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During rest, the human brain performs essential functions such as memory
maintenance, which are associated with resting-state brain networks (RSNs) including the
default-mode network (DMN) and frontoparietal network (FPN). Previous studies based
on spiking-neuron network models and their reduced models, as well as those based
on imaging data, suggest that resting-state network activity can be captured as attractor
dynamics, i.e., dynamics of the brain state toward an attractive state and transitions
between different attractors. Here, we analyze the energy landscapes of the RSNs by
applying the maximum entropy model, or equivalently the Ising spin model, to human RSN
data. We use the previously estimated parameter values to define the energy landscape,
and the disconnectivity graph method to estimate the number of local energy minima
(equivalent to attractors in attractor dynamics), the basin size, and hierarchical relationships
among the different local minima. In both of the DMN and FPN, low-energy local minima
tended to have large basins. A majority of the network states belonged to a basin of
one of a few local minima. Therefore, a small number of local minima constituted the
backbone of each RSN. In the DMN, the energy landscape consisted of two groups of
low-energy local minima that are separated by a relatively high energy barrier. Within each
group, the activity patterns of the local minima were similar, and different minima were
connected by relatively low energy barriers. In the FPN, all dominant local minima were
separated by relatively low energy barriers such that they formed a single coarse-grained
global minimum. Our results indicate that multistable attractor dynamics may underlie the
DMN, but not the FPN, and assist memory maintenance with different memory states.
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connectivity

INTRODUCTION
In the last few decades, a line of neuroimaging studies have
accumulated evidence supporting that spontaneous brain activity
during rest is not random enough to be averaged out in statistical
analysis (Biswal et al., 1995; Raichle et al., 2001; Greicius et al.,
2003). The brain activity in resting states shows consistent spatial
patterns called the resting-state networks (RSNs) (Raichle et al.,
2001; Greicius et al., 2003; Fox et al., 2005; Dosenbach et al., 2006;
Fair et al., 2009). Connections between the RSNs and cognitive
functions have been revealed in previous studies. In particular, the
default-mode network (DMN), one of the representative RSNs, is
suggested to be engaged in self-referential mental processes and
maintenance of long-term memory (Raichle et al., 2001; Greicius
et al., 2003; Buckner et al., 2008; Uddin et al., 2009). The fronto-
parietal network (FPN), another RSN, is known to be recruited
during cognitive tasks with relatively high loads that require con-
tinuous attention (Dosenbach et al., 2006; Corbetta et al., 2008;
Fair et al., 2009).

Most of these results on the RSNs were derived from correla-
tions between slow oscillations of brain activity (0.01–0.1 Hz) in
different brain regions. However, the neural activity as observed

in the RSNs at a macroscopic spatial scale is dynamic on a much
shorter time scale. Experimental and computational studies indi-
cate that within a RSN, a group of brain regions is specifically
activated within a specific time window, and that different groups
of regions are activated during different time windows (Honey
et al., 2007; Chang and Glover, 2010; Kiviniemi et al., 2011;
Allen et al., 2012; Hutchison et al., 2013). Such spatio-temporal
dynamics of the RSNs may facilitate, for example, the flexibility
of human cognitive functions (Allen et al., 2012).

These results pertaining to the dynamics of the resting-state
brain activity suggest that the activity of the RSNs may be cap-
tured in terms of transitions among locally stable states, i.e.,
attractor states (Deco et al., 2012, 2013; Nakagawa et al., 2013).
In fact, beyond the description of RSNs, attractor network mod-
els of spiking neurons and firing-rate models derived by the
reduction of spiking-neuron models have been used to model
cortical dynamics (for reviews, see Barbieri and Brunel, 2008;
Wang, 2009; Braun and Mattia, 2010; Knierim and Zhang, 2012).
In particular, the role of attractor dynamics has been implicated
in brain activity during various cognitive functions such as asso-
ciative long-term memory, non-spatial working memory, spatial
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working memory, place field recognition, decision making, and
attention. The aforementioned models are particularly successful
in describing persistent activity recorded during these cognitive
tasks. Although attractor network models may be too simple to
describe fast transients of brain activity accurately (Rabinovich
et al., 2008; Rabinovich and Varona, 2011), these experimental
and numerical results are consistent with the notion that brain
dynamics are multistable and that the brain’s state travels from
one state to another depending on, for example, external input
and endogenous cognitive processes.

