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1. INTRODUCTION

Neuroscientists use many different software tools to acquire, analyze and visualize
electrophysiological signals. However, incompatible data models and file formats make it
difficult to exchange data between these tools. This reduces scientific productivity, renders
potentially useful analysis methods inaccessible and impedes collaboration between labs.
A common representation of the core data would improve interoperability and facilitate
data-sharing. To that end, we propose here a language-independent object model, named
“Neo,” suitable for representing data acquired from electroencephalographic, intracellular,
or extracellular recordings, or generated from simulations. As a concrete instantiation
of this object model we have developed an open source implementation in the Python
programming language. In addition to representing electrophysiology data in memory for
the purposes of analysis and visualization, the Python implementation provides a set of
input/output (I0) modules for reading/writing the data from/to a variety of commonly used
file formats. Support is included for formats produced by most of the major manufacturers
of electrophysiology recording equipment and also for more generic formats such as
MATLAB. Data representation and data analysis are conceptually separate: it is easier
to write robust analysis code if it is focused on analysis and relies on an underlying
package to handle data representation. For that reason, and also to be as lightweight as
possible, the Neo object model and the associated Python package are deliberately limited
to representation of data, with no functions for data analysis or visualization. Software for
neurophysiology data analysis and visualization built on top of Neo automatically gains the
benefits of interoperability, easier data sharing and automatic format conversion; there is
already a burgeoning ecosystem of such tools. We intend that Neo should become the
standard basis for Python tools in neurophysiology.

Keywords: electrophysiology, interoperability, Python, software, file formats

skills are strongly tempted to re-implement functionality that

Neuroscience research relies on specialized software to analyze
and visualize data, but often no single piece of software is suffi-
cient to meet all the needs of a particular study. The solution is
either to extend the software or to transfer data between software
tools. The former requires both programming skills and effort. If
an entirely novel analysis method is needed, this effort is unavoid-
able, but if, as is often the case, the required functionality is
already provided by a different software tool, transferring the data
can in principle be much more efficient. Unfortunately, in neuro-
physiology there is a very wide variety of software in use, much
of it proprietary and developed by recording hardware manufac-
turers, and with little in the way of common data formats. In
practice, researchers spend a lot of time and effort converting data
between different formats, and those with good programming

already exists elsewhere rather than go through a tedious con-
version process. A reduction in the amount of effort required
for neurophysiology data conversion could greatly enhance the
productivity of the field and reduce duplication of effort.

Three approaches to reducing the effort of data conversion,
and thereby increasing the interoperability of data analysis tools,
can be envisioned. The first is to develop a common file for-
mat, capable of containing all data generated by all the different
software tools in use. Having such a file format, the number
of possible conversion pathways that must be implemented is
greatly reduced. Ideally, hardware manufacturers would sup-
port exporting recorded data in this format. This approach
has been tried with some success in the domain of clinical
electroencephalography (EEG) (Kemp et al., 1992; Kemp and
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Olivan, 2003; Schlogl, 2006), and the Program on Standards for
Data Sharing of the International Neuroinformatics Coordinating
Facility (INCF) is currently developing a standard file format for
electrophysiology data (Teeters et al., 2013) based on the HDF5
file format. A comparison of 19 different biomedical data formats
is provided by Schlogl (2010).

The second approach is to define a language that can describe
the structure of data files in different formats, and then write
descriptions of each of the formats of interest using this language.
Conversion between data formats, or reading a data file into soft-
ware, can then be fully automated. This approach was taken by
Durka and Ircha (2004), who developed the SignalML markup
language for describing biomedical time series.

The third approach is to define an application programming
interface (API) that takes care of the data conversion, and
implement this as a library which can be used by software
developers to provide uniform access to data, independent of
the file format. An advantage of this compared to the other two
approaches mentioned above is that it encourages modularity
in software development: the data-conversion library defines
certain data structures which can then be used by developers
of analysis and visualization tools, which thereby gain greater
interoperability. A previous effort to define an API for electro-
physiology data in neuroscience was undertaken by a consortium
of recording hardware manufacturers, which in 2000 began
development of the Neuroshare API (http://neuroshare.org). The
Neuroshare API is available as a C library and as a MATLAB (The
Mathworks Inc.) extension. These are distributed as compiled
dynamic-link libraries (DLLs), one per manufacturer; the source
code is generally not available, and most are only available for
the Windows operating system. The API is rather low-level,
consisting of a number of functions and low-level data structures
such as numerical arrays. BioSig (http://biosig.sourceforge.net/)
is a cross-platform open source library for biomedical signal
processing (EEG, ECG, etc.), available for MATLAB/Octave and
for C/C++ (with wrappers for Python), which includes support
for a large number of biomedical file formats.

We have developed a novel, object-oriented API for rep-
resenting electrophysiology data in memory and for read-
ing/writing such data from/to multiple file formats. The Neo
(from Neuroscience Electrophysiology Objects) API is defined
as an object model, and is intended to be able to represent any
electrophysiology dataset, from in vitro patch-clamp recordings
through multi-electrode array recordings to EEG. We have imple-
mented the Neo object model as a cross-platform, open-source
Python package, but it should be possible to implement it in any
object-oriented programming language. An object-oriented API
is a natural fit for neuroscience data, and in particular makes it
easier to encapsulate data and the associated metadata, hence pre-
serving the information about the experimental context that is
needed to correctly interpret and analyze the data.

