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In this article, we describe the use of Python for large-scale automated server-based
bio-image analysis in FARSIGHT, a free and open-source toolkit of image analysis
methods for quantitative studies of complex and dynamic tissue microenvironments
imaged by modern optical microscopes, including confocal, multi-spectral, multi-photon,
and time-lapse systems. The core FARSIGHT modules for image segmentation, feature
extraction, tracking, and machine learning are written in C++, leveraging widely used
libraries including ITK, VTK, Boost, and Qt. For solving complex image analysis tasks, these
modules must be combined into scripts using Python. As a concrete example, we consider
the problem of analyzing 3-D multi-spectral images of brain tissue surrounding implanted
neuroprosthetic devices, acquired using high-throughput multi-spectral spinning disk
step-and-repeat confocal microscopy. The resulting images typically contain 5 fluorescent
channels. Each channel consists of 6000 × 10,000 × 500 voxels with 16 bits/voxel,
implying image sizes exceeding 250 GB. These images must be mosaicked, pre-processed
to overcome imaging artifacts, and segmented to enable cellular-scale feature extraction.
The features are used to identify cell types, and perform large-scale analysis for identifying
spatial distributions of specific cell types relative to the device. Python was used to build a
server-based script (Dell 910 PowerEdge servers with 4 sockets/server with 10 cores each,
2 threads per core and 1TB of RAM running on Red Hat Enterprise Linux linked to a RAID
5 SAN) capable of routinely handling image datasets at this scale and performing all these
processing steps in a collaborative multi-user multi-platform environment. Our Python
script enables efficient data storage and movement between computers and storage
servers, logs all the processing steps, and performs full multi-threaded execution of all
codes, including open and closed-source third party libraries.
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1. INTRODUCTION
Our goal is to quantify tissue perturbations inflicted by implanted
neural recording devices, since their performance depends upon
the state of the surrounding tissue. Our current understand-
ing of microglia is largely based on qualitative visual analysis
of two-dimensional (2-D) micrographs. There is a compelling
need for an objective, quantitative, and fully 3-D analysis of
microglia arbors over extended (multi-millimeter) tissue regions
large enough to encompass the implanted device. Toward this
goal, we present a method combining 3-D confocal imaging of
extended tissue regions, large-scale computational image analysis,
quantitative neuromorphology, and bio-informatics. The created
processing pipeline was developed using python as the building
block to join all the required modules together.

The images consist of coronal sections of 4% paraformalde-
hyde fixed rat brain motor cortices, some with electrodes
implanted for 30 days (NeuroNexus, Ann Arbor, MI), which

were cut into 100-μm thick slices, and labeled (GFAP for astro-
cytes, Iba-1 for microglia, Hoechst for nuclei, and NeuroTrace for
neurons). A Rolera EM-C2 camera (QImaging, Surrey, Canada)
on an Olympus spinning-disk confocal microscope was used
to record images (×30, 1004 × 1002 pixels at a resolution of
0.267 μm/pixel, 14 bits/pixel, step size of 0.3 m). Overlapping
image tiles were combined into a 3-D montage of extended fields.
Figure 1 shows examples of the two types of brain tissue which are
needed to compare: normal tissue, and tissue with an implanted
neuroprostetic device. In order to study the changes between
the normal tissue and the tissue with the implanted device in
these complex biological environments, we need to first identify
the regions of interest (i.e., cells and microglia/neuron arbors)
and then use appropriate mathematical descriptors to model the
differences.

