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This paper proposes a methodology for estimating Neural Response Functions (NRFs)
from fMRI data. These NRFs describe non-linear relationships between experimental
stimuli and neuronal population responses. The method is based on a two-stage model
comprising an NRF and a Hemodynamic Response Function (HRF) that are simultaneously
fitted to fMRI data using a Bayesian optimization algorithm. This algorithm also produces
a model evidence score, providing a formal model comparison method for evaluating
alternative NRFs. The HRF is characterized using previously established “Balloon” and
BOLD signal models. We illustrate the method with two example applications based on
fMRI studies of the auditory system. In the first, we estimate the time constants of
repetition suppression and facilitation, and in the second we estimate the parameters
of population receptive fields in a tonotopic mapping study.
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1. INTRODUCTION
Functional Magnetic Resonance Imaging (fMRI) is a well estab-
lished technique for the non-invasive mapping of human brain
function (Frackowiak et al., 2003). Analysis of fMRI data most
often proceeds by modeling the neuronal correlates of single
events as delta functions or boxcars. These form event streams
which are then convolved with assumed Hemodynamic Response
Functions (HRFs) to create regressors for General Linear Models
(GLMs). This forms the basis of the widely used Statistical
Parametric Mapping (SPM) approach (Friston et al., 2007).

This paper proposes an alternative approach in which fMRI
data is fitted using a non-linear model depicted in Figure 1.
This comprises two mappings (1) a Neural Response Function
(NRF) which maps stimulus characteristics to neural responses
and (2) an HRF which maps neural responses to fMRI data.
Importantly, the HRF can accommodate variations across brain
regions and subjects, and includes non-linearities associated with
hemodynamic saturation effects. The parameters of the two
mappings are estimated together using a Bayesian optimiza-
tion algorithm that is widely used in neuroimaging (Friston
et al., 2007). This algorithm has the added benefit of produc-
ing a model evidence score which we will use to provide a
formal model comparison method (Penny, 2012) for evaluating
alternative NRFs.

The goal of our approach is to make inferences about NRFs.
These parametric models relate the activity of a population of
neurons within a single voxel or brain region to characteristics
of experimental stimuli. NRFs are similar, in principle, to those
derived for individual neurons from single unit electrophysiol-
ogy but estimate population rather than single neuron responses
(Dumoulin and Wandell, 2008). In this paper we apply the NRF
approach to the auditory domain and provide two examples.
The first is a Repetition Suppression paradigm in which we esti-
mate neural responses as a function of time since presentation

of a similar stimulus. These repetition suppression effects are
an important marker of synaptic plasticity (Weigelt et al., 2008;
Marta et al., 2009). The second is a Tonotopic Mapping paradigm
in which we model neural responses as Gaussian or Mexican-Hat
functions of stimulus frequency, and report the results of a formal
Bayesian model comparison.

This paper is based on a previous Hemodynamic Model
(HDM) (Friston, 2002), which posited categorical relations
between stimuli and neural activation, and used a biophysi-
cally motivated differential equation model of the HRF, which
in turn was based on earlier physiological modeling (Buxton
et al., 1998). This paper can be viewed as a simple extension of
that work which replaces the categorical neuronal model with a
parametric one.

A further perspective on this paper is that it presents an exten-
sion of linear models with “Parametric Modulation” terms, in
which experimental variables of interest are used to modulate
the height or duration of boxcar functions representing neu-
ronal activity (Buchel et al., 1998; Grinband et al., 2008). The
work in this paper represents an extension of this approach
by allowing for non-linear relations between fMRI signals and
unknown parametric variables. Non-linear relationships can also
be accommodated in the linear framework by using a Taylor
series approach, but this has a number of disadvantages which
are described in section 2.

2. MATERIALS AND METHODS
Figure 1 shows the structure of the model proposed in this
paper. An NRF specifies how neuronal activity is related to stim-
ulus characteristics and an HRF specifies how fMRI data is
related to neuronal activity. The HRF is based on the Balloon
model (Buxton et al., 1998) which describes how blood deoxy-
hemoglobin, q, and volume, v, are driven by neuronal activity,
and a BOLD signal model which describes how the BOLD signal
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FIGURE 1 | Modular structure of generative model. Our framework
proposes voxel-wise or region-wise fitting of a non-linear model to
fMRI data. The model comprises separate modules which characterize
a Neural Response Function (NRF) and a Hemodynamic Response
Function (HRF). The NRF is based on a non-linear parametric form,
which will vary depending on the application domain, relating neuronal
activity z to known stimulus characteristics, ck , and unknown neuronal

parameters θn. The HRF relates predicted fMRI activity g to neuronal
activity z via blood deoxyhemoglobin q and volume v variables. These
relations are specified by an extended Balloon model with unknown
parameters θh = {θκ , θτ , θε } describing the rate of signal decay, transit
time, and ratio of intra- to extra-vascular signal, respectively. The
model is fitted to fMRI data, y , so as to estimate the unknown
parameters θn and θh.

derives from q and v. The hemodynamic and BOLD signal models
are the same as those used in Dynamic Causal Modeling (DCM)
(Stephan et al., 2007).