The principal goal of developing Neo is to improve the
interoperability of software for working with electrophysiology
data. Such interoperability includes the exchange of data objects
between software tools in memory as well as via the filesys-
tem. The existence of a Neo implementation in a given language
means, for example, that one scientist or research group can

develop a library for electrophysiology data analysis and another
a library for visualization of such data, then a third scientist
can easily combine both libraries in his/her own workflow, with-
out having to worry about plumbing the tools together, taking
care of correct metadata conversion, etc. By having an object
model that is shared across programming languages, we hope
to make conversion of data analysis routines between languages
more straightforward.

In this article we describe the considerations which led to the
design of the API, we describe the object model and its Python
implementation, then give some examples of using the Neo
Python package in real-world situations. Finally, we discuss the
advantages and disadvantages of the Neo approach with respect to
the other approaches to data sharing and software interoperability
mentioned above, and outline possible future directions.

2. DESIGN CONSIDERATIONS

Starting with the basic requirement that the object model should
allow the representation and manipulation of any electrophysiol-
ogy dataset, we elaborated the design according to the following
principles.

2.1. SCOPE

It was decided that the object model should contain only classes
for representing electrophysiology data and for reading/writing
such data from/to files or databases. Further, the behavior of these
objects should allow only basic manipulations such as rearrang-
ing datasets or extracting sub-sets. In particular, we wished to
specifically exclude visualization or analysis methods, even such
simple ones as taking the mean. The motivation for this was to
keep Neo as lightweight as possible. In our experience develop-
ing open-source software, small, focused libraries are much more
likely to see widespread uptake. In future, we expect to extend the
object model to support other data types closely-related to elec-
trophysiology, such as calcium imaging and behavioral data, but
these were not included in the initial design so as to avoid diluting
our efforts.

2.2. METADATA

We distinguish essential metadata, which is required for the data
to have even minimal meaning rather than just be arrays of num-
bers, desirable metadata, which is necessary to correctly analyze
the data, and additional metadata. Examples of essential metadata
are the sampling interval and the physical units of a recording.
Desirable metadata might include identification of the neuron
or brain area from which the recording was made, or the filter
settings used. Additional metadata provide information that is
specific to a particular user or software tool, such as which color
to use when plotting the data in a graphical interface. The object
model should make it impossible to create data objects with-
out essential metadata. For desirable and additional metadata, it
should be straightforward to annotate any object. Annotations
should take the form either of key—value pairs or of subject—
predicate—object triples as used in RDF (Manola and Miller,
2004). In our Python implementation, we chose key—value pairs
for simplicity, but we are considering adding support for triples
in future versions. For desirable metadata we add the further
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requirement that the metadata must be preserved when writing
to and then reading again from a file or database, whatever the
format.

2.3. STRUCTURE

Experimental protocols in neuroscience are hugely diverse, and
may be structured in many ways in terms of stimulus presen-
tation, behavioral responses, and pharmacological interventions.
The object model should allow at least the structure related to
the electrophysiological recordings to be represented in the rela-
tionships between data objects rather than only as metadata.
At least two levels of hierarchical organization are needed (e.g.,
a recording session consisting of multiple trials, or a multi-
electrode recording with multiple channels), but non-hierarchical
cross-links are also needed.

24. INTEROPERABILITY
Wherever possible, compatibility with other widely used scientific
libraries in a given implementation language should be preserved.

2.5. EFFICIENCY

Electrophysiology datasets are often very large, either because
recording lasts for a long time, hours or days, or because
of recording from many channels. This means that both the
object model and its implementation must provide memory- and
computation-efficient representations.

3. OBJECT MODEL

The Neo object model consists of 14 classes, which may be divided
into three types: data objects, container objects and grouping
objects. Figure 1 provides an overview of the Neo objects and
their relationships. Data objects contain numerical data together
with associated metadata. The data types that are represented
are (i) sampled continuous, analog signals; (ii) action potentials

Block
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FIGURE 1 | An illustration of the data types supported by Neo and
their grouping into containers.

(“spikes”), characterized by their time of occurrence and, option-
ally, their waveforms; (iii) events, each of which consists of a time
of occurrence and a textual label; and (iv) epochs, each of which
consists of a start and end time together with a label. The full list
of data objects is as follows:

e AnalogSignal:arecord of a continuous, analog signal with
a fixed sampling interval, for example the membrane potential
recorded from an intracellular electrode using current clamp.

e IrregularlySampledSignal: a record of a continuous
analog signal with a varying sampling interval. This is found,
for example, in data from neuronal network simulations with
a variable-time-step integration method.

e AnalogSignalArray: arecord of a multichannel continu-
ous analog signal with a fixed sampling interval, for example
from an multi-electrode array or from an EEG recording.

e Spike: one action potential characterized by its time and
waveform.

e SpikeTrain: a set of action potentials (spikes) emitted by
the same unit in a period of time (with optional waveforms).
Such data is generated by spike sorting from multi-electrode
recordings, and directly by simulations.

e Event and EventArray: a time point representing an event
in the data, or an array of such time points. Events may rep-
resent, for example, pharmacological interventions or triggers
during behavioral experiments.

e Epoch and EpochArray: an interval of time representing
a period of time in the data, or an array of such intervals.
An example would be the time during which a stimulus is
presented.

