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Analysis of functional magnetic resonance imaging (fMRI) data is becoming ever
more computationally demanding as temporal and spatial resolutions improve, and
large, publicly available data sets proliferate. Moreover, methodological improvements
in the neuroimaging pipeline, such as non-linear spatial normalization, non-parametric
permutation tests and Bayesian Markov Chain Monte Carlo approaches, can dramatically
increase the computational burden. Despite these challenges, there do not yet exist any
fMRI software packages which leverage inexpensive and powerful graphics processing
units (GPUs) to perform these analyses. Here, we therefore present BROCCOLI, a
free software package written in OpenCL (Open Computing Language) that can be
used for parallel analysis of fMRI data on a large variety of hardware configurations.
BROCCOLI has, for example, been tested with an Intel CPU, an Nvidia GPU, and
an AMD GPU. These tests show that parallel processing of fMRI data can lead
to significantly faster analysis pipelines. This speedup can be achieved on relatively
standard hardware, but further, dramatic speed improvements require only a modest
investment in GPU hardware. BROCCOLI (running on a GPU) can perform non-linear
spatial normalization to a 1 mm3 brain template in 4–6 s, and run a second level
permutation test with 10,000 permutations in about a minute. These non-parametric
tests are generally more robust than their parametric counterparts, and can also enable
more sophisticated analyses by estimating complicated null distributions. Additionally,
BROCCOLI includes support for Bayesian first-level fMRI analysis using a Gibbs sampler.
The new software is freely available under GNU GPL3 and can be downloaded from github
(https://github.com/wanderine/BROCCOLI/).
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1. INTRODUCTION
Functional magnetic resonance imaging (fMRI) has become the
de facto standard methodology in contemporary efforts to image
the functioning of the human brain in both health and dis-
ease. Nonetheless, fMRI-based research arguably lags behind in
its adoption of recent advances in computer hardware, despite
several recent trends that have underlined the need for greater
computational resources. First, the temporal and the spatial reso-
lution of fMRI data continues to improve with stronger magnetic
fields and more advanced scanning protocols (Moeller et al.,
2010; Feinberg and Yacoub, 2012), leading to the production
of significantly larger datasets. Second, fMRI studies are trend-
ing toward larger numbers of subjects to increase their statistical
power (Eklund et al., 2012a; Thyreau et al., 2012; Button et al.,
2013) sometimes aided by a proliferation of data sharing initia-
tives (Biswal et al., 2010; Poldrack et al., 2013) 1,2 that provide
open access to large amounts of data. The human connectome

1http://fcon_1000.projects.nitrc.org/fcpClassic/FcpTable.html
2https://openfmri.org/

project (van Essen et al., 2013) 3, for example, shares high
resolution data from a large number of subjects (the goal is 1200),
and a single resting state scan results in a dataset of the size
104 × 90 × 72 × 1200. Third, non-parametric methods based on
permutation and Bayesian Markov Chain Monte Carlo (MCMC)
methods are more frequently being used to improve neuroimag-
ing statistics (da Silva, 2011; Eklund et al., 2012a, 2013b), but
suffer from long processing times compared to conventional para-
metric methods. Some progress toward parallelization has been
made in each of the three major packages commonly used in
fMRI-based research (SPM, FSL, and AFNI). For example, AFNI
has direct support for running some functions in parallel on
several CPU cores, using the open multi-processing (OpenMP)
library; FSL can take advantage of several computers or CPU
cores, by installing packages like Condor or GridEngine, and
has recently added graphics processing unit (GPU) support for
MCMC based diffusion tensor analysis (Hernandez et al., 2013);
and Huang et al. (2011) recently proposed to accelerate image

3http://www.humanconnectome.org/
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registration in SPM by using a GPU. Moreover, a number of
prominent projects are underway to enable big data approaches
to functional neuroimaging at large supercomputing centers
[e.g., (Lavoie-Courchesne et al., 2012)]. At this stage, however,
these approaches still require a significant investment of time and
effort by expert technical staff, and thus remain inaccessible to the
majority of investigators. Thus, despite efforts by existing anal-
ysis packages, we feel that the community could benefit from
a more comprehensive focus on parallel computation. Further,
being relatively new, GPUs offer some unique challenges as well
as promising potential benefits.

Since the introduction of the CUDA programming language
in 2007, general purpose computing on graphics processing units
(GPGPU) (Owens et al., 2007) has gained prominence in a wide
range of scientific fields, including medical imaging (Shams et al.,
2010; Pratx and Xing, 2011; Eklund et al., 2013a) and neuro-
science (Jeong et al., 2010; Pezoa et al., 2012; Ben-Shalom et al.,
2013; Hoang et al., 2013; Yamazaki and Igarashi, 2013). The main
reasons are that GPUs are inexpensive, power efficient and able
to run several thousand threads in parallel, commonly provid-
ing a performance boost of 1–2 orders of magnitude for a small
investment (see Table 1). Nonetheless, GPGPU is still uncommon
in the neuroimaging field, where medical imaging and neuro-
science intersect. Here, we therefore present BROCCOLI, a free
software for parallel analysis of fMRI data on many-core CPUs
and GPUs. BROCCOLI contains a large number of additions
and improvements over our previous work (Eklund et al., 2010,
2011a; Forsberg et al., 2011; Eklund et al., 2012b). Some exam-
ples are Bayesian fMRI analysis using MCMC, first level statistical
analysis using the Cochrane-Orcutt procedure (Cochrane and
Orcutt, 1949), linear and non-linear registration for an arbi-
trary number of scales and support for F-tests as well as a
larger number of regressors. While our previous implementa-
tions used CUDA, the most popular programming language for
GPGPU, BROCCOLI is instead written in the open computing
language (OpenCL) [see e.g., Munshi et al. (2011)]. This makes it
possible to run BROCCOLI on many types of hardware, includ-
ing CPUs, Nvidia GPUs, AMD GPUs, field programmable gate
arrays (FPGAs), digital signal processors (DSPs) and other accel-
erators (e.g., the Intel Xeon Phi). As neuroimaging researchers
use a wide range of operating systems (Hanke and Halchenko,
2011), it is also important that BROCCOLI can run efficiently
regardless of the platform. One way to achieve this is to develop
BROCCOLI for a specific platform (e.g., Windows), and then
simply run BROCCOLI through a virtual machine for other

platforms (e.g., Linux). However, direct access to GPU hard-
ware through a virtual machine can currently be problematic,
and was therefore not an option for our software. Instead, we
have developed BROCCOLI using a combination of the platform-
independent languages OpenCL and C++, and have made the
source code freely available so that it can be compiled on any
desired operating system supporting these widely deployed stan-
dards. In addition, as an added convenience, we have provided
pre-compiled libraries for the Linux and Windows operating sys-
tems that can be linked to projects developed on either platform.
A wrapper for Matlab is currently available, a Python wrapper is
being developed and future plans include wrappers for bash and
R. In addition to the improvements described above, BROCCOLI
has also been extensively tested and compared to SPM, FSL, and
AFNI by using a large number of freely available fMRI datasets.
BROCCOLI is available as free software under GNU GPL3 and
can be downloaded from github4.

2. METHODS AND IMPLEMENTATION
The typical analysis pipeline for fMRI data is compromised of
image registration, image segmentation, slice timing correction,
smoothing, and statistical analyses. The methods used for these
different processing steps in BROCCOLI are described in this
section, and implementation details are given at the end of the
section.

2.1. IMAGE REGISTRATION
Image registration for fMRI is used to align an anatomical T1
volume to a brain template (e.g., MNI or Talairach), to align
an fMRI volume to the anatomical T1 volume, and to per-
form motion correction. The registration between the anatomical
space and a standard brain space, often called spatial normal-
ization, can be performed using a linear transformation model
(e.g., affine or rigid) or by using a non-linear approach, which
is much more computationally demanding. In a comparison of
non-linear deformation algorithms for human brain MRI reg-
istration (Klein et al., 2009), the DARTEL algorithm in SPM
took an average of 71 min to register a single T1 volume to
the MNI template (1 mm3 resolution) and the FNIRT algo-
rithm in FSL used an average of 29 min. The AFNI software
did not until recently have support for non-linear registration,
but can now be achieved through the function 3dQwarp. Based
on our benchmarking, non-linear registration with 3dQwarp

4https://github.com/wanderine/BROCCOLI/

Table 1 | Hardware configuration and performance measures of the computer used for testing the different software packages.

Device Processor cores Memory Single precision Double precision Memory bandwidth Price

(GB) (GFLOPS) (GFLOPS) (GB/s) (USD)

Intel Core i7-3770K 4 (8 with hyper threading) 16 1 core: 56, 4 cores: 224 1 core: 28, 4 cores: 112 26 330

Nvidia GTX 680 1536 4 3090 129 192 500

AMD Radeon 7970 2048 3 3790 947 264 500

A Linux operating system was used (CentOS 6.4 64 bit) with an OCZ 128 GB SSD hard drive. The theoretical performance for single (32 bit floats) and double (64 bit

floats) precision is given as giga floating point operations per second (GFLOPS). Prices are from newegg.com and should be seen as approximate.
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takes about 36 min with a single-threaded version of AFNI, and
13 min using the multi-threaded OpenMP version (for a CPU
running 8 threads). Thus, depending on the algorithm, nor-
malization for a study involving 30 subjects can take 5–35.5 h.
Moreover, to obtain satisfactory results, it may be necessary to
run the registration algorithm with a number of different set-
tings. For these reasons, affine registration to a standard brain
space is sometimes performed instead of a non-linear one, even
though the non-linear approach can yield a better registration.
Another time saving approach is to perform spatial normal-
ization to a brain template of lower resolution, e.g., 2 mm3

voxels, but this solution is less appealing, since spatial resolu-
tion is sacrificed. Due to the computational challenges of image
registration, GPU acceleration of such algorithms is very pop-
ular with some 60 publications since 1998 (Shams et al., 2010;
Fluck et al., 2011; Pratx and Xing, 2011; Eklund et al., 2013a).
GPUs can thus easily be used in the neuroimaging field, to for
example enable more widespread use of demanding non-linear
registration algorithms.

