex10 neuron
types from 16 to 55%. Using the class prevalence derived from

10http://neurolex.org.

our initial sample, using a random-selection approach, one would
need to review between 160 and 570% more documents than our
approach required (between 1116 and 3785 total documents).

To examine the validity of our selection approach and per-
formance metrics, we compared the Virk system to that of a
system using the data selected for the first iteration of Virk, and 10
randomly-selected documents at each of 19 iterations (if the doc-
ument had not already been annotated during the Virk process,
it was annotated and added to the NR, if necessary), using the
system to classify the 200 hold-out validation documents every
iteration. The random process was repeated 10 times, so that we
could calculate confidence intervals.

The results of the random validation experiment are shown in
Figures 4, 5. To compare the Virk and Random Validation sys-
tems, we used area under the AUC obtained from training on the
data available at a particular iteration, and classifying the hold-
out validation set of 200 documents that were randomly selected
from the Validation partition of the data set. As can be seen in
Figure 4, for the first five iteration, the Virk system performs
worse than random, although the performance differences are not
substantially significant. By the sixth iteration, performance of the
Virk system greatly exceeds that of the Random Validation system.
Peak performance by Virk (AUC ≈ 0.87) appears to occur around
iteration 14, while peak performance of Random Validation levels
out by iteration 12 (AUC ≈ 0.72). Figure 5 compares the number
of positive-class documents identified by the Virk and Random
Validation systems. After 20 iterations, Virk identified 159 doc-
uments containing information relevant to the NR, whereas the
Random Validation system only identified an average of 36 docu-
ments. After 4 iterations, our system exceeded the average number
of positive-class documents identified using 20 iterations of ran-
dom sampling. On average, the Random Validation system was
able to identify approximately 1.5 positive-class documents per
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FIGURE 3 | Relative performance of a system trained using only the

uncertain documents at each iteration of active learning (black), versus

all documents annotated up to that point (red), in terms of AUC. At
Iteration 1, both systems are trained using the same data (the 100

initially-annotated documents), and thus score the same. After that, the
system trained using all the data consistently out-performs the one using
only the uncertain data, though both begin to converge to similar values after
20 iterations.

FIGURE 4 | Performance evaluation comparing AUC of the Virk (red line)

and Random Validation (black line) systems over iterations of active

learning. The Random Validation system AUC was averaged over 10 random

samplings, so that standard error could be calculated (bars). After six
iteration, the Virk system outperform the 95% confidence interval for the
random validation system.

FIGURE 5 | Number of positive-class documents identified over 20 iterations by Virk (red line) and Random Validation (black line, ±95% confidence

interval). After 20 iterations, the random validation system identified the number of positives found after only three iterations of the Virk system.

iteration (compared to approximately 8.0, by Virk). Thus, one
would have to complete 106 iterations of annotation by random
sampling to achieve what our approach was able to do in 20—
a greater than 500% difference in work savings. These results
demonstrate that Virk is able to quickly out-perform the stan-
dard document identification approaches used by biocurators
today—our approach was able to identify significantly more rele-
vant documents than the standard approach, and was able to do
so with significantly less annotation effort.

While performance metrics such as AUC and number of
positive documents identified are important to assessing a

classification system, in the case of AL, they do not necessarily tell
the whole story. Besides being able to establish that our system
can make accurate classifications, we also wanted to understand
the trade-off annotators must make when deciding whether to
use the system developed at any particular point or make addi-
tional annotations. To address this, we developed a metric called
goodness:work, which quantifies the level of benefit obtained from
accurate classifications made by the system relative to the amount
of work that has been done in developing it up to that point.
Biocurators could use a measure such as this to make informed
judgments about when to stop data curation to train an AL
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system, or to make informed decisions about how many docu-
ments would need to be annotated for future related systems. We
define the goodness:work measure at iteration i as

(g : w)i = npositives identified/ntotal positives estimated

nannotated document/ndocuments in AL pool
(5)

goodness:work over iterations is depicted in Figure 6. good-
ness:work steadily increases, until it is maximized around itera-
tion 7, where it remains stable for eight more iterations before
beginning to drop around iteration 15, likely because, at that
point, the number of positive documents remaining in the AL
Pool has decreased enough that they are more difficult to find.
To better understand the contribution of different features to per-
formance across iterations, we created ranked lists of the highest
information gain features at each of the 20 classification tasks.
Information gain was calculated according to