For each data type, the object model provides both a scalar
representation (a single instance of a data item, for example,
AnalogSignal and Spike) and an array representation (e.g.,
AnalogSignalArray and SpikeTrain) in order to pro-
vide a choice between simplicity and efficiency in data analysis.
For example, when working with single-electrode data, using
the scalar objects is simpler and produces code that is easier
to understand, without having to deal with array indexing. For
electrode-array or EEG data on the other hand, using NumPy-like
arrays is much more efficient than using lists of objects.

Container objects provide a simple hierarchical grouping of
data. A Segment may contain any of the data object types pro-
vided all the objects share a common clock, i.e., they represent
data recorded at the same time, although the sampling interval,
onset and duration of recording may differ between data objects.
A Block is the top-level container, and contains Segments
and RecordingChannelGroups (see below). To illustrate
this further, in the common experimental paradigm of running
multiple trials, i.e., presenting the same stimulus multiple times,
the data from each trial would be stored in a Segment, and all
the Segments stored in a single Block. Deeper or more com-
plex hierarchies are not supported directly by Neo, but it would be
straightforward for a user to define a higher-level object to con-
tain multiple blocks. Some of the Neo input/output modules (see
below) support storage of multiple Block objects.

Frontiers in Neuroinformatics

www.frontiersin.org

February 2014 | Volume 8 | Article 10 | 3


http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Garcia et al.

An object model for electrophysiology

Grouping objects express the relationships between data
objects, such as which signals were recorded on which electrodes,
which spike trains were obtained from which membrane poten-
tial signals, etc. They contain references to data objects that cut
across the simple container hierarchy. Another way to think of
this organization is that “container” objects group data that were
acquired at the same time, while “grouping” objects group data
that were recorded from the same channel, array, location, etc.
The grouping objects are as follows:

e Unit: gathers all the Spike and SpikeTrain objects
within a Block, possibly across several Segment s, that were
emitted by the same neuron.

e RecordingChannel: links AnalogSignal and
IrregularlySampledSignal objects that come
from the same logical and/or physical channel inside a Block,
possibly across several Segment objects.

e RecordingChannelGroup: a group for associated
RecordingChannel objects, for example all the channels
from a single tetrode.

The RecordingChannelGroup has several uses. Firstly, for
linking several AnalogSignalArray objects across several
Segment objects, e.g., linking multi-electrode array record-
ings across trials. Secondly, to associate a Unit with the
group of recording channels from which it was calculated
(since with multi-electrode arrays, action potentials from the
same neuron may be recorded on more than one record-
ing channel); Thirdly, for grouping RecordingChannel
objects by signal type (for example, with intracellular record-
ing, it is common to record both membrane potentials and
currents at the same time). Fourthly, for multi-electrode
arrays, a RecordingChannelGroup is used to gather all
RecordingChannel objects belonging to the same array.

3.1. OBJECT ATTRIBUTES

Most objects, and in particular all of the data objects, have a num-
ber of required attributes. These are essential metadata without
which the numerical data values contained in the object cannot
be interpreted. For example, in the case of AnalogSignal, the
required attributes are the sampling interval (or, equivalently, the
sampling rate), the time stamp of the first sample and the units
of the signal, for example “millivolts” in the case of the mem-
brane potential. All attributes that represent physical quantities
must state the units, for example, the sampling rate could be given
as “10kHz”

In addition to the required attributes, each object has a
number of suggested attributes. These attributes are intended to
contain desirable metadata that are not essential for working
with the objects, but that are likely to be useful in developing
analysis methods, automatic graph generation, tracking prove-
nance, etc. Examples of such suggested attributes are name,
rec_datetime (the date and time of the original recording)
and file_origin (the filesystem path or URL of the original
data file from which the data were read). The number of suggested
attributes is likely to increase in future versions as structured ter-
minologies and ontologies for neurophysiology are developed.

Full details about required and suggested attributes are avail-
able in the Neo documentation, online at http://neuralensemble.
org/neo/.

Finally, any object may contain any number of additional
attributes or annotations. Such annotations may be numerical
or text values, arrays of such values, or dictionaries/hash tables
containing such values. They are intended to contain any infor-
mation that may be useful in subsequent processing of the data,
for example metadata describing the experimental protocol.

3.2. RELATIONSHIPS BETWEEN OBJECTS

The functions of the container and grouping objects are based
on lists of references to other objects. For example, Block has
an attribute segments, which is a list of references to all the
Segment objects contained in that Block. Such relationships
are bi-directional, for example each Segment has an attribute
block pointing to the Block within which it is contained.
Figure 2 shows all of these relationships. More detail is available
in the online documentation.

3.3. IMPLEMENTATION IN PYTHON

When implementing the object model in a specific language, ease-
of-use considerations come to the fore. If a package or library is
to gain widespread adoption, it should be easy to build and install
on different platforms, and should be interoperable, as much
as possible, with existing tools and existing code for handling
electrophysiology data in that language.

In the case of Python, the latter consideration dictates that a
Neo implementation must be based on NumPy (Oliphant, 2007),
the de facto standard for numerical computing in Python. NumPy
provides a powerful, N-dimensional array object that can contain
integers, floating point numbers, strings or other Python objects.
A given numerical array can have any combination of precision
and byte-order. Most array operations are implemented in C or
Fortran for efficiency. The principal choice in implementing the
Neo object model in Python is whether the classes for data objects
should inherit from the NumPy ndarray class (a Neo class is
a NumPy array) or whether to use composition (where the Neo
class has a data attribute which is a NumPy array). Inheritance
has two important advantages: (i) existing code that works with
NumPy arrays will work with Neo data objects without modifi-
cation; (ii) Neo objects gain most of the functionality of NumPy
arrays “for free,” i.e., we do not have to re-implement this func-
tionality. A number of operations on, and methods of, NumPy
arrays have to be re-implemented or extended for Neo objects,
in order to preserve the extra metadata carried by Neo objects,
but these would in any case have to be implemented if taking the
composition approach. The principal disadvantage of the inheri-
tance approach is complexity: creation of subclasses is one of the
more difficult parts of the NumPy API. After weighing up these
considerations, we chose to use inheritance.