2.1.1. Linear image registration
BROCCOLI uses a single registration algorithm to perform
the three described registrations (T1-to-MNI,fMRI-to-T1, and
motion correction). Here we summarize the algorithm, which has
been previously described (Eklund et al., 2010). The main idea
of the algorithm is to use the optical flow equation (Horn and
Schunck, 1981)

∇ITv = �I, (1)

where ∇I is the gradient of the volume, v is a motion vector that
describes the difference between the volumes and �I is the inten-
sity difference between the two volumes. The aperture problem,
however, prevents us from solving this equation directly, as there
are three unknown variables (the motion in x, y, and z), but only
one equation. Instead of solving the equation for each voxel sep-
arately, one can minimize the expression over the entire volume.
The total squared error can be written as

ε2 =
∑

i

(
∇I(xi)

Tv(xi) − �I(xi)
)2

, (2)

where xi denotes the position of voxel i. A linear model of
the motion field can be used to represent a motion vector in
each voxel. The motion field v(x) for affine transformations in
3D can be modelled with a 12-dimensional parameter vector,
p = [p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12]T , and a base
matrix B(x) according to (Hemmendorff et al., 2002)

v(x) =
⎡
⎣p1

p2

p3

⎤
⎦ +

⎡
⎣ p4 p5 p6

p7 p8 p9

p10 p11 p12

⎤
⎦

⎡
⎣x

y
z

⎤
⎦ (3)

=
⎡
⎣1 0 0 x y z 0 0 0 0 0 0

0 1 0 0 0 0 x y z 0 0 0
0 0 1 0 0 0 0 0 0 x y z

⎤
⎦

︸ ︷︷ ︸
B

p.

The first three parameters are the translations and the last nine
parameters form a transformation matrix (if an identity matrix
is added, as the parameter vector p used here only describes the
difference between the two volumes). The variables x, y, and z are
the coordinates of voxel x. By using the model of the motion field,
v(x) = B(x) p , the error measure can be written as

ε2 =
∑

i

(
∇I(xi)

TB(xi) p − �I(xi)
)2

. (4)

The derivative of this expression, with respect to the parameter
vector, is given by

∂ε2

∂p
= 2

∑
i

BT
i ∇Ii

(
∇IT

i Bi p − �Ii

)
, (5)

and setting the derivative to zero yields the following linear
equation system

∑
i

BT
i ∇Ii∇IT

i Bi

︸ ︷︷ ︸
A

p =
∑

i

BT
i ∇Ii�Ii

︸ ︷︷ ︸
h

, (6)

where A is a matrix of size 12 × 12 and h is a vector of size 12 × 1.
The best parameter vector can finally be calculated as

p = A−1h. (7)

The system of linear equations is easy to solve, while the com-
putationally demanding part is to sum over all voxels. L2 norm
minimization makes it possible to calculate the parameters that
give the best solution. The solution can then be improved by iter-
ating the algorithm and accumulating the parameter vector (to
avoid repeated interpolation). The most common approach is
otherwise to maximize a similarity measure by searching for the
best parameters, using some optimization algorithm. To handle
large differences between two volumes, it is common to start the
registration on a coarse scale and then improve the registration by
moving to finer scales. BROCCOLI uses three to four scales for the
registration between T1 and MNI and between fMRI and T1; the
difference between each scale is a factor two in each dimension.

The estimated affine transformation parameters can be
restricted to a rigid transformation (i.e., translations and rota-
tions only), and is accomplished in BROCCOLI by applying a sin-
gular value decomposition (SVD) to the transformation matrix
and then forcing the singular values to be one. Rigid registration
is used for fMRI-T1 registration and for motion correction, while
affine registration (12 parameters) is used for the T1-MNI regis-
tration. For the motion correction procedure, the rotation angles
θ1, θ2, θ3 are extracted from the estimated rotation matrix for
each time point using the following formulas (Shoemake, 1994;
Day, 2012)
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θ1 = atan2(p9, p12),

c2 = √
p4 · p4 + p5 · p5,

θ2 = atan2(−p6, c2),

s1 = sin(θ1),

c1 = cos(θ1),

θ3 = atan2(s1 · p10 − c1 · p7, c1 · p8 − s1 · p11),

(8)

where atan2(a, b) is the four quadrant arctangent of a and b. The
main reasons for extracting the rotation angles are to use them as
nuisance regressors in the statistical analysis and to present them
to the user.

2.1.2. Non-intensity based image registration
The registration algorithm used in BROCCOLI is not based on
the image intensity directly, e.g., the image gradient as described
above. Instead, the algorithm is based on matching edges to
edges and lines to lines, by using the concept of local phase
from quadrature filter responses (Granlund and Knutsson, 1995;
Knutsson and Andersson, 2003). A quadrature filter is complex
valued in the spatial domain; the real part is a line detector and the
imaginary part is an edge detector. The local phase is the relation-
ship between the real and imaginary filter responses and describes
the type of local structure (e.g., a line or an edge), while the mag-
nitude can be seen as a certainty measure of how likely it is that the
filter detected a structure. The local phase concept is illustrated
in Figure 1. The quadrature filters need to be created using filter
optimization techniques, which simultaneously consider proper-
ties in the spatial domain and the frequency domain (Granlund
and Knutsson, 1995; Knutsson et al., 1999). In the presented equa-
tions, the image gradient ∇I is replaced with a phase gradient ∇ϕ

FIGURE 1 | This figure presents the main concept of local phase ϕ from

quadrature filter responses. A quadrature filter is complex valued in the
spatial domain; the real part is a line detector and the imaginary part is an
edge detector. If the filter response only contains a real valued component,
it means that the filter detected a line. If the filter response only contains
an imaginary valued component, it means that the filter detected an edge.
It is important to combine the local phase with the magnitude of the
complex valued filter response, as the local phase does not have any
meaning for a low magnitude.

and the image difference �I is replaced with a phase difference
�ϕ. The phase difference can be calculated as

�ϕ = arg
(
q1 · q∗

2

)
, (9)

where q1 and q2 are the complex valued quadrature filter
responses for the two volumes and ∗ denotes complex conjuga-
tion. A nice property of the local phase is that it is invariant to
the image intensity (all edges are for example interpreted equally,
regardless if the image intensity changes from 0 to 1 or from 10
to 11), making it easier to register volumes from different modal-
ities or volumes with different or varying contrast. Phase based
optical flow was introduced in the field of computer vision (Fleet
and Jepson, 1990) and eventually propagated to the medical imag-
ing domain (Hemmendorff et al., 2002; Knutsson and Andersson,
2005; Mellor and Brady, 2005). While phase based image reg-
istration can in some cases be more robust against intensity
differences (Hemmendorff et al., 2002; Mellor and Brady, 2005;
Eklund et al., 2011b), a drawback is that it requires filtering with a
number of (non-separable) filters in each iteration, which is com-
putationally demanding. Fortunately, GPUs are perfectly suited
for parallel operations like filtering (Eklund and Dufort, 2014).

2.1.3. Non-linear image registration
As previously mentioned, non-linear methods can lead to
a significantly better registration between a subject specific
anatomical volume and a brain template. BROCCOLI uses the
Morphon (Knutsson and Andersson, 2005; Forsberg et al., 2011;
Forsberg, 2013) to perform non-linear registration. The Morphon
is also based on phase based optical flow, and the two most impor-
tant parts of the Morphon are, therefore, the same as for the linear
registration algorithm; to apply a number of quadrature filters
and to calculate phase differences. The main differences are that
the linear algorithm uses three quadrature filters (oriented along
x, y, and z) and solves one equation system for the entire volume,
while the Morphon uses six quadrature filters (evenly distributed
on the half sphere of an icosahedron) and solves as many equa-
tion systems as there are voxels. The error being minimized in
each voxel can be written as

ε2 =
N∑

k=1

(
ckT

(
�ϕkn̂k − d

))2

, (10)

where �ϕk is the phase difference between the two volumes for
quadrature filter k, ck is a certainty estimate for filter k, n̂k is the
orientation vector for filter k, N is the number of quadrature fil-
ters, d is the displacement vector to be optimized and T is a local
structure tensor (Knutsson, 1989; Granlund and Knutsson, 1995;
Knutsson et al., 2011). A local structure tensor in image process-
ing is analogous to a diffusion tensor in diffusion tensor imaging
(DTI); it represents the magnitude and orientation of the sig-
nal in each neighborhood. The tensor can be calculated from the
six complex valued quadrature filter responses as (Granlund and
Knutsson, 1995)

T =
N∑

k = 1

∣∣qk

∣∣(5

4
n̂kn̂T

k − 1

4
I

)
, (11)
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where I is an identity tensor. The purpose of using the tensor in
the error measure is to reinforce displacement estimates along the
local predominant orientations (i.e., displacements perpendicular
to edges and lines). Using an L2-norm, the best displacement vec-
tor can be calculated for each voxel directly, by once again solving
a linear system (of size 3 x 3), i.e.,

d =
( N∑

k = 1

c2
kTTT

)−1 N∑
k = 1

c2
k�ϕkTTTn̂k. (12)

The estimated displacement field is regularized by applying
Gaussian smoothing separately to each motion component
(x, y, z) before it is used to warp the T1 volume. Just as for the
linear registration, the displacement field is accumulated in each
iteration to avoid repeated interpolation. An affine registration
(12 parameters) is first estimated between the T1 volume and the
MNI template before estimation of the non-linear displacement
field.