In associative memory models, an energy function often exists
such that each state possesses a corresponding energy value and a
state with a low energy is taken with a large probability (Hopfield,
1982; Hertz et al., 1991). In this case, the attractor dynamics can
be described by a trajectory that represents a dynamical state
of the brain in an energy landscape. Therefore, estimating the
energy landscapes of brain activity contributes to understanding
of brain dynamics from the perspective of attractor dynamics.
In the present study, we investigate the energy landscapes of
resting-state brain activity using the functional magnetic reso-
nance imaging (fMRI) data previously collected by our group
(Watanabe et al., 2013). In the previous work based on these data,
we demonstrated that the so-called pairwise maximum entropy
model (MEM) (Schneidman et al., 2006; Shlens et al., 2006; Tang
et al., 2008; Yu et al., 2008; Ohiorhenuan et al., 2010; Santos et al.,
2010; Ganmor et al., 2011) described the activities of the DMN
and FPN with high accuracy (Watanabe et al., 2013). For the fitted
models from that study and randomized RSNs, here we calcu-
lated the energy of all the brain states and identified local minima
of energy that would correspond to the attractors in attractor
dynamics. Then, we applied the so-called disconnectivity graph
method (Becker and Karplus, 1997) to the empirical and arti-
ficial energy landscapes of the RSNs. We found that the energy
landscapes of the DMN and FPN are qualitatively different.

MATERIALS AND METHODS
DATA ACQUISITION AND FITTING OF THE PAIRWISE MEM
To examine the energy landscape of the RSNs, we used the param-
eter values estimated in our previous study in which we fitted the
so-called pairwise MEM to the resting-state fMRI data (Watanabe
et al., 2013) (Figure 1A). The fMRI data were recorded while
six healthy right-handed subjects (aged 20–23 years; three males)
were resting inside a 3T MRI scanner (Philips Achieva X 3T Rel.
2.6, Best, The Netherlands; gradient-echo echo-planar sequences:
TR = 9.045 s, TE = 35 ms, flip angle = 90◦, resolution = 2 × 2 ×
2 mm3, 75 slices). In total, 17,820 volumes of resting-state fMRI
images were obtained. The entire procedure for the MRI scanning
was approved by the institutional review board of The University
of Tokyo, School of Medicine.

The pairwise MEM and the fitting procedure are outlined as
follows. Readers interested in the detailed procedures should refer
to our previous article (Watanabe et al., 2013). First, we con-
ducted a conventional preprocessing procedure that consisted of
slice-timing correction, spatial normalization, spatial smoothing,
motion correction, and temporal band-pass filtering. Second, to
normalize the fMRI data, we subtracted the average from the sig-
nals and divided the obtained values by their standard deviation

for each brain region. Third, we binarized the normalized signals
with a threshold of 0.1. The binarized activity at brain region i and
discrete time t, denoted by σt

i , is either active (+1) or inactive (0).
The network state at time t is described by

Vt = [
σt

1, σ
t
2, · · · , σt

N

]
, (1)

where N is the number of the brain regions in a RSN. It should
be noted that there are 2N network states. The empirical acti-
vation probability of region i, denoted by 〈σi〉 , is equal to

(1/T)
∑T

t = 1 σt
i , where T is the number of images. The empirical

joint activation probability of regions i and j, denoted by
〈
σi σj

〉
,

is given by (1/T)
∑T

t=1 σt
iσ

t
j .

Fourth, we adopted the distribution of the network state that
maximized the entropy under the restriction that 〈σi〉 and

〈
σi σj

〉

(1 ≤ i ≤ N, 1 ≤ j ≤ N, i �= j) for the inferred model were equal
to the empirical values. Such a distribution is known to have the
form

P (Vk) = e−E(Vk)/

2N∑

�=1

e−E(V�), (2)

where P(Vk) is the probability of the k th network state Vk, and

E (Vk) = −
N∑

i = 1

hiσi (Vk) − 1

2

N∑

i = 1

N∑

j = 1,j �=i

Jijσi (Vk)σj (Vk) (3)

is the energy of network state Vk. Variable σi(Vk) indi-
cates the value of σi (i.e., 1 or 0) under network state Vk.
For the inferred model, the expected activation probability,
〈σi〉m , and the expected pairwise joint activation probability,〈
σi σj