I(X|Y) =
∑
yεY

∑
xεX

p(x, y) log

(
p(x, y)

p(x)p(y)

)
, (6)

where p(x, y) is the joint probability distribution of X and Y , and
p(x) and p(y) are the marginal probability distribution functions
of X and Y , respectively. The top 20 information gain-scoring fea-
tures at each iteration of the AL procedure are shown in Figure 7,
where the word in the first position is the one that was the most
informative for classification on that particular round, and its
color corresponds to which part of the document meta data it
came from (either title (black), abstract (red), or MeSH term
(blue)). Although information gain is not used by SVMs for clas-
sification, it is a way to indirectly measure which features are, in
general, most informative for distinguishing the two classes. As
the figure shows, the predictive features used at the first itera-
tion of AL are a mix of cell-related terms (e.g., ganglion), relations
(e.g., expressed), and stop words (e.g., at, or than). After the first
iteration, stop words (defined here as terms unrelated to bio-
logical research, such as at, and in) are hardly used, and more
cell-related terminology begins to show up. By the final iteration,
a stable selection of features has been identified, coming from
the title, abstract, and MeSH terms. Patch-clamp, for example,
is a method used to study ion channels in the cell, and could
be used to collect data for a variety of types of NR submis-
sions. The presence of ganglion (likely, from dorsal root ganglion

cell) and purkinje (from purkinje cell) are not surprising either—
both of these cell types have been extensively studied in the
literature.

4. DISCUSSION
The creation and maintenance of machine-readable public repos-
itories of scientific information is an increasingly important
and interesting area of informatics research. In this work,
we demonstrate the utility of AL systems for aiding in the
community-curated database biocuration workflow. Using a sim-
ple approach, incorporating binary feature modeling of docu-
ments’ title, abstract, and MeSH terms, and an SVM classifier, we
developed a system that shows how AL can be used by biocura-
tors to quickly add annotated resources to an under-developed
database while simultaneously training an ML classifier for later
large-scale use. For completeness, here, we assumed that no
previously-curated data was available for the initial training data.
It’s important to note that, for many knowledge bases, this would
not be the case—some small amount of seed training data may
already be available to biocurators, making the start-up costs of
using our approach quite small.

Our research made several important contributions to the
NR, as well as to the neuroinformatics community at-large,
by improving several aspects of the NR knowledge base—we
increased the number of entries by a factor of 90%, we increased
its coverage of terms from the NeuroLex ontology, and we cre-
ated an expert-curated neuroscience document collection that
has been manually annotated according to whether each contains
information that is relevant to the NR (i.e., it contains curat-
able information about neuron-related phenomena). According
to our calculations, based on annotation rates observed in this
study, we were able to make approximately 1–2 years worth
of annotation contributions to the NR in only 4 months. The
first two of these contributions will help make the NR into a
resource that can be used by multi-level modelers in neuroin-
formatics (e.g., researchers interested in integrating information
across multiple levels of the brain), as well as researchers wish-
ing to find cited information on the central nervous system at
the neuron level. By improving the coverage and depth of the
NR, we have helped increase the visibility of the NR, and there-
fore increase the likelihood that it will obtain new users and
experts who will be willing to add their own contributions to the
database.

FIGURE 6 | Goodness: work ratio over iterations of active learning. No data exists at the first iteration because no active learning has yet taken place.
Between iterations 2 and 7, the goodness:work ratio increases, being approximately level until iteration 15, where it begins to decline.
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FIGURE 7 | The top 20 rank-ordered features, in terms of

information gain, over iterations of active learning. The color of
the text denotes which section of the document’s associated
MEDLINE record the term came from: either title (black), abstract

(red), or MeSH (blue). Certain terms, such as ganglion are found
across many iterations, though its position in the rank-ordered list
changes, while others, such as “via” were less informative,
appearing only in the first iteration.