2.2. IMAGE SEGMENTATION
SPM has several functions for segmenting brain volumes. FSL
provides BET (brain extraction tool) and FAST (FMRIB’s auto-
mated segmentation tool) while AFNI provides the function
3dSkullStrip. BROCCOLI performs skullstripping by first regis-
tering the T1 volume to MNI space, using an MNI template with
skull, then applies an inverse transform to the MNI brain mask
and finally performs a multiplication between the transformed
mask and the original T1 volume to obtain a skullstripped version
of the T1 volume. The skullstripped T1 volume is then aligned to
an MNI template without skull, to improve the alignment, and
the MNI brain mask is again inversely transformed (using the new
registration parameters) and multiplied with the original T1 vol-
ume, to obtain a better skullstrip. The fMRI data is segmented by
first applying 4 mm 3D Gaussian smoothing to one of the fMRI
volumes and then using a threshold that is 90% of the mean value.

2.3. SLICE TIMING CORRECTION
Slice timing correction is normally applied to fMRI data (Sladky
et al., 2011), as the slices in each volume are collected at slightly
different time points. BROCCOLI sets the middle slice as the ref-
erence and then applies cubic interpolation in time to correct for
the temporal difference between the slices.

2.4. SMOOTHING
fMRI data is frequently spatially smoothed. The non-linear reg-
istration algorithm also uses Gaussian smoothing, for example
to reguralize the tensor components and the resulting displace-
ment field in each iteration. BROCCOLI utilizes a simple form
of normalized convolution (Knutsson and Westin, 1993), called
normalized averaging, to avoid problems with voxels close to the
edge of the brain being influenced by voxels outside the brain. The
normalized filter response nfr is calculated as

nfr = (v · c) ∗ f

c ∗ f
, (13)

where f is the filter, v is one fMRI volume, c is a certainty measure,
∗ denotes convolution and · denotes pointwise multiplication.

The certainty is simply the fMRI brain mask, such that the cer-
tainty is one inside the brain and zero outside. If a gray matter
segmentation is available, the same approach can be used to pre-
vent similar problems with smoothing that includes values from
other types of brain matter (by setting the certainty to one for
gray voxels and zero for all other voxels).

2.5. STATISTICAL ANALYSIS
The statistical analysis is the core of all fMRI software packages.
The use of GPUs for statistical computations is a relatively new
concept (Suchard et al., 2010; Guo, 2012) and can for exam-
ple be used to speedup demanding Markov Chain Monte Carlo
(MCMC) simulations (Lee et al., 2010). We believe that GPUs
(or at least the computational capacity they confer) are a neces-
sary component for incorporation of developments in the field
of statistics to the field of neuroimaging, especially for high reso-
lution fMRI data (Feinberg and Yacoub, 2012). By using GPUs,
computationally demanding non-parametric tests can be used
instead of parametric ones (Nichols and Holmes, 2002; Eklund
et al., 2011a) and MCMC based methods [e.g., (Woolrich et al.,
2004)] also become feasible (da Silva, 2011).

The SPM, FSL, and AFNI software packages are all mainly
based on the general linear model (GLM) for first (subject) and
second level (group) analyses, as proposed by Friston et al. (1994).
The GLM can be written in matrix form as

y = Xβ + ε, (14)

where y are the observations for one voxel, β are the parame-
ters to estimate, X is the design matrix (model) containing all the
regressors and ε are the errors that cannot be explained by the
model. As the GLM is applied to each voxel independently, it is
perfectly suited for parallel implementations. By minimizing the
squared error ||ε||2, it can be shown that the best parameters (for
independent errors) are given by

β̂ =
(

XTX
)−1

XTy. (15)

A useful property of this expression is that the term
(
XTX

)−1
XT

is the same for all voxels and can, thus, be precalculated. A t-test
value can easily be calculated from the estimated weights as

t = cT β̂ − u√
var

(
ε̂
)

cT
(
XTX

)−1
c
, (16)

where c is a contrast vector, ε̂ is the residual of the GLM and u is
a scalar for the null hypothesis cT β̂ = u. An F-test value can in a
similar manner be calculated as

F =
(

Cβ̂ − u
)T (

var
(
ε̂
)

C
(
XTX

)−1
CT

)−1 (
Cβ̂ − u

)
N

, (17)

where C is a contrast matrix and N is the number of contrasts.
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2.5.1. First level analysis
The first level fMRI analysis starts with slice timing correction
and motion correction. The estimated motion parameters (trans-
lations and rotations) are included in BROCCOLI by default
as additional regressors in the GLM design matrix, to further
reduce effects of head motion (Johnstone et al., 2006). Gaussian
smoothing is applied to each fMRI volume and the GLM is finally
applied to the smoothed volumes. In addition to motion regres-
sors and regressors for the experimental design, the design matrix
in BROCCOLI also contains regressors to remove the mean and
trends that are linear, quadratic or cubic. The effect of using these
additional regressors is similar to a highpass filtering. The GLM
errors are for first level fMRI analysis often modelled as an auto
regressive (AR) process,

εt =
p∑

i = 1

ρiεt − i + wt, (18)

where p is the order of the AR process, ρi are the AR parame-
ters and w is white noise with variance σ 2. A Cochrane-Orcutt
procedure (Cochrane and Orcutt, 1949) is used in BROCCOLI
to estimate the beta weights for autocorrelated errors. The GLM
weights β are first estimated using ordinary least squares (equa-
tion 15) and then a voxel-wise AR model of the fourth order
is used to model the residuals (Worsley et al., 2002). The AR
parameters are estimated by solving the Yule-Walker equations
independently for each voxel. Each volume of AR estimates is spa-
tially smoothed with a 7 mm Gaussian filter to further improve
the estimates (Woolrich et al., 2001; Worsley et al., 2002; Gautama
and Hulle, 2004), before the actual whitening is applied to the
smoothed fMRI data and the regressors in the design matrix (such
that each voxel gets its own specific design matrix). The compo-
nents of the whitened data ỹ and the whitened regressors X̃ are
thus calculated as

ỹt = yt −
4∑

i = 1

ρiyt − i, (19)

X̃t, r = Xt, r −
4∑

i = 1

ρiXt − i, r, (20)

where ρi are the spatially smoothed AR estimates, r denotes
regressor and t denotes time point. The whitened data ỹ and the
whitened regressors X̃ are then used to estimate new beta weights,
according to

β̃ =
(

X̃
T

X̃
)−1

X̃
T

ỹ. (21)

As a last step, the AR parameters are re-estimated using residuals
calculated with the new weights β̃, the original data y and the
original regressors X. The Cochrane-Orcutt procedure is repeated
three times to obtain good estimates of the GLM weights and the
AR parameters. Finally, the statistical maps are calculated using
the variance of the uncorrelated residuals ε̃, obtained as

ε̃ = ỹ − X̃β̃. (22)

FSL uses a similar iterative approach to estimate a voxel-wise
prewhitening matrix (Woolrich et al., 2001), with the exception
that the spatial smoothing is done separately for different tis-
sue types. The voxel-specific noise model used in BROCCOLI
has been shown to yield more valid results than those obtained
from SPM (Eklund et al., 2012a), which uses a global AR(1)
model. After the first level statistical analysis, the results (e.g., beta
weights) are transformed to MNI space, by combining the esti-
mated registration parameters for T1-to-MNI and fMRI-to-T1
transformations and the estimated displacement field from the
non-linear registration.

2.5.2. Second level analysis
The second level analysis in fMRI is straightforward compared
to the first level analysis, once all the first level results are in
a common brain space. A group-wise t-test or F-test can eas-
ily be performed by using the same functions as for the first
level GLM. BROCCOLI currently only supports conventional
t-tests and F-tests for second level analysis, but we plan to also
include other types of analyses (e.g., where the variance of the
beta estimates are used as weights) in future releases.

2.5.3. Frequentist inference
In contrast to other software packages for fMRI analysis,
BROCCOLI is not based on parametric statistics. All p-values
are instead calculated through non-parametric permutation
tests (Dwass, 1957; Nichols and Holmes, 2002), both for first level
and second level analyses. The main motivation is that paramet-
ric statistics require several assumptions to be met for the results
to be valid. In fMRI it is also necessary to correct for a large
number of tests, due to the high spatial resolution. The multiple
testing makes the parametric assumptions much more critical, as
one has to move far along the tail of the null distribution. The
SPM software relies on Gaussian random field theory (GRFT)
to correct for the multiple testing (Worsley et al., 1992), while
FSL mainly works with GRFT and non-parametric permutation
tests (for group analyses only). AFNI instead uses the false discov-
ery rate (FDR) (Genovese et al., 2002) and a cluster simulation
tool. A permutation test solves the problem of multiple testing
in a very simple way. In each permutation, only the largest value
of the statistical map (e.g., the maximum t-test value, the max-
imum F-test value, the size or mass of the largest cluster etc.) is
saved to form the null distribution of the maximum test statistics.
Corrected p-values are finally calculated as the proportion of val-
ues in the estimated null distribution that are larger than or equal
to the test value for the current voxel or cluster. A threshold for a
certain significance level α, corrected for multiple testing, can be
calculated by first sorting the estimated null distribution values,
and then simply using the value that is larger than (100 − α) %
of the values. The main problem is that a large number of per-
mutations, normally 1000–10,000, are required to obtain a good
estimate of the null distribution. Since a full statistical analysis
needs to be performed in each permutation, the total process-
ing time can be several hours or days for a single test, using
conventional multi-core CPU implementations. This is the main
reason why permutation tests are not standard procedure in the
neuroimaging field.
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For first level analysis in BROCCOLI, detrending and whiten-
ing [using a voxel-wise AR(4) model as previously described]
is applied to the motion corrected data and new fMRI data is
then generated in each permutation by using an inverse whitening
transform with randomly permuted whitened data. The smooth-
ing has to be applied in each permutation, as the smoothing alters
the autocorrelation structure of the fMRI data. Permutation test-
ing for the second level analysis is much easier, as no whitening or
smoothing is required. See our previous work for further infor-
mation on the non-parametric analysis (Eklund et al., 2011a,
2012a).