〉
m, are given by 〈σi〉m = ∑2N

�=1 σi(V�)P(V�) and
〈
σi σj

〉
m =

∑2N

�=1 σi(V�)σj(V�)P(V�), respectively. We determined hi and Jij

by iteratively adjusting 〈σi〉m and
〈
σi σj

〉
m toward 〈σi〉 and〈

σi σj
〉
, respectively, with a gradient descent algorithm. As a

result, we obtained hi (1 ≤ i ≤ N) and Jij(= Jji; 1 ≤ i ≤ N, 1 ≤
j ≤ N, i �= j) for a RSN (DMN or FPN) (Figure 1A). Here, hi is
considered to represent the basal brain activity of region i, i.e.,
the expected brain activity when the region is isolated. Jij repre-
sents the functional interaction between regions i and j. The brain
regions constituting each RSN, with the labels being indicated
in Figure 1A, were determined on the basis of previous studies
(Dosenbach et al., 2006; Fair et al., 2009).

DISCONNECTIVITY GRAPH
The energy landscape of a RSN is specified by two factors: the
energy E(Vk) of the 2N network states Vk, which are regarded
as nodes in a network of network states; and the connectivity
between different nodes (i.e., network states). One RSN inferred
by the pairwise MEM defines an energy landscape. Two nodes are
defined to be adjacent by a link if and only if they take the opposite
binary activity at just one brain region (i.e., one σi; see Figure 1C
for the case of N = 4).

We analyzed the energy landscape for each RSN using dis-
connectivity graphs (Becker and Karplus, 1997; Wales, 2010). In
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FIGURE 1 | (A) Parameter values estimated for the two RSNs. The horizontal
bars show the basal brain activity (hi ). The square matrices show the
functional connectivity between pairs of regions (Jij ) as determined by the
fitting of the pairwise MEM. The obtained parameter values were identical to
those obtained in our previous study (Watanabe et al., 2013). DMN, default
mode network; FPN, fronto-parietal network; ant mPFC, anterior medial
prefrontal cortex; vmPFC, ventro-medial prefrontal cortex; Lt, left; Rt, right;
SFG, superior frontal gyrus; ITG, inferior temporal gyrus; Parahippo,
parahippocampal gyrus; PCC, posterior cingulate cortex; DLPFC, dorso-lateral

prefrontal cortex; MFG, middle prefrontal cortex; Mid, middle; CC, cingulate
cortex; IPL, inferior parietal lobule; IPS, inferior parietal sulcus. (B)

Distribution of energy for each network. To generate the histograms, we
weighted each state equally, i.e., not with the probability that the state is
realized. The results for the shuffled and Gaussian networks are based on a
single realization of the network. (C) Concept of neighbors in a network of
network states. For illustration, we set N = 4. The circles represent nodes,
i.e., network states. A link between a pair of nodes indicates that the two
nodes are adjacent.
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short, a disconnectivity graph represents the (dis)connectivity
between local minima of the energy. It has also been used to study
the Ising spin model, which is equivalent to the pairwise MEM,
and its variants (Garstecki et al., 1999; Zhou and Wong, 2009;
Zhou, 2011). In the context of the spin systems, a disconnectiv-
ity graph with a continuous energy threshold, where the energy
threshold is defined in the following, is also referred to as a barrier
tree (Fontanari and Stadler, 2002; Hordijk et al., 2003).

We constructed disconnectivity graphs in the following way:
(1) A local minimum is a node whose energy is smaller than
those of all the N neighboring nodes. We exhaustively examined
whether each of the 2N nodes is a local minimum. (2) We set a
threshold energy level, denoted by Eth, to the largest energy level
realized by (at least) one of the 2N nodes. (3) We removed the
nodes whose energy level was higher than Eth. We also removed
all links incident to a removed node. In fact, no node or link
was removed when the threshold was equal to the largest possible
energy level. Some nodes and links were removed when we revis-
ited this step after lowering the Eth value. (4) We judged whether
each pair of local minima was connected by a path in the reduced
network. In general, the local minima are classified into some
connected components. (5) We repeated steps (3) and (4) after
moving Eth down to the next largest energy level realized by a
node. Finally, we obtained a reduced network of the local min-
ima in which each local minimum was isolated. (6) On the basis
of these results, we built a disconnectivity graph, i.e., a hierarchi-
cal tree whose leaves (i.e., terminal nodes down in the tree) were
the local minima. The vertical position of the leaves and inter-
nal nodes of the disconnectivity graph represents an energy value.
An internal node represents the point at which the branching
of different groups of local minima takes place. In other words,
local minima that are contained in different branches belong to
distinct connected components for an Eth larger than the value
at the common internal root node. Local minima in the differ-
ent branches belong to the same connected component for Eth

smaller than this value.