Solving the problem requires integration of multiple software
systems, because no one particular toolkit offers all the required

Frontiers in Neuroinformatics www.frontiersin.org April 2014 | Volume 8 | Article 39 | 1

NEUROINFORMATICS

http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/about
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org/journal/10.3389/fninf.2014.00039/abstract
http://community.frontiersin.org/people/u/118970
http://community.frontiersin.org/people/u/149461
http://community.frontiersin.org/people/u/147805
http://community.frontiersin.org/people/u/149464
http://community.frontiersin.org/people/u/149462
http://community.frontiersin.org/people/u/149489
http://community.frontiersin.org/people/u/6849
mailto:broysam@central.uh.edu
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


Rey-Villamizar et al. Large-scale profiling brain tissue

FIGURE 1 | Sample of brain tissue images used to study the impact of

implanted neuro-prosthetic devices. (A) Maximum-intensity projection of
a multi-channel confocal montage of normal rat brain tissue, and (B) tissue
after 1 month of implantation of the neuro-prosthetic device. An outline of
the device is shown in the picture to demonstrate how different the tissue
is near the device compared to far away from the device. Blue color
represents the Nuclei channel, green represents the Microglia channel, and
red represents the Astrocyte channel. This image illustrates the complexity
and size of the image data required to be processed by our study.

algorithms to process these images. In general, to routinely pro-
cess these big images, a fully automatic pipeline is required that is
capable of integrating all software tools (open and close source
tools), developed in different programming languages (C++,
Java, C, etc.), into a one-click single solution, which allows a
non programming expert to process these images. In particular,
FARSIGHT (Fiji Schindelin et al., 2012; Roysam, 2013) form the
building block of our pipeline.

The FARSIGHT system, which is a quantitative open-source
toolkit developed for studying complex and dynamic biologi-
cal microenvironments from 4D/5D microscopy data, offers an
extended number of different image processing algorithms. These
algorithms are developed for the general purpose of analyzing dif-
ferent biological images. This open source toolkit includes state of
art segmentation, registration, mosaicing, and tracing algorithms
along with data visualization and analysis modules. ImageJ (the
newer version is called Fiji) is a public domain Java-based image
processing program that can be used to display, edit, analyze, pro-
cess, and save many image formats including TIFF, GIF, JPEG,
BMP, DICOM, FITS and “raw.” In particular, for the explained
pipeline we have used the preprocessing algorithms offered by
ImageJ/Fiji which are integrated into the proposed pipeline.

The proposed solution to analyze the huge amount of data
by this study consists of a number of core steps: a registra-
tion and mosaicing step, followed by a preprocessing step to
denoise the images, extraction of meaningful features, which
are primarily based on segmentation/classification of cell nuclei,
and tracing of microglia arbors. Although each of these steps

can be performed manually for a given dataset, integrations of
the results of each algorithm are labor intensive and prone to
human errors. Furthermore, the study of these complex biological
micro-environments requires collaborative work between inter-
disciplinary groups that requires careful maintenance of record
files to keep track of the steps performed in each particular
dataset. In addition, one must often process legacy datasets with
certain change in parameters. One efficient way to obtain consis-
tent and reproducible results is through the use of a pipeline like
the one developed here.

Our approach addresses these problems in the following ways.
First, since this pipeline is based on a pluggable architecture, each
of these modules can be turned on/off, or a new module can be
plugged in based on the need of a given problem. Second, given
that this pipeline is designed to be used on a routine basis by
biologists and other people who might know little of image pro-
cessing, the careful design and organization of the modules are of
utmost importance to allow re-processing of data for occasions
when the default pipeline does not work. This failure to cope with
a particular dataset can be due to changes in the imaging proto-
col, experimental condition, new artifacts introduced in the data,
etc. The maintenance of the record files at each stage will help the
image processing expert to fix encountered problem in a more
efficient way.

In this paper, we present a processing pipeline targeted toward
a biologist who can extract the relevant features for a given dataset
without knowing the intricate details of the image processing
algorithms. This pipeline is based on the idea of one-click pro-
cessing automation: to accomplish this goal, the parameters used
to tune the algorithm are maintained in a separate file that can
be changed according to the requirements of each dataset. We
illustrate the different steps of our method (registration, segmen-
tation, tracing, and feature extraction) by running the pipeline
on one of the datasets and present the results as well as limita-
tions of the proposed solution. Also, improvements over the used
algorithms are described, which were required in order for our
pipeline to work in a realistic amount of time in such large scale.