Our approach is similar to that of weakly supervised learning
(e.g., Zhang, 2004), which works to improve classifier accuracy
by adding documents about which the classifier is certain to
the training model. In contrast to this approach, which adds
these documents without the oversight of an expert reviewer, our
system requests the expert gold-standard input on a set of docu-
ments about which the classifier is least certain. There were several
reasons our approach was successful here. First, our corpus was
selected because it was likely to contain information relevant to
the Neuron Registry knowledge base. This increased the like-
lihood that any relevant documents were found in the initial
random sample for the baseline training data. Had no positive-
class samples been found, the classifier would not have had a
starting point for how to identify relevant documents. Second,
the annotator had a graduate level education in Neuroscience,
this allowed for efficient determination of the true class of each
document. Just as important was the fact that the expert anno-
tator used an a priori-defined annotation criteria, developed in
conjunction with the Neuron Registry staff. Consistent expert
decisions allowed the classifier to correctly create a model of the
positive-class documents. Finally, we used a simple classification
approach, based on features that were present in every record
used for classification (i.e., title, abstract, and MeSH terms). Using
more complex feature types, such as named entity recognition-
based features, would have likely led to certain documents having
empty feature sets, giving the classifier less information to work

with. For example, it is feasible that a neuroscientist could write
about neuroanatomy in such a way that would not be recog-
nized by simple methods for detecting neuroanatomical terms.
As we demonstrated in our follow-up experiments, there are
a variety of ways for writing about the brain, and develop-
ing optimal methods for detecting mentions of neuroanatomical
terms is, itself, its own active area of ML research (e.g., French,
2012).

The 962-document manually-curated collection that was cre-
ated to run our experiments is also an important and useful
contribution. We have released these data as open source on
github, with the hope that other ML scientists can use it to train
document classifiers for the neurosciences11 (the document cor-
pus has also been registered as a resource with the Neuroscience
Information Framework 12). As the neuroscience literature base
continues to grow, methods for information retrieval and infor-
mation extraction will continue to increase in importance, to neu-
roscientists and neuroinformaticians alike. Many such resources
are trained on expertly-curated document collections that can
be expensive to obtain. Here, we created a large collection of
documents for training supervised algorithms. Our document
collection has been annotated at both the document (i.e., rele-
vant vs. irrelevant) and sentence level (the sentence(s) containing

11https://github.com/ambertk/NeuronRegistryCorpus.
12http://www.neuinfo.org/.
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the information that led to a relevant judgment), so, in addition
to being useful for training document classification systems, it
could be used for training structure classification algorithms for
information extraction. No such resource was previously available
for neuroinformatics.

One limitation of the presently-described experiments is that
only one curator (KHA) was used to assign inclusion/exclusion
judgments to documents in the seed training collection, AL pool,
and evaluation collection. Although the curator has a graduate-
level education in the neurosciences, and the annotation criteria
used was developed in collaboration with a professional biocu-
rators and the NR staff, it would have been preferable to use a
team of curators to assign labels, so that inter-annotator agree-
ment statistics could have been calculated. Despite this limitation,
all the annotations submitted over the course of this study have
been reviewed and accepted by the NR curation staff. Along
similar lines, in order to simplify the full text document acqui-
sition step of our experiments, we limited our training data
collection to only articles published in 2010, in six top neuro-
science journals. We made this choice in order to ensure that
adequate metadata would be available in MEDLINE, and to
maximize the number of articles that we would encounter that
would be relevant to the NR, while still being true to the diver-
sity of the neuroscience literature base as a whole. Although
this wasn’t an especially limiting assumption, future work could
extend that presented here by taking a larger, more chronologi-
cally diverse slice of neuroscience publications. This would enable
future work to look at the role of concept drift (e.g., Forman,
2006) in the performance of AL and recommender systems for
biocuration. Because our target knowledge base was specifically
concerned with neuron-related information, we acquired a doc-
ument corpus that reflected this focus. Although the Virk system
is not meant to only be used for neuroscience use cases, future
work should demonstrate that our approach will generalize to
knowledge bases in other domains. Our system was intention-
ally designed with simple input feature types to the classifier
(e.g., simple unigrams, rather than knowledge-engineering-based
approaches, such as named-entity recognition). As in Ambert and
Cohen (2011), it is likely that there are aspects of our pipeline
that can and should be optimized for particular domains. Here,
we have demonstrated the baseline efficacy of our general frame-
work, using data set of neuroscience-related documents as an
example use case. We evaluated an alternative, more complex
feature modeling approach just to provide a reference point to
the baseline simple feature modeling approach, and to show that
no drastic performance benefits were being missed in our sim-
ple approach. A possible limitation of the current work is the
manner in which mutual information-based feature modeling
was carried out. The performance of our baseline classifier using
this simple mutual information calculation was sufficient that
we did not optimize it for differences in class sizes, which could
have held back performance somewhat. An interesting future
avenue for future experiments is determining the role of fea-
ture modeling algorithms in the performance of an AL system.
Finally, future research could use other classification approaches
beyond SVM. Although, as noted above, SVMs are known to