2.5.4. Bayesian inference
The GLM model previously described can alternatively be ana-
lyzed using Bayesian methods. A Bayesian analysis begins with a
prior distribution p(β, σ 2, ρ) over the model parameters and
subsequently updates the prior with the observed data. The result
is the posterior distribution p(β, σ 2, ρ|X, y), which encapsu-
lates all information about the unknown parameters conditional
on the observed data. In fMRI, the brain activity can be visu-
alized as a heat map of Pr(βi > 0|X, y), commonly known as
a posterior probability map (PPM) (Friston et al., 2002). The
joint posterior p(β, σ 2, ρ|X, y) is often not tractable in ana-
lytical form, but can be approximated by different approaches.
The most common approach in the fMRI field is to use approx-
imation techniques like variational Bayes, where the posterior is
factorized into several independent factors to obtain an analyti-
cal expression (Penny et al., 2003). A less common approach is
to use techniques based on Markov Chain Monte Carlo (MCMC)
simulation. MCMC produces a sample from the posterior, and
the probability of activity Pr(βi > 0|X, y) can be approximated
by the proportion of simulated βi being larger than zero. The
PPM for any contrast is also directly available from the pos-
terior simulations. Note that since simulations are done using
the joint posterior, PPMs are not conditional on point esti-
mates of σ 2 and ρ, leading to more accurate inferences regarding
brain acitivity.

BROCCOLI uses a specific MCMC algorithm, the Gibbs sam-
pler, to generate draws from the posterior by iteratively sim-
ulating from two full conditional posteriors. First, the auto-
correlation parameters ρ are updated by simulation from
ρ|β, σ 2, y, X as a (multivariate) Gaussian distribution. Second,
the variance σ 2 is updated by simulation from σ 2|ρ, y, X
as an inverse Gamma distribution and the GLM weights β

are finally updated by simulation from β|σ 2, ρ, y, X as
a (multivariate) Gaussian distribution. These conditional dis-
tributions are obtained when the priors for β|σ 2 and ρ are
Gaussian and the prior on σ 2 is inverse Gamma. The exact
details of each updating step can be found in most Bayesian
textbooks, see e.g., Murphy (2012). Note that each updat-
ing step conditions on the most recently simulated value
for the conditioning parameters. While MCMC methods can
theoretically be used to approximate any posterior, a com-
mon problem is the significantly longer processing time com-
pared to techniques like variational Bayes. BROCCOLI runs
a large number of MCMC chains in parallel to reduce the
processing time.

2.6. IMPLEMENTATION
We will here describe the implementation of BROCCOLI for the
different algorithms. Readers are referred elsewhere for introduc-
tions to GPU programming (Kirk and Hwu, 2010; Munshi et al.,
2011; Sanders and Kandrot, 2011). Most of the OpenCL code uses
single precision to achieve maximum performance, while some
host code uses double precision (to for example obtain the opti-
mal affine registration parameter vector). The open source library
Eigen5,6 is used in BROCCOLI to perform matrix calculations on
the host.7

2.6.1. Image registration
The described linear and non-linear registration algorithms are
easy to run in parallel. The filtering operation applied in each
iteration is the most demanding part, especially since quadrature
filters are non-separable, and has therefore been carefully opti-
mized. Filtering can be performed as a multiplication in the fre-
quency domain, after the application of a fast Fourier transform
(FFT) to the signal and the filter, or as a convolution in the spa-
tial domain. BROCCOLI uses the convolution approach, for three
reasons. First, the FFT approach requires an FFT library while
the convolution approach can rather easily be implemented man-
ually. The CUDA programming language provides the CUFFT
library, and a similar OpenCL library called clFFT has recently
appeared. However, clFFT is in our opinion not yet as mature as
CUFFT. The user, for example, has to compile the whole project
to obtain a library file. Second, a convolution approach often pro-
vides high performance over a wide range of data sizes, while an
FFT normally performs best for data sizes being a power of 2.
Third, the convolution approach is less memory demanding as
the FFT approach requires that the filters are stored as the size of
the signal for an elementwise multiplication.

Convolution is easy to run in parallel, and high performance
can be achieved by taking advantage of the fact that the filter
responses for neighboring voxels use mainly the same input data.
An easy way to implement a non-separable 3D convolution is
to take advantage of the texture memory, as the texture mem-
ory cache can be used to speedup reads that are spatially local.
Such an implementation will, however, be limited by the global
memory bandwidth. A better approach is to take advantage of
the local memory8 available in modern GPUs (CPUs do not nor-
mally have local memory physically; it can instead be simulated by
the OpenCL driver). By first reading values from global memory
into local memory, all the threads in a thread block can repeatedly
read from the local memory very efficiently. The Nvidia GTX 680
has 48 KB of local memory per multiprocessor; it can for exam-
ple store a 3D array of 32 × 32 × 12 float values. The quadrature
filters used in BROCCOLI contain 7 × 7 × 7 coefficients, only
26 × 26 × 6 = 4,056 filter responses will therefore be valid for
each multiprocessor. The reason for this is that the convolution
is undefined along a boundary of (N − 1)/2 pixels for an N ×

5http://eigen.tuxfamily.org/index.php?title=Main_Page
6https://bitbucket.org/eigen/eigen/
7For readers not familiar with GPU programming, the CPU is often called the
host while the GPU is called the device.
8Local memory in OpenCL is the same thing as shared memory in CUDA.
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N kernel. The yellow pixels in Figure 2 illustrate the invalid fil-
ter responses along the image borders for a filter size of 7 × 7.
To maximize the number of valid filter responses per multipro-
cessor, a better approach to non-separable 3D convolution is to
instead perform non-separable 2D convolution on the GPU, and
then accumulate the filter responses by calling the convolution
kernel for each slice of the filter [i.e., instead of running all 6 for-
loops (three for the data and three for the filter) on the GPU, run
5 on the GPU and 1 on the CPU]. The local memory can for 2D
be used to store two arrays of 96 × 64 float values, which instead
gives a total of 10,440 valid filter responses per multiprocessor
(two blocks of 90 × 58 pixels). The reason for using two arrays
instead of one, is that each multiprocessor on the Nvidia GTX
680 can concurrently run 2048 threads, but only 1024 threads per
thread block. The 1024 threads per block are arranged as 32 along
the x-direction and 32 along the y-direction, to for example fit
the number of local memory banks (32). Each thread starts by
reading 6 values from global memory into local memory (96 ×
64 / 1024 = 6) and then calculates 2 filter responses (giving two
32 × 32 blocks). Three additional filter responses are then calcu-
lated by most of the threads, yielding two blocks of 32 × 26 pixels
and one block of 26 × 32 pixels. Finally, a number of threads are
used to calculate the final 26 × 26 filter responses. The usage of
local memory for non-separable 2D convolution is illustrated in
Figure 2. As several quadrature filters need to be applied to the
two volumes being registered (3 for linear registration and 6 for
non-linear registration), 3 filters are applied simultaneosly once

FIGURE 2 | The grid represents 96 × 64 pixels in local memory (each

square is one pixel). As 32 x 32 threads are used per thread block, each
thread needs to read 6 values from global memory into local memory [(96
× 64)/(32 × 32) = 6]. A yellow halo needs to be loaded into local memory
to be able to calculate all the filter responses. In this case 90 × 58 valid
filter responses are calculated, making it possible to apply at most a filter of
size 7 × 7. The 90 × 58 filter responses are calculated as 6 runs, the first 2
consisting of 32 × 32 pixels (marked light red and light blue). The 1024 filter
responses (32 × 32) are calculated in parallel, and the gray squares
represent three filter responses being calculated. Note that neighboring
filter responses are calculated using mainly the same pixels. Three
additional filter responses are calculated in blocks of 32 × 26 or 26 × 32
pixels (marked green, dark blue and dark red). Finally, a block of 26 × 26
pixels is processed (marked purple). The halo can easily be changed to
handle larger filters.

the data has been loaded into local memory. To achieve maxi-
mum performance, the for-loops have been unrolled manually
using a Matlab script. To run a short for-loop on a GPU can
result in a sub-optimal performance, as it can take a longer time to
setup the for-loop than to run it (this is especially true for nested
for-loops). The filters are stored in constant memory, as they are
used by all threads and since each multiprocessor has a constant
memory cache. The filter responses are stored in thread specific
registers. Note that calculating 6 filter responses per thread results
in a much better ratio of memory operations and calculations,
compared to a straight forward approach using texture memory
(where each thread calculates a single filter response). Interested
readers are referred to our previous work (Eklund and Dufort,
2014) and our separate github repository9 for further details. The
AMD GPU and the Intel CPU used in our case have only 32 KB
of local memory, the AMD GPU can also only run 256 threads
per thread block. The code for these devices instead uses one local
memory array of 128 × 64 pixels and calculates 120 × 58 filter
responses in blocks of 16 × 16 pixels.