The second major choice was how to represent the measure-
ment units of the data. Several Python packages are available for
handling units and physical quantities in Python. The decision
to use inheritance for NumPy support narrows down the choice.
We chose to use the Quantities package (http://pythonhosted.
org/quantities/), which provides a Quantity class that inherits

Frontiers in Neuroinformatics

www.frontiersin.org

February 2014 | Volume 8 | Article 10 | 4


http://neuralensemble.org/neo/
http://neuralensemble.org/neo/
http://pythonhosted.org/quantities/
http://pythonhosted.org/quantities/
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Garcia et al.

An object model for electrophysiology

Block

index
name

property file_origin

RecordingChannelGroup

channel _indexes
channel names
name

file_datetime
rec_datetime

description

description ~property
file_origin !
RecordingChannel H
index Unit Segment
coordinate *
name -
description channel indexes file_datetime
file_origin name rec_datetime
N description index
file_origin name
description
file_origin
Irregularly igl Anal i I Anal i IArray Spike ( SpikeTrain ( Event EventArray ( Epoch EpochArray\
times * signal * signal * time * times * time * times * time * times *
values * sampling_rate *| | sampling_rate * Py t start * label labels duration * durations *
t start * t_start * Woetonm t_stop * label labels
name = = left sweep * . name name
description channel index channel_indexes sampling_rate *|| waveforms * description| | description name name
file_origin name name name left_sweep * file_origin file_origin description| | description
description description description sampling_rate * - file_origin file_origin
file_origin file_origin file_origin name I
description
file_origin

FIGURE 2 | The Neo object model: the principal classes and their relationships. For each class, a horizontal line separates the required attributes from the
suggested attributes. The stars mark the attributes that have an associated unit.

from the NumPy ndarray class and adds a concept of phys-
ical dimensions and units. This means that trying to add a
Quantity array with dimensions of voltage to an array with
dimensions of current will produce an exception, while adding
an array in millivolts to an array in volts will perform scaling so
as to give the correct result. The particular choice of Quantities
is not limiting. It would be possible to replace it with another
units package that subclasses ndarray, such as Pint (http://pint.
readthedocs.org/), without changing the Neo interface.

In summary, the classes for the Neo data objects all inherit
from Quantity, and so gain checks for dimensional consis-
tency for free, in addition to the large amount of functionality
inherited from ndarray. Neo objects add further checks (for
example, trying to add together two AnalogSignals with
different sampling rates produces an exception) and further oper-
ations (for example, it is possible to slice AnalogSignals and
SpikeTrains according to time as well as according to index).

Other Python packages for working with time series data do
not fill the niche that Neo does. The core function of Neo is data
representation. The Pandas package (http://pandas.pydata.org) is

ageneral toolkit forworking with heterogeneous data. Neo contains
functionality specific for neural data analysis, such as grouping of
channels by anatomical location. Another package, nitime (http://
nipy.org/nitime), provides algorithms for time-series analysis that
aretailored toward neuroimagingdata. In contrast, the Neo package
intentionally does not providealgorithms for dataanalysissince this
will vary widely across users. Overall, Neo provides functionality
that is specific to neuroscience data (unlike Pandas) but not
specific to particular applications within neuroscience (unlike
nitime). This means that Neo is ideally situated to be a common
format for neuroscientists, who may then analyze the data using
the tools provided by other packages as desired.

Because the primary function of Neo is neural data represen-
tation, the methods provided fall into two categories: (1) reading
from the various formats used by hardware manufacturers; (2)
linking the resulting objects in a neuroscientifically meaning-
ful way. The first type of linkage is spatial: AnalogSignal
objects may be added to RecordingChannel objects,
and RecordingChannel objects added to spatially defined
RecordingChannelGroup objects. The second type of
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linkage is temporal: AnalogSignal objects also belong to a
Segment object (representing a period of time), and Segment
belongs to Block (representing an entire experiment). Typically
the provided I0 methods construct the linkages in this hierar-
chy automatically. The user may then iterate over the data in
whichever way is most intuitive for the application: either tem-
porally (trial by trial within a session) or spatially (channel by
channel within the brain).

The Neo package is available from the Python Package Index
(https://pypi.python.org/pypi/neo/) and as Debian and Ubuntu
packages through NeuroDebian (Halchenko and Hanke, 2012).
The core of Neo works with both Python 2 (version 2.6 or later)
and Python 3 (version 3.2 or later). For some file formats, only
Python 2 is currently supported. At the time of writing, the latest
version is 0.3.1. Full documentation is available online at http://
neuralensemble.org/neo/. There is an extensive test suite, and
the project makes use of continuous integration (https://travis-ci.
org/NeuralEnsemble/python-neo) to rapidly catch regressions.