2. MATERIALS AND METHODS
The current pipeline was developed to create a modular archi-
tecture that integrates different algorithms written in distinct
programming languages capable of analyzing high-content con-
focal images of brain tissue, with the goal of studying the immune
system reaction to the implantation of neuro-prosthetic devices.
The architecture of the pipeline is presented in Figure 2. The
first layer consists of the raw data, which in our case, is in the
range of 100–200 GB per channel (each dataset consist of 4 chan-
nels: microglia, neurons, cell nuclei, and astrosyte). In general,
the core algorithms used by our pipeline require a memory usage
of about 4–10 times the size of the input image; for example, in
our case, the tracing algorithm requires about 8 times the size of
the microglia channel. To process this amount of data is challeng-
ing even for today’s state of the art processors. To circumvent this
problem we have developed a robust architecture that is invariant
to the size of the input data. Our approach is based on the divide-
and-conquer design paradigm. The proposed pipeline can run
using multiple cores on a fixed size image data (called dice), which
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can be specified by the user according to the system configura-
tion. This approach allows the user to process a 100 GB image in
a system with a limited memory such as an 8 GB RAM by restrict-
ing the dice size. We have found that this simple method with a
carefully designed merge strategy, is powerful enough to deal with

FIGURE 2 | Architecture of the proposed pipeline. Layer 1 is the data
layer which consist of the overlapping tiles acquired by the motorized
microscope, Layer 2 consists of all the image processing and feature
extraction algorithms, Layer 3 is the result visualization and analysis layer.

the problem at hand. The second layer consists of the core image
processing algorithms which are mainly developed in different
programming languages like Java, C++, and C, including open
and closed-source third party libraries. The current architecture
allows the modules to be easily turned on or off according to user
needs. Since this layer is based on a pluggable architecture, the
user can design a particular pipeline that suits their requirement
or the user can use the default pipeline as described in Figure 3.
The third layer merges the results from each dice in coherent way.
The final results can be integrated with any image analysis and
visualization tools; in our case, we have used the tools provided
by FARSIGHT to analyze and display the results.

2.1. MOSAIC AND REGISTRATION
This application requires the correct registration and mosaicing
of high-resolution three-dimensional (3-D) images of extended
tissue regions that are much wider than the lateral field of view
of the microscope. To accomplish that, a series of partial views of
the overall region of interest are acquired, and then combined to
form a synthetic image (i.e., mosaic or montage). Tsai et al. (2011)
developed a fully automatic and efficient registration and mosaic-
ing approach which was included in FARSIGHT. This algorithm
consists of three main steps. First, a pair wise image registration is
computed between adjacent image tiles. In order to avoid massive
computational cost, and given that the image acquisition set-up
obtains a series of images by shifting the stage, the spatial trans-
formation from one image tile to the next is largely accounted by

FIGURE 3 | Illustrates the core processing modules integrated in the

pipline (Layer 2 of Figure 2), together with the visualization of the raw

data and the corresponding reconstruction. (A) shows the multichannel raw
data, (B) shows the flow chart of how the algorithms were interconnected in