BASIN SIZE OF LOCAL MINIMUM
We then calculated the size of the basin of each local minimum
as follows (Stillinger and Weber, 1982, 1984; Becker and Karplus,
1997; Zhou, 2011). We first selected a starting node i, which was
one of the 2N nodes in the network of network states. Then, we
identified the neighbor of node i possessing the smallest energy
level and denoted it by j. If E(Vj) < E(Vi), we moved to node j.
This move is in accordance with the steepest descent at node i.
If such a node j did not exist, we remained at node i. In the lat-
ter case, i is a local minimum. If we moved to node j, we looked
for the steepest descent from node j and continued to travel until
we arrived at a local minimum. The starting node i belongs to
the basin of the local minimum that is finally reached. We per-
formed the same procedure for all i. The basin size of a local
minimum is the fraction of nodes that belong to the basin of the
local minimum.

ENERGY BARRIER
For a given disconnectivity graph, we estimated the energy bar-
rier opposing transitions between two local minima denoted by

i and j. Specifically, we defined the energy barrier between i
and j as min

[
Eb(Vi, Vj) − Vi, Eb(Vi, Vj) − Vj

]
, where Eb(Vi, Vj)

is the threshold energy level at which the disconnectivity graph
branches into a group of nodes that includes i and a group that
includes j. Any path connecting i and j in the network of network
states contains a node whose energy is at least Eb(Vi, Vj). If the
energy barrier is high, the transition of network states between
i and j occurs at a small rate at least in one direction. In fact,
the transition occurs at different rates in the two directions if
Vi and Vj are different (Becker and Karplus, 1997). However, for
simplicity, we used the symmetric definition given above (Zhou,
2011).

HIERARCHICAL CLUSTERING
We carried out hierarchical clustering of the brain regions and
local minima as follows by using MATLAB. First, we set a distance
threshold, dth to the smallest Hamming distance realized by a pair
of nodes. If the distance between a node pair was equal to or less
than the current dth value, we bridged the two nodes through a
parent node, which is located at dth along the axis in the dendro-
gram. We repeated this procedure by gradually elevating dth until
all nodes were connected as a single dendrogram.

RANDOMIZED RSNs
As controls, we calculated the disconnectivity graph and other
properties of the energy landscape for two types of randomized
MEMs. We generated the first type of network by randomly per-
muting hi (1 ≤ i ≤ N) of the original MEM and doing the same
for Jij(= Jji; 1 ≤ i ≤ j ≤ N). We refer to the generated network as
a shuffled network. We also generate a second type of randomized
network by independently drawing the values of hi (1 ≤ i ≤ N)

from a normal distribution with the same mean and standard
deviation as those of the original MEM and doing the same for
Jij(= Jji; 1 ≤ i ≤ j ≤ N). We refer to the generated network as a
Gaussian network.

RESULTS
LOCAL MINIMA AND THE DISCONNECTIVITY GRAPH
The parameter values of the pairwise MEM inferred for the DMN
and FPN are shown in Figure 1A. The distribution of the energy
on the basis of all the 2N network states is shown in Figure 1B
for the two RSNs. The distribution of the energy was unimodal
for both RSNs. The shape of the distribution did not signifi-
cantly differ from that obtained from either of the randomized
networks (for both shuffled and Gaussian networks, P > 0.6 in
the Kolmogorov–Smirnov test; Figure 1B).