4. READING AND WRITING DATA WITH MULTIPLE FILE

FORMATS
In addition to implementing the Neo object model as a Python
API, the Neo Python package also provides a set of input/output
(I0) modules for various neurophysiology file formats, includ-
ing proprietary formats (e.g., Plexon, Spike2, NeuroExplorer,
Axon, AlphaOmega, Micromed and Tucker-Davis), the formats
used by various open-source and/or freely distributed tools (e.g.,
Klustakwik, Elan, WinEdr) and generic file formats such as
MATLAB, ASCII and HDF5. In most cases, the proprietary for-
mats are read-only, while the more open and generic formats
support both reading and writing. The Neo documentation pro-
vides guidelines for anyone wishing to add support for a new
format.

The inclusion of support for multiple file formats in the Neo
package has several benefits: (i) it demonstrates the universality
of the object model, which is able to represent the data from all
of these different formats; (ii) it is an important part of real-
izing our goal of improving interoperability of different tools
and the ease of sharing data between different projects; (iii)
it provides an immediate benefit to users, thus driving uptake
of the Neo software; (iv) tool developers can use Neo as a
basis and immediately gain the benefit of supporting multiple
file formats, without them having to implement such support
themselves.

For each file format there is a separate Python class, each of
which implements the same interface. Reading data for a given
format can be as simple as:

from neo.io import MyFormatIO
reader = MyFormatIO(filename="myfile.dat")
data = reader.read()

However, given the large size of many neurophysiology
datasets, it is not always desirable to load all the data into
memory at once. The full interface therefore offers more
fine-grained control. All read functions have two optional param-
eters: cascading and lazy. When cascading is set to false,
only a single object is loaded and none of its references to other

objects are populated. The lazy parameter does not influence
whether linked objects are loaded, but determines the treatment
of data objects: when lazy is true, the numerical data is not
loaded, instead empty data objects are created including all prop-
erties and metadata. This allows examining the contents of files
with a substantially smaller memory footprint. 10 classes can
implement a method to load the full version of a lazily loaded
object once the numerical data is required.

The IO API also takes into account that a dataset does not
necessarily come from a single file. Some software provides
recordings in a directory or in a database. Such cases are taken
into account through the attribute mode in each 10 class. The
behavior is changed only at instantiation:

from neo.io import MyFormatlIO, MyFormat2IO

readerl = MyFormatlIO(filename="myfile.dat")
# MyFormatlIO.mode = ‘file’
reader2 = MyFormat2IO(dirname="/path_to_dataset")

# MyFormat2IO.mode = ‘dir’

Some file formats internally store arrays in a compact continu-
ous way. In such cases, the class implementations use the NumPy
“memmap” mechanism. This reduces the memory footprint and
allows transparent access to files that do not fit into memory.

For the implementation of file readers, an early difficulty was
collecting information about the specifications for proprietary
file formats. This tedious task was accomplished using several
approaches: (i) asking manufacturers to open the specifications;
(ii) reading code from other packages; (iii) reading C header
files; (iv) basic reverse engineering with hexadecimal editors.
Nowadays, many manufacturers provide their file specifications
in the user documentation. The main difficulty remains in the
versioning of these specifications. In general, the internal file
formats do not change much over time, but sometimes some
problematic changes occur, making the classes non backward
compatible. This has been taken into account for some file for-
mats. The AxonIO implementation is a good example where two
very different versions of the same file format can be read trans-
parently. Unfortunately, this is not the case for all classes and the
effort must continue.

5. USAGE EXAMPLES
5.1. RECORDING MULTIPLE TRIALS FROM MULTIPLE CHANNELS
In this example we suppose that we have recorded from an
8-channel probe, and that we have recorded three trials. We there-
fore have a total of 8 x 3 = 24 signals, each represented by an
AnalogSignal object.

As shown in Figure 3, our dataset (contained in a single
Block, not explicitly shown) contains:

e Three Segment objects, each representing data from a single
trial,

e One RecordingChannelGroup, composed of eight
RecordingChannel objects.

This information can be traversed or averaged in two different
ways. The first is temporal traversal (by segment). For example,
suppose you wish to correlate the overall neural response with the
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stimulus that was delivered in each segment. In this example, we
treat each segment in turn, averaging over the channels in each:

import numpy as np
from matplotlib import pyplot as plt
# We assume that the variable "block" has been
# previously loaded from file

for seg in block.segments:
print ("Analysing segment %d" % seg.index)
siglist = seg.analogsignals
time_points = siglist[0].times
avg = np.mean(siglist, axis=0)
# Average over signals of Segment

plt.figure()

plt.plot (time_points, avg)

plt.title("Peak response in segment %d: $f"
% (seg.index, avg.max()))

The second alternative is spatial traversal of the data (by chan-
nel), with averaging over trials. For example, perhaps you wish to
see which physical location produces the strongest response, and
each stimulus was the same:

# We assume that our block has only 1
# RecordingChannelGroup and each RecordingChannel
# only has 1 AnalogSignal.
rcg = block.recordingchannelgroups[0]
for rc in rcg.recordingchannels:
print ("Analysing channel %d:
% (rc.index, rc.name))

g

siglist = rc.analogsignals

time_points = siglist[0].times

avg = np.mean(siglist, axis=0)

# Average over signals of Recording Channel

plt.figure()

plt.plot(time_points, avg)

plt.title("Average response on channel %4"
% rc.index)

5.2. RECORDING SPIKES FROM MULTIPLE TETRODES

Here is a similar example in which we have recorded with two
tetrodes and extracted spikes from the extra-cellular signals. The
spike times are contained in SpikeTrain objects. As shown in
Figure 4, our data set (again contained in a Block) contains:

e Three Segments (one per trial).
e Two RecordingChannelGroups (one per tetrode), which
contain:

e Four RecordingChannels each

e Two Unit objects (= two neurons)
RecordingChannelGroup

e Five Units for the second RecordingChannelGroup.

for the first

In total we have 3 x 7 = 21 SpikeTrains in this Block.
There are three ways to access the spike train data: by segment,
by recording channel or by unit.