order to process the images, and (C) shows the final reconstruction of the
microglia and its corresponding processes. This flowchart illustrates the
complexity of the required solution and how we approach the problem to
successfully use Python to integrate all the modules.
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the lateral shift. For this, the maximum-intensity axial projection
is registered at a low computational cost. This is accomplished
by using the generalized dual-bootstrap iterative-closest-poling
(GDB-ICP) algorithm (Yang et al., 2007). Subsequently a 3-D
transformation is performed using the Insight Toolkit (Ibanez
et al., 2003). This algorithm performs a regular-step gradient
descent minimization of the inverse pixel-wise normalized cross-
correlation error. Second, a globally consistent joint registration
procedure is performed. This step is required since pair-wise reg-
istration of tiles can introduce inconsistency in some regions
of the montage. These errors have a magnified impact with the
increase in the size of the montage. The final step consists on cre-
ating the montage from the obtained transformations. This part
of the algorithm, as developed by the original authors, requires
considerable amount of time and memory. We have improved
this part of the algorithm by a careful design of the region of
interest which is required to be stitched together, and by doing so,
the time to montage was reduced by a factor of approximately 20
and the memory requirement by a factor of 2. In a nutshell, what
we have developed is a way to register specific image regions and
avoid the unnecessary creation of multiple copies of the original
image. Also, by using the information present in the transforma-
tion parameters, we can create a bounding box containing the
appropriate image space and in this way the memory usage is
reduced considerably. This also allows the process to be run in
parallel. Given that the typical image size per channel is about
300 GB, this improvement is of significant importance to make
the algorithm practical. We have also extended this algorithm to
the state-of-the-art microscopy images consisting of 14-bit/pixel.
In this part of our pipeline, python allows us to create a com-
bined solution which consists of the union of an open-source and
closed-source algorithm into a single framework which is fully
automatic.

2.2. IMAGE PREPROCESSING
For our application we have found the combination of differ-
ent algorithm which works best for us. We have used the Insight
Toolkit (Ibanez et al., 2003) for performing median filtering in
the images. This is a classic technique used for noise reduction.
The next step consists of illumination correction, for which dif-
ferent approaches such as the classic top-hat filtering technique
were tested. However, we found that using the rolling-ball filtering
algorithm included in ImageJ/Fiji gives the best trade-off between
time and accuracy of the results. Python was used as a tool to inte-
grate these two preprocessing algorithms into a single framework.
The way in which our pipeline was written allowed us to eas-
ily integrate other preprocessing steps according to the problem
requirement. In some cases, particularly challenging areas of the
image required additional preprocessing steps. For this, we have
provided ways, in particular the concept of regions of interests, to
apply different processing algorithms to different parts of images.
This is especially required for images with non uniform staining
due to higher concentration of microglial cells near the device.

2.3. CURVELETS
The accuracy of the automated tracing algorithms is limited by
the image quality i.e., signal-to-noise ratio, contrast, and image

variability. In particular, in order to deal with the discontinuities
in the arbors of the microglia, these images need to be prepro-
cessed by a suitable algorithm that can preserve and enhance the
curvilinear structure of the arbors, close the gaps and at the same
improve the signal-to-noise ratio. We also need algorithms that
are scalable and fast to deal with the high throughput images
like the ones described in this study whose size vary from tens
to hundreds of gigabytes.

Recently, a number of geometric transforms based on the
concept of multi-scale wavelet transform have emerged such as
curvelets (Candes et al., 2006), ridgelets (Candes et al., 2006)
and more generally, shapelets (Kelly and McKay, 2004). These
techniques are inherently multi-scale and do not require the
extent of scales to be explicitly and tightly specified unlike
the Hessian based ridge (Meijering et al., 2003) detector to
estimate local direction. The curvelet transform is particularly
suitable for handling microglia images since the structures of
interest are curvilinear. This transform not only provides a
shape specific methodology for image denoising and rejection
of non-curvilinear structures (e.g., cell nuclei and various image
artifacts), but also provides estimates of local structure orienta-
tion at each voxel (i.e., a dense orientation map).