The linear registration algorithm involves a summation over
all voxels to setup an equation system (equation 6). BROCCOLI
performs this summation using three kernels. The first kernel
performs all the necessary multiplications and each thread cal-
culates the sum for one voxel along the x-direction. The number
of threads per thread block is equal to the width of the volume.
The second kernel continues the summation along the y-direction
(the number of threads per block is set to the depth of the volume)
and the third kernel sums along z. The resulting equation system
is finally copied to the host, to calculate the best parameter vector.

Except for the filtering and the summation operation, the
other required functions are straight forward to implement.
For the linear registration algorithm, one kernel is used in
BROCCOLI to calculate phase differences (equation 9) and cer-
tainties and three kernels are used to calculate phase gradients
∇ϕ along x, y and z (Eklund et al., 2010). For the non-linear
registration algorithm, one kernel is used to calculate the ten-
sor components (equation 11), one kernel is used to setup the
equation system in each voxel and one kernel solves the equation
system (equation 12). Both the linear and the non-linear registra-
tion algorithm use one additional kernel to interpolate from the
volume being moved to match the template. The texture memory
is used for these two kernels, as it has hardware support for linear
interpolation in 1, 2, and 3 dimensions. For all these kernels, each
thread performs the operations for one voxel. To make sure that
the same code runs on both Nvidia and AMD GPUs, 256 threads
per block are used.

2.6.2. Smoothing
The smoothing operation is also implemented as a convolution.
As the Gaussian smoothing filters are Cartesian separable, three
kernels are used to smooth along x, y, and z. Similarly to the
non-separable convolution, local memory is used to obtain a
more efficient implementation. The details of how the separable
smoothing is performed will therefore not be given here.

9https://github.com/wanderine/NonSeparableFilteringCUDA
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2.6.3. Statistical analysis
The statistical analysis of fMRI data is perfect for parallel process-
ing; each thread performs the required calculations for one voxel.
Just as for the registration kernels, all the statistical kernels use 256
threads per block to fit both Nvidia and AMD GPUs. For first level
analysis assuming independent errors and for second level anal-

ysis, the pseudo inverse of the design matrix [i.e.,
(
XTX

)−1
XT]

is calculated on the host and stored in constant memory (as it is
the same for all voxels). Calculation of the beta weights for one
voxel can then be simply performed as a number of scalar prod-
ucts between the rows of the pseudo inverse and the data points
of the current voxel (see equation 15). The resulting beta weights
are stored as registers in each thread. However, each GPU thread
can only handle a limited number of variables, BROCCOLI cur-
rently therefore supports a maximum of 25 regressors. To simply
loop over the number of regressors may result in suboptimal per-
formance, for two reasons. The first reason is that if the index
to the beta array is not known at compile time, e.g., beta[i], the
compiler may put beta in global memory instead of registers. The
second reason is that short for-loops are inefficient on GPUs (as
mentioned in the filtering implementation). For optimal perfor-
mance, BROCCOLI instead uses a switch-case approach to first
determine the number of regressors being used. The code for each
case is also unrolled, such that all accesses to the beta array are
known at compile time. To calculate the t-test or F-test value effi-

ciently in each voxel, some additional values, e.g., cT
(
XTX

)−1
c

from equation 16, are also pre-calculated and stored in constant
memory. A limitation of the described approach is that the con-
stant memory is normally only 32–128 KB; it can thus not store
arbitrary large design matrices. A potential solution to this prob-
lem is to instead use texture memory, and take advantage of the
texture memory cache instead of the constant memory cache.

The Cochrane-Orcutt procedure is harder to implement, as
each voxel then uses a specific design matrix (after whitening
according to equation 20). To calculate a pseudo inverse in each
thread is problematic, as a design matrix for first level analy-
sis easily can contain 200 timepoints and 15 regressors. Such an
operation would thus require at least 3000 floats per thread, far
outstripping the capabilities of some contemporary devices. For
example, the Nvidia GTX 680 can handle only 63 floats per thread
in its registers. Additional floats will spill into slow global mem-
ory (called local memory in CUDA), which may degrade the
performance significantly. GPUs that have a L1 and/or L2 cache
may be able to still use a larger number of registers efficiently. A
possible solution could be to instead use the updating formula
derived for MCMC (equation 24), but such an approach can also
require a large number of registers [e.g., 40 registers for the mij

variables for 10 regressors and an AR(1) model]. The current
solution is to instead calculate all the pseudo inverses on the host
and then copy them to slow global memory. For these reasons,
the Cochrane-Orcutt procedure is not yet optimized in terms of
speed. Permutation testing for first level analysis therefore cur-
rently uses the simpler approach assuming independent errors.
The permutation based p-values will still be valid, as the same
analysis is applied in each permutation (whitening is applied prior
to the permutations, and the autocorrelation is then put back in
each permutation).

The whitening operation that is applied prior to the single
subject permutations, and in the Cochrane-Orcutt procedure,
requires that an AR model is estimated for each voxel. To accom-
plish this, each thread loops over time and sets up the Yule-Walker
system of equations for one voxel. The AR(4) parameters are
then calculated by directly solving these equations using a matrix
inverse. One limitation of this approach is that more advanced
AR models [e.g., an AR(8) model] requires a larger number of
registers, both to store the parameters and to calculate the matrix
inverse. For the inverse whitening applied in each permutation, to
generate new data, all the threads also loop over time to generate
new time series.

Permutation tests involving cluster based inference require that
a clustering operation is performed in each permutation, to cal-
culate the extent or mass of the largest cluster. BROCCOLI uses
the parallel label equivalence algorithm proposed by Hawick et al.
(2010) for this purpose. The algorithm is implemented as five
kernels. The first kernel assigns an unique starting label to each
voxel that survives the initial voxel-wise threshold (e.g., p = 0.01,
uncorrected for multiple comparisons). In the second kernel each
voxel checks its 26 neighbors to see if there is a label with a lower
value. If a lower label is found, the label of the center voxel is
updated and an update flag is set to 1. The third kernel resolves
label equivalences, in order to minimize the number of times the
second kernel has to be launched [see Hawick et al. (2010) for
details]. The second and third kernels are launched repeatedly,
until the update flag is no longer set to 1. To calculate the size of
each cluster, a fourth kernel is applied where each thread atom-
ically increments a cluster specific counter (determined by the
cluster label). Finally, a fifth kernel is used to obtain the size of
the largest cluster; the implementation relies on the atomic max
operation.

The Bayesian MCMC algorithm can with careful memory
management lead to a substantial time reduction compared to a
sequential approach. To see the importance of memory manage-
ment, consider simulating from the full conditional posterior of
β and σ 2. Conditional on ρ, this is a standard linear regression
update on the transformed model

ỹ = X̃β̃ + ε̃, (23)

where X̃ and ỹ are obtained by pre-whitening X and y with the
most recently simulated coefficients in ρ (as described in equa-
tions 19 and 20). Since ρ changes in every ρ-update, both X̃
and ỹ need to re-computed in each iteration of the Gibbs sam-
pler. Both X and y are, however, too large to be stored in the
fastest GPU memory (thread specific registers), and the cost of
repeatedly accessing data from slower memory can be very large.

To solve this problem, BROCCOLI instead updates X̃
T

X̃ after a
change in ρ, according to

X̃
T

X̃ =
p∑

i = 0

p∑
j = 0

ρiρjSij, (24)

where we for convenience define ρ0 = −1, p is the order of the AR
model and Sij = ∑N

t = 1 xt − ixT
t − j are data matrices independent
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of ρ (xt is a vector that contains all the regressors for time point
t, while X is the full design matrix). Note that Sij = Sji and that
all Sij are symmetric. For a first order AR model, the update is
given by

X̃
T

X̃ = S00 − 2ρS01 + ρ2S11. (25)

Note how the data matrices Sij are separated from ρ in the
above expressions. The Sij matrices are not voxel-specific and
can, therefore, be pre-computed and stored in constant mem-

ory. Analogous formulas are easily derived for X̃
T

ỹ (with data

moments mij = ∑N
t = 1 xt − iyt − j) and ỹT ỹ (with data moments

gij = ∑N
t = 1 yt − iyt − j), both of which are needed for the Gibbs

sampling. The mij and the gij values are voxel-specific, but
low-dimensional and can therefore be stored in thread specific
registers. Despite these optimizations, the implementation can
currently only handle a small number of regressors and an AR(1)
model of the residuals. The extension to more elaborate models
is in principle straight forward however, and rapid advancements
in GPU memory are likely to remove these limitations in the near
future

The Bayesian fMRI analysis also requires random number gen-
eration to estimate the joint posterior distribution. The CURAND
library can be used for this purpose for the CUDA program-
ming language, but there exists no similar library for OpenCL.
Instead, random numbers are first generated in BROCCOLI from
a uniform distribution, using a voxel/thread specific seed and a
modulo operation (Langdon, 2009). This is the only part of the
OpenCL code that currently uses double precision. The seeds
are generated on the host side, as this operation only needs to
be performed once. The uniformly distributed numbers are then
used to generate numbers from a normal distribution, by apply-
ing the Box-Muller transform (Box and Muller, 1958). Random
numbers from an inverse Gamma distribution can finally be
generated as

g = 2B∑2A
i = 1 n2

i

, (26)

where n is a random number from a normal distribution with
zero mean and unit variance, A is the shape parameter of the
Gamma distribution and B is the scale parameter.