RC = RecordingChannel
AS = AnalogSignal

Segment 0 Segmentl Segment 2
AS 0,0 AS 1,0 AS 2,0
RC O
Q AS 0, AS 1,1 AS 2,1
> RC1
5 AS 0, AS1, AS 2,
g RC 2
c AS 0,3 AS 1,3 AS 2,3
= RC3
c IAS 0,4 AS 1,4 AS 2,
9 RC 4
2 AS 0,5 AS 1,5 AS 25
e} RC5
5 AS 0,6 AS 1, AS 2,
o RC 6
g:) IAS 0,7 AS 1,7 AS 2,
RC 7 WY e

FIGURE 3 | An illustration of recording multiple trials from multiple
channels. Each Segment contains the data recorded from a single trial. The
RecordingChannel objects identify the channel on which a given signal was
recorded, and hence link AnalogSignal objects across trials. The
RecordingChannelGroup indicates that all channels are recorded from the
same 8-channel probe. All the objects shown here are contained in a single
Block, which is not explicitly shown.

5.2.0.1. By Segment. In this example, each Segment represents
data from one trial, and we want a peristimulus time histogram
(PSTH) for each trial from all units combined:

for seg in block.segments:

print ("Analysing segment %d" % seg.index)

stlist = [st - st.t_start
for st in seg. spiketrains]
count, bins = np.histogram(np.hstack(stlist))

plt.figure()
plt.bar(bins[:-1], count,
width=bins[1] - bins[0]

)
plt.title("PSTH in segment %d" % seg.index)

5.2.0.2. By Unit. Now we can calculate the PSTH averaged over
trials for each unit:

for unit in block.list_units:

stlist = [st - st.t_start
for st in unit. spiketrains]
count, bins = np.histogram(np.hstack(stlist))

plt.figure()
plt.bar(bins[:-1], count,

width=bins[1] - bins[0])
plt.title("PSTH of unit %s" % unit.name)

5.2.0.3. By RecordingChannelGroup. Here we calculate a PSTH
averaged over trials by channel location, blending all units:

for rcg in block.recordingchannelgroups:
stlist = []
for unit in rcg.units:
stlist.extend([st - st.t_start
for st in unit. spiketrains])
count, bins = np.histogram(np.hstack(stlist))
plt.figure()
plt.bar(bins[:-1], count,
width=bins[1] - bins[0])
plt.title("PSTH blend of recording channel group

)

%5

)

% rcg.name)
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The code samples shown here are extracted from a complete
example script available in the Neo source code distribution, see
https://github.com/NeuralEnsemble/python-neo/blob/master/
examples/generated_data.py.

6. DISCUSSION

We have presented here an object-oriented API for handling elec-
trophysiology data in neuroscience, and an implementation of
this API in the Python programming language. We have shown
how this model is designed to allow for convenient and effi-
cient representation of all kinds of electrophysiological data, from
spikes to broadband continuous signals, with support for all com-
mon recording technologies, including multi-channel systems
like tetrodes. Furthermore, we have illustrated the practical use of
the Neo Python package through examples in typical real-world
situations.

The generality of the Neo object model for the representation
of electrophysiological data coupled with the availability of a large
set of IO modules for common file formats in the Python package
makes Neo a very convenient and powerful base package to build
upon when developing software to manipulate, analyze or dis-
play electrophysiological data in Python. It thus fulfils our initial
goal as a tool to facilitate data sharing and conversion, as well as
software interoperability, with the hope that Neo will become the
standard base package for the community of Python developers
working with electrophysiological data.

6.1. PROJECTS USING NEO

The success of the Neo project and the suitability of the object
model will be determined by whether other software tools for
working with neurophysiology data adopt the Neo object model
and whether they gain benefits from doing so. A number of
projects and laboratories are already using Neo.

The German INCF Node (G-Node) has adopted the Neo
model for the representation of electrophysiological data in
its data management platform (https://portal.g-node.org/data/).
The purpose of the platform is to provide a centralised system for

RC = RecordingChannel
ST = SpikeTrain

Segment 0 Segment 1 Segment 2
o
o (RCO ST0,0 ST1,0 ST 2,0
23
55 JRC1
55 STO0,1 ST1,1 ST2,.2
@ < RC 2 Unitl |l 11 11l moomorm (N
g
S \Rc3
ST0,2 ST1,.2 ST 2,2
-
oS RC4 ) ST0,3 ST1,3 ST2,3
23 Unit3 [ it FoTrn T m
k<kG] . i ST0.4 ST1.4 ST2,4
5% RC 6 Unit4 | 11T 111 i | i
o S i ST0,5 ST1 ST25
& S Unit5 |11 it 11 NI NI [ ([}
¥ RC 7 . ST 0,6 ST1,6 ST2,6
() Unité |1 11 1 [ T B | i [T