Curvelets are two dimensional waveforms that can be used for
sparse representation of curvilinear structures in images. In space,
a curvelet �D

j,l,k at scale j is an oriented needle whose effective sup-

port is a 2j by 2j/2 rectangle and thus obeys the parabolic scaling
relation width ≈ 2×length. In frequency, a curvelet at scale j is a
wedge whose frequency support is again inside a rectangle, but of
2j by 2j/2. Unlike wavelets, curvelets are localized not only in posi-
tion (the spatial domain) and scale (the frequency domain), but
also in orientation. In our work, we use the fast discrete curvelet
transform implementation to enhance the arbors of microglia and
compute their local orientation at each pixel. The curvelet coef-
ficients are simply the inner product of the input with each of
the basis of curvelet waveforms. For example, given a digital pixel
array [t1, t2] ∈ L2, 0 < t1, t2 < n, the digital curvelet coefficient
CD(j, k, l) can be computed as

CD (i, k, l) =
∑

0 � t1,t2 � n

f [t1, t2] �D
i,j,k [t1, t2] , (1)

where �D
i,l,k is the digital (D) curvelet wave form, j is the scale

parameter, l refers to the orientation parameter and k = (k1, k2)
refers to the spatial location parameter of the curvelet waveform.
One approach to image enhancement is to use a threshold to elim-
inate small curvelet coefficients and retain only the large ones. If
CD

t (j, k, l) denotes the coefficients after enhancements and T(i, j)
the threshold, then

CD
t (i, k, l) = {

CD (
j, k, l

) |CD (
j, k, l

)
> T

(
i, j

)}
. (2)

Then, the enhanced image can be obtained by taking the inverse
curvelet transform of CD

t . Due to the memory requirement and
compatibility with the FARSIGHT framework, we have used a
curvelet tiling approach which we have developed using c++, and
integrated in the main pipeline by using python.
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2.4. SEGMENTATION AND CLASSIFICATION
In order to perform the analysis of an image, the first and most
important step is to identify regions corresponding to individ-
ual cells (cell segmentation) to extract meaningful features, which
can subsequently be used by analytical tools to gather informa-
tion required by the proposed study. Many algorithms have been
proposed in the literature and the most common ones depend on
the watershed transform, level-set theory, template matching, and
wavelet analysis. For our pipeline the building block is the algo-
rithm described in Al-Kofahi et al. (2010) which is a state-of-the-
art algorithm for cell segmentation. This algorithm is based on a
three step procedure. First, the image is divided into foreground
and background regions using the graph-cuts algorithm. Second,
cell centers (seed points) are found by a multi-scale Laplacian of
Gaussian (LoG) filter constrained by the distance map. Third, the
cells are reconstructed using a hill-climbing algorithm and then
the shape is refined using the α-expansion algorithm. We have
extended this algorithm to work on 16-bit/pixel images.

The above outlined algorithm becomes impractical if it is
applied directly to images of the size required by the described
study, since time and memory requirements grow exponentially.
In addition, we need to quantify the presence of other bio-
markers around the cells using secondary channels; this increases
the memory requirements by a factor equal to the number of
additional channels. For this reason, in our pipeline we have
developed a divide-and-conquer method to correctly segment a
montage of any size, using a selected tile size according to the pro-
cessing capabilities of the system being used. The image montage
is split into overlapping regions by using a big enough padding
according to the maximum expected object size. Among the cells
that lie on the border, some of them belong to the current tile and
some others belong to the adjacent tile. When the adjacent tile
is processed, these overlapping regions are segmented again. To
merge the results and avoid object duplication, only the cells lying
within the border are retained. All other cells on the border whose
centers lie outside the actual tile are rejected. This approach was
implemented in C++ using the Insight Toolkit, and it was par-
allelized using the OpenMP library to efficiently process multiple
tiles simultaneously. The feature computation was also performed
in parallel for each tile. These improvements in the algorithm
implementation makes the use of the described algorithm prac-
tical for the problem at hand, something which was not possible
before this pipeline was built. These features are subsequently
used by the classification algorithm to distinguish between the
different cell types present in the image. The most important
cell type have been the microglia cells, since they are the driv-
ing hypothesis behind the failure of implanted neuro-prosthetic
devices.