3. RESULTS
A number of freely available fMRI datasets (Biswal et al., 2010;
Poldrack et al., 2013) were used to test our software, and to
compare it to existing software packages. The hardware used for
testing is specified in Table 1. Specifically, BROCCOLI was used
with an Intel CPU, an Nvidia GPU and an AMD GPU, to demon-
strate that the same code can run on different types of hardware.
The following software packages were compared to BROCCOLI:
SPM8, FSL 5.0.4 (Smith et al., 2004) (with the package Condor
installed for parallel processing) and AFNI (Cox, 1996) (with
OpenMP support for parallel processing). For FSL, the shell vari-
able FSLPARALLEL was set to “condor” to measure multi-core
results. For AFNI, the shell variable OMP_NUM_THREADS was

set to “1” to generate processing times for single-core processing,
and to “8” for multi-core processing. BROCCOLI running on
a CPU automatically uses all available processor cores for all
processing steps. All testing scripts can be downloaded from
github 10. To make the comparison reflective of each package’s
standard use, our testing scripts were posted on the mailing lists
for SPM, FSL, and AFNI and modified according to responses.

It should be stressed that the different software packages use
different algorithms, programming languages and libraries. It is
therefore hard to make a quantitatively meaningful performance
comparison. For this reason, we also added the processing time
for BROCCOLI running on a single CPU core, such that there
is a baseline comparison for each algorithm. This was achieved
by setting the shell variable CPU_MAX_COMPUTE_UNITS to
1 (a more general and complicated way is to use OpenCL device
fission).

3.1. SPATIAL NORMALIZATION
The quality of the normalization to MNI space was tested by
aligning 198 T1-weighted volumes to the MNI brain templates (1
and 2 mm3 resolution) provided in the FSL software (MNI152_
T1_1 mm_brain.nii.gz, MNI152_T1_2 mm_brain.nii.gz). The T1
volumes were downloaded from the 1000 functional connec-
tomes project (Biswal et al., 2010), and the Cambridge dataset
was selected for its large number of subjects. Each T1 volume is of
the size 192 × 192 × 144 voxels with a resolution of 1.2 × 1.2 ×
1.2 mm. To fully focus on the registration algorithm, the provided
skullstripped T1 volumes were used rather than the original T1
volumes.

For SPM the functions “Normalize” and “Segment” were used
for normalization. For “Normalize,” the parameter ’Source image
smoothing’ was changed from 8 mm to 4 mm, to try to match the
smoothness of the FSL T1 template (the T1 template in SPM is
more blurred than the T1 template in FSL). For ’Segment’, an ini-
tial parametric alignment of each T1 volume was first performed
using the function ’Coregister’ (otherwise several normalized T1
volumes were far off from the MNI template). Except for these
modifications, the default settings were used. For FSL, the T1 vol-
umes were aligned by running FLIRT (which performs linear reg-
istration) using the skullstripped volume and template, followed
by FNIRT (which performs non-linear registration) using the vol-
ume and template with skull (this is the recommended usage).
The estimated deformation field was finally applied to the skull-
stripped volume. For registration to the 2 mm3 MNI template, the
configuration file “T1_2_MNI152_2 mm.cnf” was used, while the
default settings were used for registration to the 1 mm3 template
(there is no “T1_2_MNI152_1 mm.cnf”). For AFNI, alignment
was performed correspondingly by running 3dUnifize (which
normalizes the image intensity) both for the T1 volume and the
MNI template, 3dAllineate and 3dQwarp. The estimated displace-
ment field was finally applied to the original T1 volume without
intensity normalization, using the function 3dNwarpApply. The
default interpolation method for 3dNwarpApply is sinc interpola-
tion, but as SPM, FSL and BROCCOLI all use linear interpolation
by default, 3dNwarpApply was tested with linear as well as sinc

10https://github.com/wanderine/BROCCOLI/tree/master/code/testing_scripts
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interpolation. The non-linear registration in 3dQwarp is done
with a combination of cubic and quintic basis functions, and it is
not possible to change this to linear interpolation. Since 3dQwarp
in AFNI is a very new method, we used settings proposed in the
help text. For all software packages, the same settings were used
for each T1 volume.

Average normalized T1 volumes were calculated for SPM, FSL,
AFNI, and BROCCOLI, to visually compare the algorithms, and
are given in Figure 3. It should be noted that for FSL, the resulting
displacement field from the 2 mm3 normalization was upscaled
and used to generate the normalized T1 volumes used here (as
recommended by the FSL mailing list). For a more numerical
comparison of the image registration quality, the normalized
cross-correlation, mutual information and sum of squared dif-
ferences were calculated between each normalized T1 volume and
the MNI template, the mean results are given in Figure 4. Only
the voxels inside the MNI brain mask were used to calculate these
similarity measures, as 75% of the voxels are outside the brain.
The processing time for the different software packages are given
in Figure 5.

3.2. MOTION CORRECTION
The motion correction algorithms in SPM (realign), FSL
(MCFLIRT), AFNI (3dvolreg), and BROCCOLI were tested by
using test datasets with known motion parameters. The test
datasets were generated by repeatedly using only the first fMRI
volume in each dataset and applying known random rigid trans-
formations to this first volume. The translations and rotations
were independently generated from a normal distribution with

FIGURE 3 | A visual comparison of spatial normalization with the

different software packages, by averaging 198 normalized T1 volumes.

(A) MNI template, (B) SPM Normalize average normalized T1 volume, (C)

SPM Segment average normalized T1 volume, (D) FSL average normalized
T1 volume, (E) AFNI average normalized T1 volume, (F) BROCCOLI average
normalized T1 volume. Note that AFNI uses a combination of cubic, quintic,
and sinc interpolation as default, while SPM, FSL, and BROCCOLI all use
linear interpolation as default.

a mean of 0 and a standard deviation of 0.5 (voxels for transla-
tions and degrees for rotations). Gaussian white noise was then
added to each volume. To further demonstrate the robustness
of BROCCOLI’s phase based algorithm, a shading was added to
each transformed fMRI volume. An example of the added shad-
ing is given in Figure 6. The test datasets were created using the
198 resting state datasets in the Cambridge dataset (Biswal et al.,
2010). Each rest dataset is of the size 72 × 72 × 47 × 119 with a
voxel resolution of 3 × 3 × 3 mm.

For SPM and AFNI, the algorithms were tested with lin-
ear interpolation in addition to the default setting (b-spline for
SPM and Fourier for AFNI), as FSL and BROCCOLI use linear
interpolation as default. For SPM and FSL, the reference vol-
ume was set to the first volume, which is the default for AFNI
and BROCCOLI. Except for these changes, the default settings
were used for all software packages. The quality of the motion
correction was evaluated by comparing the estimated transfor-
mations to the true ones. For each dataset, the total error was
calculated as the square root of the sum of the squared dif-
ferences over all motion parameters p and time points t, i.e.,

ε =
√√√√ 119∑

t = 1

6∑
p = 1

(
motionestimated(t, p) − motiontrue(t, p)

)2

.

(27)
The mean error measures for the different software pack-
ages, averaged over the 198 subjects, are given in Figure 7
and the processing times for motion correction are given in
Figure 8.

FIGURE 4 | Similarity measures between each normalized T1 volume

and the MNI template for the different software packages, averaged

over 198 subjects. The error bars represent the standard deviation. NCC
stands for normalized cross correlation (higher is better), MI stands for
mutual information (higher is better) and SSD stands for sum of squared
differences (lower is better). For visualization purposes, the SSD similarity
measure was divided by 300,000. Only the voxels in the MNI brain mask
were used to calculate these similarity measures, as 75% of the voxels are
outside the brain. Different interpolation modes were tested, as the
software packages have different default settings for interpolation (d
denotes the default interpolation).
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FIGURE 5 | Processing times for non-linear spatial normalization of

one T1 volume of size 192 × 192 × 144 voxels to a MNI template (1 and

2 mm3 resolution) for the different software packages, averaged over

198 T1 volumes. The error bars represent the standard deviation. Note that
AFNI uses a combination of cubic, quintic, and sinc interpolation as default,
while SPM, FSL, and BROCCOLI all use linear interpolation as default. A
linear registration was first applied to achieve a good starting point for the
non-linear registration. BROCCOLI running on a GPU can perform non-linear
normalization to a 1 mm3 template in 4–6 s, and still provide a satisfactory
result. BROCCOLI running on a CPU is also significantly faster than FSL and
AFNI OpenMP, even if a single CPU core is used.

FIGURE 6 | Left: One slice of one fMRI dataset used for testing the motion
correction algorithms. Right: The same slice after the application of a
random translation and rotation, and addition of a shading (gradient)
increasing upwards. The shading will affect all algorithms that use the
image intensity directly. The phase based algorithm used in BROCCOLI
will, however, not be affected by this shading. The main reason for this is
that quadrature filters are bandpass filters, which remove low frequency
variations (e.g., shadings) as well as high frequency variations (e.g., noise).

3.3. FIRST LEVEL ANALYSIS
The first level analysis was tested by analyzing freely available task
fMRI datasets, downloaded from the OpenfMRI (Poldrack et al.,
2013) homepage. Specifically, the OpenfMRI “rhyme judgment”
dataset was used where the subjects were presented with pairs of
either words or pseudowords, and made rhyming judgments for
each pair. See the work by Xue and Poldrack (2007) for further
information about this dataset.