FIGURE 4 | An illustration of recording spikes from multiple tetrodes.
After spike sorting, two units have been isolated from the first tetrode, and
five units from the second. The SpikeTrain objects may optionally also
contain the action potential waveforms for each spike (not shown).

organising and sharing of electrophysiology data. A major obsta-
cle to data sharing and re-use in the field of electrophysiology is
the large variety of data formats. The G-Node platform provides a
unified way of representing electrophysiological data according to
the Neo object model, as well as automated format conversion uti-
lizing the Neo I0 modules. Being compliant with the Neo model,
the system’s API achieves interoperability with other tools that use
the Neo objects and facilitates integration of data access and data
analysis. G-Node offers a Python client tool that provides a front-
end to the data hosted on the G-Node data platform in terms
of the Neo Python objects (Sobolev et al., 2014). The G-Node
platform complements the Neo data representation with meta-
data storage using an unrestrictive format (Grewe et al., 2011),
enabling extensive data annotation in a standardized way.

PyNN (Davison et al., 2009) is a Python API for simulator-
independent neuronal network simulations. One aspect of
simulator independence is reformatting the data produced by
each simulator into a common format. Originally, this common
format was based on NumPy arrays together with a small amount
of metadata, which could be saved to file in a small number of
non-standard formats. As of version 0.8, PyNN has adopted Neo as
the common format for output data. This has had several benefits:
(i) the hierarchical structure of Neo allows much more of the
structure of the simulation experiment to be preserved; (ii) a much
more complete set of metadata can easily be provided; (iii) a much
wider range of file formats is now available; (iv) data recorded
in biological experiments and data generated by simulations can
now be analyzed and visualized with the same tools; (v) reduced
development effort for the PYNN development community, since
a large piece of functionality has been “out-sourced” to Neo.

Spyke Viewer (Propper and Obermayer, 2013) is a flexible
and extensible graphical application for navigating, analysing
and visualising electrophysiology data. The central features of
Spyke Viewer are the navigation view, filter system, and plug-in
architecture. Filters define data subsets of interest. Plug-ins imple-
ment data analysis algorithms or visualizations, and Spyke Viewer
comes with a variety of plug-ins implementing common neuro-
scientific plots such as raster plots or correlograms. Spyke Viewer
uses Neo as its object model as well as for loading and export-
ing data. The navigation view allows users to select Neo grouping
and container objects, offering a common structure for the data
independent of its source format. Filters use properties and anno-
tations of Neo objects to define which objects are shown in the
navigation view. Plug-ins operate on Neo data objects. Because
of the standard data model provided by Neo, plug-ins work with
data from many different formats. This enables Spyke Viewer
users to conveniently share methods implemented in plug-ins.

OpenElectrophy (Garcia and Fourcaud-Trocmé, 2009) is a
graphical user interface built on top of Neo. This software imple-
ments four independent components: (i) SQL database manage-
ment for Neo objects; (ii) a fast viewer for Neo objects; (iii) a
complete off-line spike sorting tool-chain; (iv) a time-frequency
toolbox (fast multi-channel wavelet scalogram plotting and tran-
sient oscillation detection). The main difficulty when designing
a spike sorting tool-chain is the management of data in various
and complex situations: (i) the hardware setup may use a single
electrode, several independent electrodes, several independent
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N-trodes or electrode arrays; (ii) the protocol may involve one
continuous recording or multiple chunks of recording; (iii) the
nature of the recording may be full band signals, filtered signals
or pre-detected spikes. Many spike sorting tools take into account
only one combination of these situations because it is rather com-
plex to support all the possible combinations. The Neo object
model allows all these situations to be dealt with transparently
in OpenElectrophy.

Datajongleur (https://github.com/G-Node/Datajongleur) is
a collection of scientific data objects. It supports manage-
ment of data objects with numerical behavior in combination
with relational databases, like SQLite (http://www.sqlite.org/,
file based), or PostgreSQL (http://www.postgresql.org/, server
based). Datajongleur provides a Neo implementation that allows
storing Neo objects in a relational database.

As a consequence of the common use of the Neo Python
package, it is now straightforward to take recorded data from
experiments or simulation data generated by PyNN, store them
on the G-Node data platform or in a relational database using
Datajongleur, then analyze and visualize them in Spyke Viewer
or OpenElectrophy, in a seamless pipeline. Although we have
focused in this section on the advantages of Neo for tool devel-
opers, the Neo Python package is equally suitable for use by
individual scientists analysing their data with their own scripts.

6.2. FLEXIBILITY AND EXTENSIBILITY OF THE OBJECT MODEL

The Neo object model has been designed to be as general as
possible while still retaining the ability to clearly represent data
objects and express the relationships between them in a way that
is natural for neuroscientists. Nevertheless, many experiments
in neuroscience combine electrophysiology recordings with
recording of other types of data, such as temperature and
position in space, and with sensory stimuli. Many such data types
are straightforward to represent using the Neo object model. For
example, temperature, the angle of a trackball, or an auditory
stimulus can all naturally be stored in an AnalogSignal,
while a SpikeTrain could be adapted to represent tran-
sients (time of occurrence plus waveform) in calcium
imaging data.

For data that don’t naturally fit into the current objects, it is
possible for users to define their own classes that interact with
the Neo objects. For example, with calcium imaging data, a user
could define their own class to represent the image series, then use
AnalogSignal to represent the time course of activity within
a region of interest. To store such mixed data, either two separate
files can be used, or, with the HDF5 format, both data types can
be stored in a single file, using the NeoHA£ 5 IO class to automati-
cally store the time-series data and using an HDF5 library directly
to store the imaging data.