perform well on textual data, it is possible that others may pro-
vide similarly good performance. Future work should investigate
the relationship between input features, feature modeling tech-
niques, and approaches to classification. We hope to motivate
such work by making our data set available to researchers. One
motivation for using an SVM classifier for the present set of exper-
iments is that SVMs are very fast at classifying new documents.
Training them, however, can take some time, and typically yields
a squared-increase in training time, with the number of input
documents. For our small use case of bootstrapping the start-up
of a knowledge base, here, this was not a problem. However, for
larger training corpuses, this might become an issue for biocu-
ration workflows, and alternative classification approaches could
be investigated. Researchers wishing to apply our approach to a
new knowledge base should consider that there is going to be
some start-up costs associated with training a classification sys-
tem for their domain. A benefit of our approach is that, in terms of
time spent, much of the start-up costs are associated with reading
publications to determine which contain relevant information—
something that would need to be done to create the knowledge
base anyway.

Similar to others (Ambert and Cohen, 2009; Cohen et al., 2009,
2010b; Kouznetsov et al., 2009; Krallinger et al., 2009; Uzuner,
2009; Wallace et al., 2010), we used AUC and ranking to evalu-
ate the system and prioritize the literature for annotation work.
Another potential area for future research lies in optimizing the
number of uncertain documents used to train the classifier at
each iteration (here, 10 documents) and the number of predicted-
relevant documents used for annotation and evaluation (here,
20 documents). Our values were selected as practical heuristics,
based on what we thought the smallest number of documents we
could review during each round of annotation that would yield
usable confidence intervals. Future work could explore the effect
of changing these values, and how the performance they yield
interacts with characteristics of the corpus, such as the number
of relevant documents thought to be contained in it.

The results of our experiment comparing a system trained with
only the uncertain documents to one trained on all the avail-
able documents are intriguing. While the system trained on all
the available annotated documents consistently outperformed the
system trained only on the uncertain documents in terms of AUC,
this comparison is incomplete. An important part of our system
is the method used to select the most informative documents
for manual annotation and addition to the training set in the
next iteration. In our system, we used the simple approach of
choosing the 10 documents for which the classifier had the most
uncertainty—the documents with the lowest confidence in their
predictions. This enabled us to keep the prevalence of the train-
ing set approximately equal to that of the document pool. If we
had included all of the annotated documents in each round of
training (both the uncertain and confident documents), the train-
ing set would become gradually more and more skewed toward
the positive documents and therefore our simple approach of
selecting the documents with the most uncertainty would also
be subject to this bias. It is unclear what the impact would
be on the performance of our system in this situation. More
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sophisticated means of choosing the most informative documents
could avoid this problem and allow training on all of the anno-
tated documents at each stage without risk of biasing the classifier.
However, these methods tend to be much more computationally
and algorithmically complex than the simple method that was
effective here (Tong and Koller, 2002; Settles, 2010; Figueroa et al.,
2012).

Another possibility is to start off training on only the anno-
tated uncertain documents and after some number of iterations
switch to including all of the annotated documents. An avenue
for future investigation will be to examine a priori methods for
identifying the point at which this switch should be made-in our
studies, based on Figure 3, it appeared that this point occurred
somewhere between iterations 10 and 14, but this may have been
influenced by some aspects of our experiments (e.g., class dis-
tribution, or the number of documents used from training at
each iteration). Finally, although our system is adept at expand-
ing an online knowledge base (one bottleneck in the workflow of
a community-curated database), it does nothing to address other
inefficiencies, such as identifying likely erroneous submissions,
recognizing newly-published articles that contain information of
interest, or identifying where in an article the annotatable infor-
mation could be found. Each of these, however, should be points
of focus for future work.
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