3.3.1. Frequentist inference
To the best of our knowledge, the SPM software package does
not have any default processing pipeline. Instead, we used a batch

FIGURE 7 | Motion parameter errors for the different software

packages, averaged over 198 datasets with artificial motion. The error
bars represent the standard deviation. The testing datasets were generated
by applying random translations and rotations to the first fMRI volume in
each dataset, and then adding Gaussian noise or a shading. The amount of
noise was defined by setting the standard deviation to a percentage of the
maximum intensity value. Different interpolation modes were tested, as the
software packages have different default settings for interpolation (d
denotes the default interpolation). The presented results were generated
with an Nvidia GPU, and equal results were also obtained by the Intel CPU
and the AMD GPU.

script for first level analysis available on the SPM homepage 11.
For FSL, the analysis was setup and started through the graphi-
cal user interface. For AFNI, the Python script afni_proc.py was
used, through the graphical interface uber_subject.py. The set-
tings used for each software are given in Table 2. Processing times
for first level analysis for the different software packages are given
in Figure 9. A visual comparison of one brain activity map, for
BROCCOLI and FSL, is given in Figure 10. Processing times for
BROCCOLI for a first level permutation-based analysis, using
10,000 permutations, are given in Figure 11.

3.3.2. Bayesian inference
The Bayesian fMRI analysis was tested by generating a total of
11,000 draws from the posterior distribution for each brain voxel
(44,220 voxels), and the first 1000 draws were discarded as “burn
in” samples. The PPM was calculated as the percentage of draws
where the GLM weight of interest was larger than zero. The result-
ing PPM is given in Figure 12, and can be compared to the t-map
in Figure 10. The processing time was 4706 s using the Intel CPU
and one core, 835 s using the Intel CPU and all the four cores,
190 s for the Nvidia GPU and 91 s for the AMD GPU. This can be
compared to about 20 h for a naive Matlab implementation.

3.4. SECOND LEVEL ANALYSIS
To test the second level analysis, the permutation functional-
ity in BROCCOLI was compared to the function randomize

11http://www.fil.ion.ucl.ac.uk/spm/data/face_rep/face_rep_spm5_batch.m
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in FSL (SPM and AFNI do not have any support for permu-
tation based analysis, although AFNI for example has support
for Kruskal-Wallis tests and Wilcoxon tests). The function ran-
domize_parallel in FSL automatically divides the number of
permutations to a number of computers or CPU cores (if for
example Condor or GridEngine is installed), and was therefore
also used for testing. First level results generated by FSL (down-
loaded from the OpenfMRI homepage) were used as inputs to
the second level analysis, to fully focus on the permutation pro-
cedure. Here we used the OpenfMRI dataset “word and object
processing”, as it has the largest number of subjects (49). See the
work by Duncan et al. (2009) for further information about this
dataset. Processing times for FSL and BROCCOLI for a second
level permutation-based analysis of the 49 subjects, using 10,000
permutations, are given in Figure 13. Null distributions gener-
ated by FSL and BROCCOLI, for a design matrix containing a
single regressor, were compared numerically and were found to

FIGURE 8 | Processing times for motion correction of one fMRI dataset

of size 72 × 72 × 47 × 119 for the different software packages,

averaged over 198 datasets. The error bars represent the standard
deviation. All algorithms registered all volumes to the first one. The
processing times for AFNI and AFNI OpenMP are the same, as the AFNI
software does not have any OpenMP support for motion correction.
Different interpolation modes were tested, as the software packages have
different default settings for interpolation (d denotes the default
interpolation).

be equivalent. A direct comparison for more than one regres-
sor is more problematic, as the randomize function in FSL first
transforms the design matrix to effective regressors and effec-
tive confound regressors, by using information from the contrast
vector.

4. DISCUSSION
We have presented a new software package for fMRI analysis.
BROCCOLI is written in OpenCL, making it possible to run the
analysis in parallel, taking full advantage of a large variety of
hardware configurations. To exemplify this, BROCCOLI has been
tested with an Intel CPU, an Nvidia GPU and an AMD GPU.
The main objective of BROCCOLI is to demonstrate the advan-
tages of parallel processing and to enable the neuroimaging field
to avail itself of more computationally demanding normalization
algorithms, and statistical methods that are based on a smaller
number of assumptions (e.g., by using non-parametric statistics).
Currently, BROCCOLI reduces the fMRI processing time by at
least an order of magnitude compared to existing software pack-
ages (even if only a CPU and not a GPU is used). For non-linear
spatial normalization, BROCCOLI running on an Nvidia GPU is
approximately 525 times faster compared to FSL and AFNI, and
195 times faster than AFNI OpenMP. For second level permu-
tation tests, BROCCOLI using an Nvidia GPU is 100–200 times
faster than FSL and 33–130 times faster than the parallel version
of FSL.

4.1. SPATIAL NORMALIZATION
The accuracy measures illustrated in Figures 3 and 4 reveal a
number of interesting differences. The normalization in AFNI
yields the highest mean correlation and mutual information. It
might seem non-intuitive that the sinc interpolation in AFNI
gives a higher sum of squared differences compared to the lin-
ear interpolation, but this is possibly explained by the fact that
the sinc interpolation preserves high resolution details, perhaps
beyond the meaningful resolution of the MNI template. The aver-
age normalized T1 volumes generated by SPM are clearly the most
blurred, although the algorithms are fast compared to FSL and
AFNI. The results presented here are consistent with a previous
comparison (Klein et al., 2009), where the FSL function FNIRT
was shown to provide better normalizations than the SPM func-
tions “Segment” and “Normalize.” AFNI was not included in this
comparison, as the function 3dQwarp was released recently.

These comparisons should not be considered as a thor-
ough head-to-head evaluation of the different software packages.

Table 2 | Settings for first level analysis for the different software packages (for AFNI it is currently not possible to select non-linear

registration in the graphical user interface).

Normalization Motion Motion Smoothing Cluster Modeling of

regressors (mm) simulation GLM residuals

SPM Linear + non-linear to MNI template Yes Yes, 6 6 Not available Global AR(1)

FSL Linear + non-linear to MNI template Yes Yes, 6 6 Not available FILM prewhitening
(Woolrich et al., 2001)

AFNI Linear to MNI template Yes Yes, 6 6 No Voxel-wise ARMA(1, 1)

BROCCOLI Linear + non-linear to MNI template Yes Yes, 6 6 Not available Voxel-wise AR(4)
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FIGURE 9 | Processing times for first level analysis of 13 fMRI datasets

(of size 64 × 64 × 33 × 160). The analysis includes non-linear
normalization to a brain template, slice timing correction, motion correction,
smoothing, and statistical analysis. A Matlab script, available on the SPM
homepage, was used for SPM. For FSL, the analysis was setup and started
through the graphical user interface. For AFNI, the analysis was performed
with afni_proc.py , through the graphical user interface uber_subject.py . It
should be noted that SPM, FSL and BROCCOLI use linear and non-linear
registration, while AFNI uses linear registration only (currently, it is not
possible to select non-linear registration in uber_subject.py). To compensate
for this, the non-linear registration for AFNI was done separately. Note that
it is not possible to select a 2 mm3 brain template in uber_subject.py, these
processing times are therefore not defined. Also note that the processing
times for BROCCOLI do not include any first level permutation test.

Rather, the motivation was to show that BROCCOLI can provide
a satisfactory normalization to MNI space in a short amount of
time. An aspect not considered here, for example, is the smooth-
ness of the resulting displacement fields. It is also possible that the
different algorithms would perform better if the default settings
were changed.

4.2. MOTION CORRECTION
The evaluation of the motion correction algorithms shows that
BROCCOLI yields the smallest difference between the true
motion parameters and the estimated ones, closely followed by
AFNI. BROCCOLI using a GPU and AFNI perform the motion
correction in a similar amount of time, while SPM and FSL
are significantly slower. For BROCCOLI running on a CPU, the
processing time is rather long, which is mainly explained by
the fact that three (non-separable) quadrature filters need to be
applied for each time point and for each iteration (3–5 itera-
tions of the linear registration algorithm is normally sufficient
for motion correction). BROCCOLI also estimates 12 affine reg-
istration parameters for each time point, and then restricts them
to a rigid transformation (6 parameters). The results presented
here are consistent with a previous comparison of motion correc-
tion algorithms (Oakes et al., 2005), where the AFNI software was
shown to provide the most accurate motion estimates.

It should be noted that the test used here is not based on real-
istic head motion, as completely random transformations were

FIGURE 10 | Brain activity maps (representing t-values) from first level

analysis of one OpenfMRI dataset, for BROCCOLI and FSL. Subjects
were presented with pairs of either words or pseudowords in a block based
design, and made rhyming judgments for each pair. The first level analysis
here includes motion correction, segmentation of the fMRI data,
smoothing, and statistical analysis. Both BROCCOLI and FSL used motion
regressors in the statistical analysis. As BROCCOLI and FSL use different
models of the GLM residuals, we here present activity maps with and
without whitening. The activity maps have been arbitrarly thresholded at a
t-value of 5.

applied for each time point. This can, for example, negatively
effect the MCFLIRT function used in FSL. The reason for this is
that MCFLIRT uses the motion estimate from the previous time
point as a starting estimate for the next time point (Jenkinson
et al., 2002). Similarly, 3dvolreg in AFNI is only intended for small
motions, and the transformations applied here may have been too
severe. The shading test is also not very realistic, but clearly shows
the robustness of phase based registration algorithms compared
to intensity based algorithms. For these reasons, the presented
results should be interpreted with caution.