6.3. RELATED INTEROPERABILITY EFFORTS
As outlined in the Introduction, there have been a number
of previous efforts to solve the problem of incompatible file
formats in neurophysiology and related fields, such as clinical
electrophysiology.

BioSig (http://biosig.sourceforge.net/) is a cross-platform
open source library for biomedical signal processing, available

for MATLAB/Octave and for C/C++. Python bindings can be
generated from the C/C++ library using SWIG. It includes sup-
port for a large number of file formats. Neuroshare (http://
neuroshare.sourceforge.net/) is an API that must be implemented
as a library by each equipment manufacturer that wishes to sup-
port it. The libraries are not in general open source and most
of them are only available for Windows. NiBabel (http://nipy.
sourceforge.net/nibabel/) is a Python library for accessing com-
mon neuroimaging and medical file formats — its goals are very
similar to those of Neo, but in a different domain. In the biomed-
ical domain there are a large number of file formats for storage of
biomedical time series data (ECG, EEG, etc.; reviewed in Schlogl,
2010), some of which are international standards and others
quasi-standards due to widespread uptake. An example of the lat-
ter is the European Data Format (EDF and EDF+) which was
supported by about 50 companies as of 2004 (Kemp, 2004). The
GDF format (Schlogl, 2006) is a more recent development that
addresses many of the limitations of earlier formats. SignalML
(Durka and Ircha, 2004) is an alternative approach, defining a
markup language for describing file formats so as to allow auto-
matic conversion. Kemp (2004) compares EDF+ and SignalML,
concluding that the SignalML approach is more flexible but that
this flexibility comes at a price in terms of stability and increased
effort for users.

We expect that Neo will be interoperable with, and broadly
complementary to these existing efforts. For example, the Neo
Python package already offers a NeuroshareIO module for
reading data files via the Neuroshare libraries, and it should be
straightforward to add 10 modules for EDF/EDF+, GDF and the
HDF5-based standard file format being developed by the INCE.
The particular advantages of the Neo Python package are (i)
its rich object model can capture all of the complexity typically
found in neurophysiology experimental protocols; (ii) it is writ-
ten in pure Python without any C/C++ dependencies except the
widely available NumPy package; as such it is easy to install and
highly cross-platform; (iii) it focuses on neuroscience research,
whereas most of the other tools cited above have a biomedical
focus; (iv) by using the Python programming language, users
of Neo gain all of the benefits associated with that language,
such as readability, increased productivity, ease of use for sys-
tem integration, and access to a powerful ecosystem for scientific
computing.

6.4. SUSTAINABILITY

Neo is developed as an open, collaborative project at http://
neuralensemble.org/neo, using GitHub for version control and
issue tracking. Anyone is welcome to propose and implement
changes, which will then be reviewed by one or more of the
other contributors, and a decision on whether to accept the
changes taken by consensus. 19 people from ten separate insti-
tutions have at some time contributed code or documenta-
tion to the Neo project; six people from five institutions have
contributed within the past 12 months. This distributed devel-
opment effort, in which the collaboration arises informally
from shared needs and interests rather than formally through
grant funding, gives us confidence that Neo development is
sustainable.
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6.5. FUTURE PLANS

The Neo object model was designed after discussion between a
group of scientists and engineers, both developers and potential
users, from several laboratories. We consider the essential ele-
ments of the object model to be stable. However, as users and
developers gain experience with the software, some evolution is
to be expected. It will be necessary to find a compromise between
changes to enhance usability and support new use cases, and the
stability needed for a low-level library on top of which other
software is built.

Among the improvements already envisaged are the fol-
lowing: (i) some simplification of the object model, in par-
ticular merging of the scalar and array representations (e.g.,
AnalogSignal and AnalogsignalArray); (ii) addition
of an image sequence object, to support calcium- and voltage-
sensitive-dye imaging experiments, which are closely related to
electrophysiology.

We also plan a number of improvements to the Python imple-
mentation: (i) improved memory management for 10. Despite
the lazy/cascade mechanism, most Neo IO classes do not allow
loading only a chunk or a subset of data; (ii) efficiency improve-
ments. Some relationships are not efficient for querying (filter-
ing) an object when the dataset is large. For instance, linking
a SpikeTrain with its associated AnalogSignal is not
currently straightforward.

The object model is intended to be implementable in other
languages besides Python. We have concentrated our initial
efforts on one language in order to build up a critical mass of
code to support the object model. An important future direc-
tion will be reaching out to users of other languages, such as
MATLAB, and providing support for the object model. To this
end, we have created documentation for using Neo-structured
data in MATLAB at http://pythonhosted.org/neo/io.html#neo.io.
NeoMatlabIO.

The development of the Neo object model has so far focused
on the representation of recorded data, as typically stored in data
files during an electrophysiology experiment. For broader use it
would be desirable to also support data resulting from the pro-
cessing and analysis of such data. Ideally, the object model should
enable representing the relationship between analysis results and
the original data. Instead of leaving the definition of correspond-
ing objects to each user, it would make sense to extend the Neo
model by a minimal set of definitions for generic scientific data
along with provenance information. Such developments should
be coordinated with international standardization efforts, such as
those of the INCF Data Sharing Program (Teeters et al., 2013).
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