The inferred MEMs for the DMN and FPN had 21 and 4 local
minima, respectively. The activity pattern of each local minimum
is shown in Figure 2A. In both RSNs, the probabilities that differ-
ent local minima were visited were similar between the empirical
data and the pairwise MEM (Figure 2B). The similarity is partic-
ularly evident for the local minima with a low energy (i.e., large
probability of the visit) in the DMN. In fact, the error averaged
over all 21 local minima in the DMN was 260%. Here, we defined
the error for a local minimum as the absolute difference between
the empirical and estimated probabilities that the local minimum
is realized, divided by the empirical probability. However, the
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FIGURE 2 | (A) Activation patterns of the local minima. The IDs of the local
minima are shown on the horizontal axis. The local minima are sorted in order of
ascending energy. Each local minimum is specified by an activation pattern,
which is an N-dimensional binary vector. The white and gray elements indicate
active and inactive brain regions, respectively. (B) Comparison of the probability
that the local minima are realized between the empirical data and the model.
Each circle represents a local minimum. (C) The number of local minima for the

original RSNs and the average number of local minima for the randomized
RSNs, where the average is taken over 100 realizations of each type of the
randomized networks. Error bars show the standard deviation. ∗∗P < 0.01,
Bonferroni-corrected. (D) Disconnectivity graphs. The vertical axis represents
the energy. The numbers immediately under the leaves (i.e., end nodes)
represent the IDs of the local minima as defined in panel (A). The energy value
at the bottom end of a leaf is equal to that of the corresponding local minimum.
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large error was due to three outliers with small probabilities (ID
12, 13, and 16). If the three minima were excluded, the averaged
error was 33.2%. Moreover, the error averaged over the 11 local
minima with the lowest energy values (i.e., largest probabilities)
was 26.2%. In the FPN, the error averaged over all four local min-
ima was 18%. Together with these error values, the results shown
in Figure 2B justify the use of local minima of the pairwise MEM
in the following analysis as stochastic footprints of the network
state.

We calculated the number of local minima for 100 realiza-
tions of the two types of randomized RSNs. For the DMN, the
number of local minima was significantly larger for the original
network than for either type of randomized network (P < 0.01,
Bonferroni-corrected; Figure 2C). For the FPN, there was no sig-
nificant difference in the number of local minima between the
original and randomized networks.

We then constructed disconnectivity graphs to illustrate rela-
tionships between the local minima. The disconnectivity graphs
for the original RSN and one realization for each type of random-
ized network are shown in Figure 2D, separately for the DMN
and FPN. In the DMN, the structure of the empirical discon-
nectivity graph was apparently more complex than that of the
randomized networks, partly because the former had more local
minima than the latter (Figure 2C). The disconnectivity graph of
the DMN has a complex and forked structure relative to that of
the FPN. In contrast, the disconnectivity graph of the FPN seems
not as complex as the randomized networks and is composed of a
single dominant minimum with weak fluctuations, which is one
of the main subtypes of the disconnectivity graph (Becker and
Karplus, 1997; Wales et al., 1998).

CLUSTERING OF BRAIN REGIONS AND LOCAL MINIMA
To probe the relationships between different local minima, we
performed hierarchical clustering on the basis of similarity
between local minima. The (dis)similarity between two local min-
ima was defined by the Hamming distance between the activity
patterns of the local minima, i.e., the number of brain regions at
which the two local minima possess the opposite binary activity.
We constructed a dendrogram for each RSN (see Materials and
Methods for the algorithm).

The dendrogram shown in Figure 3A suggests that, in the
DMN, bilateral brain regions show similar activation patterns in
most of the local minima. In particular, in the parahippocampal
gyri, superior frontal gyri, and lateral parietal region, the bilat-
eral regions had exactly the same activation patterns in all the
local minima. In contrast, the resemblance of bilateral regions is
uncommon in the FPN. According to the dendrogram, a region
in a bilateral region pair was not the nearest to its counterpart,
except in the case of the precuneus.

We also quantified the similarity among the local minima by
the same hierarchical clustering algorithm (Figure 3B). In the
DMN, local minima with the lowest energies (e.g., local min #1
to # 6) were relatively dissimilar. The energy landscape of the
DMN is composed of relatively distinct local minima that yield
mutlistability. In contrast, in the FPN, the local minima with the
lowest energies (e.g., #1 and #2) were more similar to each other
than in the case of the DMN. Therefore, we consider that the

energy landscape of the FPN is essentially composed of a single
global minimum. We provide support of this interpretation in the
following sections.