4.3. FIRST LEVEL ANALYSIS
4.3.1. Frequentist inference
The first level analysis using FSL and BROCCOLI yield very sim-
ilar results, both with and without pre-whitening to correct for
auto correlation in the GLM residuals. The small differences in
activation between FSL and BROCCOLI can be explained by a
number of factors. The motion correction algorithms, for exam-
ple, provide slightly different results according to Figure 7 and
this will affect further processing. There are also some differences
in how FSL and BROCCOLI setup the design matrix and treat
the auto correlation of the GLM residuals. BROCCOLI uses four
detrending regressors (mean, linear trend, quadratic trend, cubic
trend) while FSL instead applies a temporal filtering to the data
and the regressors. BROCCOLI smooths all the AR estimates in
the same way, while FSL separately smooths AR estimates in white
and gray brain matter (Woolrich et al., 2001).
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FIGURE 11 | Processing times for BROCCOLI for first level analysis using

a permutation based t-test with 10,000 permutations (SPM, FSL, and

AFNI do not provide any functions for first level permutation based

analysis). Left: Voxel-level inference, the maximum t-test value is saved in
each permutation. Right: Cluster-level inference, the extent of the largest
cluster is saved in each permutation. A t-value of 3 was used as a cluster
defining threshold. The data used is of the size 64 × 64 × 33 × 160. A brain

mask was used to only perform the statistical calculations for the brain
voxels. Note that these processing times do not include smoothing in each
permutation. Smoothing the fMRI data 10,000 times takes about 8970 s
using one core on the Intel CPU, 2710 s using all the four cores on the Intel
CPU, 335 s with the Nvidia GPU and 550 s with the AMD GPU. Also note that
ordinary least squares is used to estimate the GLM beta weights in each
permutation, and not the more demanding Cochrane-Orcutt procedure.

FIGURE 12 | A posterior probability map (PPM) from a Bayesian first

level analysis of one OpenfMRI dataset. Subjects were presented with
pairs of either words or pseudowords in a block based design, and made
rhyming judgments for each pair. The first level analysis here includes
motion correction, segmentation of the fMRI data, smoothing, and
statistical analysis. The PPM represents the probability of the first GLM
beta weight being larger than zero, and has been arbitrarly thresholded at a
probability of 0.99. Note that the PPM has been calculated by using a Gibbs
sampler, and not by using techniques based on variational Bayes. Also note
that the frequentist approach uses a voxel-wise AR(4) model of the GLM
residuals, while the Bayesian currently uses a voxel-wise AR(1) model (due
to hardware limitations).

BROCCOLI is significantly faster than SPM, FSL, and AFNI,
even when the analysis is run on a CPU. SPM is also faster
than FSL and AFNI, which is mainly explained by a faster spa-
tial normalization. The parallel version of FSL, where one first
level analysis in our case runs on each CPU thread, is significantly
faster than the non-parallel version. However, as the first level

analysis in FSL requires more than 2 GB of memory, we were only
able to run 6 (instead of 8) threads in parallel (since the computer
used for testing has 16 GB of memory).

4.3.2. Bayesian inference
The Bayesian first level analysis yields results that are similar to
the t-maps, although the results cannot be compared directly. It
might seem confusing that the AMD GPU is faster than the Nvidia
GPU, especially since the Nvidia GPU is faster for permutation
tests. The reason for this is that the random number generation
currently uses double precision, and the AMD GPU used in our
case has better support for such calculations than the Nvidia GPU
(see Table 1).

4.4. SECOND LEVEL ANALYSIS
The processing times in Figure 13 for the second level permuta-
tion test may at first appear confusing. The speedup of using ran-
domize_parallel instead of randomize decreases with the number
of regressors, from a speedup of 3.2 for a single regressor to 1.6
for 25 regressors (but the actual time saved increases). The 10,000
permutations are divided into smaller work items of 300 per-
mutations each for randomize_parallel. However, 33 work items
cannot be divided equally to a CPU running 8 threads (8 threads ∗
4 work items per thread = 32 work items). The permutation test
is therefore not completed until the last work item has been pro-
cessed, for which only a single CPU thread is active. The unequal
division is more problematic for more regressors, as each work
item then takes a longer time to process.

The processing time for BROCCOLI is not affected as much
by the number of GLM regressors as the FSL software is, result-
ing in a larger speedup for a larger number of regressors. A
GPU thread that performs a small number of calculations is
very limited by the memory bandwidth. More regressors lead
to more calculations and, thereby, a better utilization of the
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FIGURE 13 | Processing times for second level analysis using a

permutation based t-test with 10,000 permutations, for BROCCOLI

and FSL (the SPM and AFNI software packages do not provide any

functions for permutation based analysis). Left: Voxel-level inference,
the maximum t-test value is saved in each permutation. Right:

Cluster-level inference, the extent of the largest cluster is saved in each
permutation. A t-value of 3 was used as a cluster defining threshold. The
data used are beta volumes from 49 subjects, where each beta volume is
of the size 91 × 109 × 91 voxels. A brain mask was used to only perform
the statistical calculations for the brain voxels. The processing time for FSL
increases quickly with the number of regressors, while the processing

time for BROCCOLI increases much more slowly. This is explained by the
fact that calculations on a GPU are efficient, once all the data have been
loaded from the slow global memory to the fast thread specific registers.
To estimate several beta weights per voxel, instead of a single weight,
therefore results in a better utilization of the GPU performance. The
processing time for BROCCOLI using an AMD GPU is 2–5 times as high
compared to BROCCOLI using a Nvidia GPU. One possible explanation for
this is that the code was converted from CUDA to OpenCL. Note that
these processing times are for data normalized to a 2 mm3 MNI template.
The permutation tests would take approximately eight times longer for
data normalized to a 1 mm3 MNI template.

computational capabilities of a GPU. BROCCOLI running on
a CPU is also faster than the parallel version of FSL. FSL
divides the work into several CPU cores by using a pack-
age like Condor or GridEngine. Such an approach cannot
as easily take advantage of vectorized operations [e.g., Intel
streaming SIMD extensions (SSE)], where the same opera-
tion is applied to a number of elements simultaneously. Note
that this is a distinct, second layer of parallel processing. In
addition to the code running on several CPU cores instead
of just one, the processing on each individual core is vector-
ized, performing 4–16 arithmetic operations on different data at
once.

It should also be noted that the presented processing
times are for fMRI data registered to a 2 mm3 MNI tem-
plate, each permutation test would take approximately 8
times longer for data registered to a 1 mm3 MNI template.
Threshold free cluster enhancement (Smith and Nichols,
2009) is another inference method that would benefit
from GPU acceleration, as it is much more computation-
ally demanding compared to voxel-level and cluster-level
inference.

4.5. LIMITATIONS
The following list itemizes the current limitations of using
BROCCOLI:

• BROCCOLI currently has very limited support for image
segmentation, but such algorithms are often easy to run in
parallel (Eklund et al., 2013a).

• The quality of the fMRI-to-T1 registration has not been tested
as extensively as the T1-to-MNI registration. There are, at least,

two reasons why the fMRI-to-T1 registration is harder to test
than the T1-to-MNI registration. First, the fMRI data is of
much lower spatial resolution and an average of 198 registered
fMRI volumes would therefore be extremely blurry. Second,
the fMRI data is often distorted due to artifacts from the MRI
sequence.

• The SPM, FSL, and AFNI software packages have been used for
a long time and have been extensively tested, while BROCCOLI
is completely new software.

• SPM, FSL, and AFNI all provide a graphical user interface,
which BROCCOLI currently does not.

• SPM, FSL, and AFNI all provide a large number of func-
tions which can be combined to basically solve any prob-
lem. BROCCOLI is on the other hand currently limited
to image registration and first and second level fMRI
analyses.

• SPM, FSL, and AFNI all provide some sort of community
forum where users can get help.

4.6. FUTURE WORK
In the future, BROCCOLI can be improved and extended in sev-
eral ways. The most important addition may be a graphical user
interface, so that as many researchers as possible can take advan-
tage of parallel processing. For the first version of BROCCOLI
we have focused on functionality and stability, and not so much
on the computational performance. As most of the code was
converted from CUDA to OpenCL, it is likely that BROCCOLI
performs best for Nvidia GPUs. Optimizing the code for other
hardware platforms (e.g., Intel and AMD) will therefore be one
important project (Enmyren and Kessler, 2010). For permuta-
tion tests involving large datasets, multi-GPU support can be used
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to further reduce the computational burden, by running a num-
ber of permutations on each GPU (Eklund et al., 2011a). First
level analysis can also run in parallel on several GPUs with multi-
GPU support, such that each GPU independently processes one
subject. Another natural extension would be to provide several
other wrappers for BROCCOLI, such as R and bash.

Rather than using ordinary least squares to estimate beta
weights in the GLM, it would be interesting to, for example, use
a regularized regression approach such as LASSO (Tibshirani,
1996) instead. LASSO is often used together with cross valida-
tion, and would be rather time consuming to run for every voxel.
This is especially true if LASSO is combined with a permuta-
tion procedure, to correct for multiple comparisons. Most fMRI
researchers use the GLM for the statistical analysis, but multi-
variate approaches that adaptively combine timeseries of several
voxels can, in some cases, yield higher statistical power. We would
therefore also like to convert our existing CUDA code for canoni-
cal correlation analysis (CCA) (Friman et al., 2003; Eklund et al.,
2011a) to OpenCL and include it in BROCCOLI. The null dis-
tribution of canonical correlations is much more complicated
than conventional t-tests, a problem which can be solved with
permutation-based procedures.
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