2.5. CELL TYPE CLASSIFICATION
One of the goals of this pipeline is to correctly identify cell
types in multi-spectral images of brain tissue. This brain tissue
comprises of cells of different types such as Neurons, microglia,
Astrocytes, and Endothelial cells. An important issue concerning
the electrode performance and the effects of device geometry is
the proximity of these different cells to electrode sites. Thus, clas-
sification of these cells is a fundamental step in the analysis before

characterizing their spatial distribution. In both these examples,
the scale of the data being analyzed is extremely large. A typical
dataset consists of hundreds of thousand of cells. This calls for a
robust and efficient cell classification algorithm that is scalable to
our needs, and which can be easily trained by a biologist. Human
annotation is tedious, expensive and subjective. There will be
intra- and inter-observer variance with respect to the selection of
the most informative samples for the training of the classifier. In
general, humans are biased at picking the most informative exam-
ples. For this reason, a mathematical tool which reduces this bias
is required.

We have used a semi-supervised machine learning algorithm
to train the classifier, which minimizes the amount of human
effort. A special case of this kind of algorithms makes use of
the active learning framework which essentially solves the prob-
lem of objectively picking the most informative set of examples
from a large unlabeled pool; it is based on the assumption that
not all training samples are equally informative. Active learn-
ing is a paradigm that helps in classifier learning with minimal
effort from the user by concentrating on informative examples
only. By querying the most informative examples at every itera-
tion, we can build the classifier at a lower cost. Active learning
methods are iterative and the algorithm updates its knowledge
about the problem after obtaining the labels for the queried exam-
ples at each iteration. The active learning approach used in this
pipeline is based on the logistic regression classifier as described
by Padmanabhan (2012). As part of the development of this
pipeline, this approach was integrated on the FARSIGHT software
system, with an appropriate user interface to make it easy and
intuitive for the biologist to train the classifier. However the large
scale of the data makes it impractical to be used on a complete
dataset. To solve this issue the pipeline was run on specific region
of interest and the classifier was trained on these small regions
which can be handled by the FARSIGHT user interface system.
The designed classifier was later used on the full image montage.
On average we have used 40 samples (iterations) per dataset to
classify microglia with an overall accuracy of above 95% on all
the datasets that we used in our proposed pipeline.

2.6. TRACING
After segmenting and classifying the cell nuclei of Microglia,
the next step is to digitally reconstruct or trace the arbors of
these tree like structures to extract meaningful information. These
reconstructions form the basis for quantifying arbor morpholo-
gies for statistical analysis. Tracing algorithms can be classified
based on the method used to digitally reconstruct these arbors. To
our knowledge these algorithms can be classified into (i) Active
Contour (Wang et al., 2011), (ii) Graph Based Methods (Xie
et al., 2010), (iii) Minimal Path (Meijering, 2010), (iv) Sequential
Tracing (Aylward and Bullitt, 2002), and (v) Skeletonization
(Cohen et al., 1994). We have used graph based technique along
with the minimal path methods to trace the arbors. The graph
based tracing algorithm starts by collecting a number of initial
points that lie along the center of the cell arbors. These interest
points are referred to as Seed Points. Inaccurate detection of these
seed points will lead to incorrect analysis. Most of the seed point
detection algorithms are highly sensitive to the parameters and
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for our images, which are acquired under varying imaging condi-
tions, we require algorithms that can learn from the images and
which are robust to these varying imaging conditions.