SIZE OF BASIN
To further characterize the energy landscape of the two RSNs, we
calculated the size of the basin of the local minima. The relation-
ship between the size of the basin and the energy value is shown
in Figure 4A. In the figure, an open circle represents a local min-
imum. In both RSNs, a local minimum with a small energy value
tended to have a large basin. This tendency was even stronger
in the randomized networks. In both empirical and randomized
RSNs, a small number of the local minima with the lowest energy
values attracts a majority of the network states (in the sense of
the steepest descent walk in the energy landscape). The fraction
of network states attracted to one of the local minima with the
lowest energies is shown in Figure 4B. For example, when the
value at the fraction of local minima is equal to 0.5, the accumu-
lated size of basins is over 0.8; that is, when the half of the local
minima with the lowest energies is considered, over 80% of the
network states belong to the basin of one of these local minima.
In fact, only the six local minima with the lowest energies (ca.
28% of the local minima) attracted more than 80% of the net-
work states in the DMN (solid line in Figure 4B). In the FPN, the
local minimum with the lowest energy (25% of the local minima)
attracted approximately 60% of the network states (dashed line in
Figure 4B).

These results suggest that the lower part of the disconnectiv-
ity graph comprising the local minima with the smallest energies,
i.e., a connected tree that contains leaves near the bottom in
Figure 2D, reflects the backbone of the energy landscape. A visual
inspection of Figure 2D reveals that the lower part of the discon-
nectivity graph for the DMN comprises two main branches, one
consisting of local minima labeled 6, 9, 3, and 5, and the other
consisting of local minima labeled 8, 10, 7, 4, 2, and 1. In con-
trast, the lower part of the disconnectivity graph for the FPN is
composed of a single main branch.

ENERGY BARRIER
To further quantify the difference between the DMN and FPN,
we evaluated the transition rates between local minima by calcu-
lating the energy barrier between each pair of local minima. If
the barrier is high relative to unity, transitions between the two
local minima are rare, at least in one direction. The energy bar-
riers for all the pairs of local minima are shown in Figure 5A for
each RSN. In the figure, the local minima are sorted according to
the energy value. Figure 5A suggests that, in the DMN, transitions
among the major local minima accompany high energy barriers
such that they occur at small rates. In contrast, in the FPN, tran-
sitions between local minima occur relatively easily at least in one
direction because of the low barriers that separate them.

Subsequently, we calculated the average of energy barrier
between pairs of local minima with the lowest energies. This
amounts to averaging the energy barrier values contained in
the leading principal minor of the matrix shown in Figure 5A
(i.e., top left square submatrix) excluding the diagonal elements.
The results are shown in Figure 5B as a function of the size
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FIGURE 3 | Hierarchical clustering of the brain regions and local

minima. Each row represents the activity pattern of a brain region in
different local minima. Each column represents the activity pattern of a
local minimum in different brain regions. (A) Dendrogram showing the

similarity among the brain regions in a hierarchical fashion. The
similarity is measured by the Hamming distance between the activity
patterns of two local minima. (B) Dendrogram showing the similarity
among the local minima.
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FIGURE 4 | (A) Relationship between the size of basin and the energy of
local minima. In the two panels on the left, the numbers indicate the IDs of
local minima used in Figure 2. (B) Accumulated size of the basin for the local
minima. The vertical axis shows the fraction of the network states that

belong to the basin of one of the local minima with the lowest energies. This
quantity is plotted against the fraction of local minima with the lowest
energies. The solid and dashed curves indicate the results for the DMN and
FPN, respectively.

FIGURE 5 | (A) Energy barrier between pairs of local minima. The local
minima are sorted in order of ascending energy. (B) Average of the energy
barrier between pairs of local minima with the lowest energies. For example,

the values at a fraction 0.5 of local minima indicate the average when we
consider only pairs of the local minima whose energies are among the
lowest 50%.
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of the minor (i.e., the number of local minima with the low-
est energies included in the analysis). As shown in Figure 5B,
the averaged energy barrier was much larger in the DMN
than in the FPN (P < 0.01 in one-sample t-tests when the
linear size of the minor is 25 and 50% of the entire DMN,
respectively. The mean value of the FPN was used as a base-
line in the t-tests). The difference between the two RSNs was
larger when fewer local minima with the lowest energies were
considered.

The results shown in Figure 5 imply that, in the DMN, the
brain activity may linger in the neighborhood of one of the
several local minima for some time and wander from one to
another. This interpretation is consistent with the result that the
major local minima exhibit distinct activation patterns in the
DMN (Figure 3B). In contrast, the brain activity in the FPN
may tend to stay near the global minimum albeit with some
fluctuations.