We have developed a new tracing algorithm by integrating a
widely used technique in the image processing literature, which
consists of using appropriate dictionary learning of the image fea-
tures. To the best of our knowledge, this is the first kind of tracing
algorithm which uses this powerful mathematical technique in
the field of bio-image analysis. Large-scale tracing of microglia
arbors using over complete dictionaries (Megjhani et al., submit-
ted) learns the curvilinear structure surrounding the putative seed
points and classifies the structure based on the learned dictionary
D. The algorithm extracts a block of size x × y × z surrounding
the pixel and obtains the sparse features based on the sparse cod-
ing techniques using the dictionary D. Given the sparse features
� and the classifier L, the next step is to classify the seed points
based on the sparse representation of the image. The step to learn
the classifier and the dictionary is given below

< D, L, � ≥ arg minD,L,�||Y − D�||22 + β||H − L�||22,
s.t. ∀i, ||γi||0 � T (3)

where Y = {y1, y2, . . . , yN} is the matrix of size Rn×N ; and n =
x × y × z and N is the total number of pixels in the image. H =
{h1, h2, . . . , hN} ∈ Rm×N are the class labels for the input X for
m classes, m in our case is 2, i.e., the pixel is either a seed point
or not a seed point. The first term in (3) represents the squared
reconstruction error. The second term in (3) represents the clas-
sification error for a weight matrix. The dictionary learned in
this manner has excellent representational power, and enforces
strong discrimination between the two classes (e.g., seed points
and non-seed points). After learning the D, L, �; given a new
image, the sparse representation � in D can be obtained using
the sparse coding algorithms (Aharon et al., 2005), and given the
sparse coding algorithm a pixel can be classified as a seed point by
computing

L� = [l1, l2]T , (4)

S =
{

1 or l1 (Class 1 aka arbors), if l1 > l2
0 or l2 (Class 2 aka background), otherwise

(5)

where S has the collection of seed points. The next step after
detecting the seed points is to determine how they are connected.
We construct a Minimum Spanning Tree (MST) to model each
microglia as described in Megjhani et al., (submitted); an MST
like any graph consists of nodes and edges. In our case, each node
is the location of pixels detected as seed points. Each edge is the
cost of considering that a voxel belongs to the microglia process.
The cost was defined by computing the geodesic distance between
the two nodes. The MSTs were constructed using an adaptation of
Prim algorithm Prim (1957). Starting from the root nodes, that
are centroids of the microglia cell nuclei, the algorithm connects
the closest primary nodes S in the sense of a geodesic metric. The
detected link then seeks its nearest primary node to form the next
link in the tree and thus the tree expands. The tree growing pro-
cess runs in parallel for a given image and at the end of the tracing

algorithm there are K MSTs where K is the number of Microglia
cell nuclei present in the image. Applying this algorithm on an
image containing few thousands of microglia becomes imprac-
tical due to the memory requirement. For this reason we have
developed a dice-and-trace approach which divides the image
into overlapping tiles centered at every microglia centroid. Each
dice only has traces corresponding to one microglia cell. The
dice size is selected according to the maximum expected arbor
length of the microglia, and adjacent regions are included in order
to accurately model the arbor growing process with respect to
neighboring microglia cells. Each individual region is traced inde-
pendently on a server with 40 cores (2 threads per core). The
results are then merged together to create a final microglia mor-
phology reconstruction of the whole image montage. The dice
size is selected according to the maximum expected length of the
microglia processes.

2.7. VISUALIZATION, CLUSTERING, AND PROGRESSION
The developed pipeline generates the results in a format which
can be understood by the FARSIGHT system, an open source
and cross-platform toolkit for analyzing multi-dimensional and
multi-spectral biological images. Of particular interest for our
project is to correctly visualize, edit, and analyze the segmenta-
tion and tracing results. Even the best available automated systems
today have a non-zero error rate, implying the continued need for
visual proofreading and corrective editing systems for which the
FARSIGHT Trace Editor was used (Luisi et al., 2011). To group
different types of Microglia for the analysis of distribution of the
cells around the neuro-prosthetic device, we have used the clus-
tering algorithm described in Lu et al. (2013). The Trace Editor
system was optimized to efficiently edit the large dataset described
in this study. The trace editor is developed in C++ and was inte-
grated in the pipeline using the python language. This allowed us
to efficiently separate the development of the user interface from
the development of the main pipeline.