DISCUSSION
We found that the DMN has dominant local minima that are rel-
atively distinct in terms of the activation pattern and an energy
barrier of the order of unity separating them from one another.
The observed energy barrier is not large enough for the local
minima to be justified as metastable states. However, if the brain
state gradually changes, it may linger near a major local min-
imum for some time before transiting to another minimum.
Therefore, roughly speaking, the present result is consistent with
the concept of the multistable attractor dynamics for the RSN, in
which the brain state is considered to travel from one relatively
stable state to another, either in a spontaneous manner or trig-
gered by external input (Deco et al., 2012, 2013). Such attractor
dynamics may facilitate, for example, large capabilities of com-
putation (Deco et al., 2013). It should be noted that we did not
consider dynamics in the present study. Hence, dynamical vari-
ants of the present study warrant future work. Accounting for
the dynamics will require better temporal resolution in imaging
experiments.

In the DMN, the major local minima with small energies
and large basins can be roughly classified into two groups sep-
arated by a relatively high energy barrier (Figures 3B, 5A). One
group consists of the local minima in which the posterior brain
regions are activated (local minima #1 and #2) and accounts
for approximately 50% of the network states. The other main
group consists of those in which the medial prefrontal regions
are mainly activated (local minima #3, #4, and #5) and domi-
nates approximately 30% of the network states. Therefore, the
DMN is suggested to have two major coarse-grained states
marked by posterior-centric activation (the first group) and
frontal-centric activation (the second group). Previous studies
suggested that the RSNs could be described by attractor dynam-
ics (Deco et al., 2012, 2013). Our empirical evidence indicat-
ing the existence of two major coarse-grained states adds to
these previous arguments. At a cellular level, multistable neu-
ral activity in the hippocampus represents multiple memory
items (Leutgeb et al., 2005; Wills et al., 2005; Knierim and
Zhang, 2012). The present macroscopic results lend a support
to the possibility that multistable activity patterns in the DMN,

which includes the parahippocampal cortex, underlie various
cognitive functions such as memory maintenance and self refer-
ential thought (Raichle et al., 2001; Buckner et al., 2008; Uddin
et al., 2009).

In contrast, the energy landscape of the FPN appears to
be roughly monostable. In fact, the local minima were sepa-
rated by low energy barriers (Figure 5A). A possible reason for
the absence of multistability is that the activity pattern of the
FPN during rest may be different from that when subjects are
performing cognitively demanding tasks. The FPN was origi-
nally determined as a brain network for attentional cognition
(Dosenbach et al., 2006; Corbetta et al., 2008). We should inves-
tigate the activity of the FPN during tasks to better understand
the FPN.

An obvious limitation of the present study is that we have
not directly examined attractor dynamics. Instead, we focused
on the energy landscape of the network states constructed from
the probability distribution of network states. There are several
implicit assumptions underlying our energy landscape analy-
sis. First, the network state was assumed to change gradually.
Otherwise, a network state could jump from one local mini-
mum to another by simultaneously flipping the binary states
of multiple regions without passing through a network state
that realizes the energy barrier. Our analysis, which exploits
the concept of the energy barrier, would then be invali-
dated. The time window for constructing snapshots of brain
activity should be small to track possibly step-by-step transi-
tions of the network state. We followed our previous study
(Watanabe et al., 2013) and used a time window of approx-
imately 9 s because it was effective at decorrelating different
snapshots. It should be noted that the energy landscape does
not depend on the temporal resolution if we have sufficiently
long data. Analyzing data with improved time resolution may
be of interest. We should keep it in mind that the dynam-
ics may not be gradual in fact; non-gradual transition can
occur when fMRI signals at different brain regions are tightly
synchronized.

Second, an energy barrier analysis implicitly assumes that state
transitions depend on the difference between the energy val-
ues in the current and subsequent network states. Therefore,
we implicitly ignored the effect of past network states on
state transitions. To assess the extent of the history depen-
dence of the trajectory is a relevant question. Addressing
this question calls for a large amount of data; hence, it
should be investigated in tandem with the effect of time win-
dow size because correlated snapshots would lead to stronger
history dependence under the discrete time frame whose
unit is defined by the size of the time window of the
measurement.
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