The microglia cells are known to undergo cell arbor morpho-
logical changes in response to tissue perturbation. Ensembles of
microglia exhibit a progression of arbor morphologies. It is of
prime importance to study the progression or the spatial distribu-
tion of microglia arbor states. For this we have used Unsupervised
Inference of Arbor Morphology Progression (Xu et al., 2013).
Sample results of the clustering and progression algorithms are
given in Figure 4. This algorithm was also integrated in our
pipeline, and was also integrated in the FARSIGHT system. The
integration of a methodology which is capable of offering the
complete processing of such a complex image processing prob-
lem is what we consider our most important contribution to the
image processing community.

2.8. RESULTS
A total of 8 different datasets were processed with the developed
pipeline. Figure 4 illustrates a summary of the results obtained
after using the described pipeline. On average our approach takes
10 h to complete the entire process of image mosaicking, prepro-
cessing, segmentation, cell classification, microglia tracing, and
progression discovery on an image of 200 GB per channel, with
4 channels. The classification accuracy of the different cell types
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FIGURE 4 | Illustrates the final result obtained after the pipeline was

run on a dataset containing a device. (A) show the features computed
for each microglia as seen in the heat map before clustering, each row
corresponds to a cell, and each colum to a feature, (B,C) shows the
co-clustering obtained displayed as a heat map and the corresponding

distribution in the spatial domain with respect to the device, and (D)

shows the progression of microglia states discovered using the method
described in Xu et al. (2013). The pipeline creates an integration of all the
modules together with the powerful visualization and analytical tools
present in FARSIGHT.

was above the 95% for all the datasets. The described piepline has
a good integration with the visualization modules implemented
into the FARSIGHT toolkit.

This pipeline was successfully used to generate the results pre-
sented in Lu et al. (2013), Xu et al. (2013). The developed pipeline
enabled us to study how the microglia states affect the neuro-
prosthetic device’s capability to transmit signals. It was found that
there is a clear progression of the microglia states as we move away
from the device as shown in Figure 4.

2.9. CONCLUSIONS
The Python language is well-suited to implement a bioinformat-
ics approach that encompasses a large number of interdependent
steps, which are normally developed by independent groups to
tackle specific problems. We found that the Python language was

very well suited to our application, and it allowed us to integrate
all the modules in order to obtain results with little or no effort.
The series of modules covered in the analytical pipeline imple-
mented in Python reflect the flexibility of this language to create
a simple solution for an otherwise complex problem. The devel-
oped modular pipeline architecture was customized to perform
the analysis of high-throughput high content brain tissue images.
The pipeline was created with the idea of one-click automation
which means that anyone can run the processing from start to
finish with an intuitive user interface that allows the results to be
visualized and edited.

The level of user input required to successfully operate the
pipeline is reduced given that the combination of selected algo-
rithms makes the process robust to changes in the input data. In
some extreme cases, when the data changes significantly, a small
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amount of changes can be made in order to obtain a satisfac-
tory solution. These changes are also easy to incorporate in the
process given that the core building block is separated from the
algorithms, by defining those parameters outside of the applica-
tion. Results from the aforementioned pipeline were produced
for more than 20 of such datasets. This pipeline was used by an
extended group of people, who were able to contribute to specific
parts of the inner modules/plugins. Without Python, the devel-
opment process and integration of such vast number of modules
would have been extremely difficult and time consuming given
the fact that each group has a particular programming language
preference.

In the future we will add the vessel channel to our pipeline.
Vessels will help us add another layer of information to our
analysis. This will increase the amount of information which
can be used by our clustering and progression discovery algo-
rithms in order to relate the underlying patterns when comparing
normal with disturbed brain tissue. Finally, it is also impor-
tant to highlight that all the code developed by this project is
open-source and available trough the FARSIGHT repository at
(http://farsight-toolkit.org/wiki/FARSIGHT_HowToBuild).
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