The sub-sections below describe the above modules in more
detail. We also briefly describe the optimization algorithm used
to fit the model to fMRI data. This is a Bayesian estimation
procedure which also requires the specification of prior distri-
butions over model parameters. We also provide a description of
the Taylor series approach for estimation of non-linear paramet-
ric functions. In what follows N(x; m, S) denotes a multivariate
Gaussian distribution over variable x with mean m and covari-
ance S, and U(x; l, u) denotes a univariate uniform density with
lower and upper bounds l and u.

2.1. NEURAL RESPONSE FUNCTIONS
The original formulation of the Hemodynamic Model (HDM)
(Friston, 2002) considered categorical relationships between
experimental manipulations and neuronal activity. For the kth
experimental condition the neuronal time series is modeled as

zk(t) = βk

Nk∑
j = 1

δ[t − tk(j)] (1)

where tk(j) are the event times for condition k, Nk is the number
of condition k events, and δ[] is a delta function. The variable t
denotes time in seconds since the beginning of the fMRI record-
ing session, and event times tk(j) are specified in the same units.
The parameter βk is the “neuronal efficacy” for condition k and
indicates the magnitude of the neural response.

This paper extends the HDM formalism by also allowing
for non-linear parametric relationships. For example, for the
Repetition Suppression paradigm we use a model of the form

zk(t) = βk

Nk∑
j = 1

δ[t − tk(j)] exp[−akrk(j)] (2)

with a parametric variable rk(j) denoting the time-lag (seconds)
or item-lag (number of repeats) associated with the jth event in
condition k. The variable ak is the associated time constant that
we wish to estimate from data, with positive values indicating
suppression and negative values facilitation. The total neuronal
activity is then given by

z(t) =
∑

k

zk(t) + β0 (3)

where β0 is baseline neural activity. The incorporation of this
baseline parameter is also novel to this paper and we show in sec-
tion 3 that it can significantly improve model fit. Overall neuronal
activity, and the resulting BOLD signal (see below), are non-linear
functions of the parameter ak. This is therefore an example of a
non-linear parametric response.

For our repetition suppression experiment (see section 2.8)
there are k = 1..4 experimental conditions denoting the four dif-
ferent types of auditory stimulus. There are multiple trials, Nk,
for each condition. In our experiment the different conditions
are presented in “pitch trains.” As the stimuli in the different
trains are presented several seconds apart, the linear summation
in Equation (3) merely combines the condition specific neural
responses, zk, into a single variable, z. Had the stimuli for the dif-
ferent categories been interleaved in close temporal proximity this
assumption would be questionable (Friston et al., 1998).

For the Tonotopic Mapping paradigm we model neural
responses as a Gaussian function of stimulus frequency

z(t) = β

N∑
j = 1

δ[t − t(j)] exp

[
−1

2

(
fj − μ

σ

)2
]

+ β0 (4)

where fj is the stimulus frequency (in Hz) for the jth event, μ is
the center frequency (of the population receptive field), σ is the
width and β is the magnitude. We also explore a Mexican-Hat
wavelet parametric form
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z(t) = β

N∑
j = 1

δ[t − t(j)]
[

1 −
(

fj − μ

σ

)2
]

exp

[
−1

2

(
fj − μ

σ

)2
]

+ β0 (5)

This function, also referred to as a Ricker wavelet, is equivalent
to the (negative, normalized) second derivative of a Gaussian
function (Mallat, 1999). The function corresponds to a Gaussian
with surround suppression and can also be produced using a
Difference of Gaussians (DoG) functional form (with specific
parameter settings). Population receptive fields with surround
suppression have been explored in the visual domain (Lee et al.,
2013). Overall neuronal activity, and the resulting BOLD signal
(see below), are non-linear functions of the parameters μ and
σ . This is therefore another example of a non-linear parametric
response. For the Tonotopic Mapping data we treat all stimuli as
belonging to the same category, so have dropped the k subscripts
in Equations (4, 5).

Although this paper focusses on the auditory system, we envis-
age that our approach may also be useful for many other types of
neuroimaging study. So, generally we allow for NRFs of the form

z(t) = f (c1, c2, . . . , cK; θn) (6)

where ck are stimulus characteristics for conditions k = 1 . . . K
and f is an arbitrary linear or non-linear function with param-
eters θn. For our Repetition Suppression example the neuronal
parameters are θn = {ak, βk, β0} and for the Tonotopic Mapping
example they are θn = {μ, σ, β, β0} (here μ, σ and β are specified
indirectly by Gaussian latent variables to allow for an appropri-
ately constrained optimization, as described in section 2.3 below).
More generally, the functional form is to be provided by the
modeler and the parameters are to be estimated, as described
below. Different NRFs (e.g., Gaussian versus Mexican-Hat) can
then be evaluated in relation to each other using Bayesian Model
Comparison (Penny, 2012).

2.2. HEMODYNAMICS
Neuronal activity gives rise to fMRI data by a dynamic process
described by an extended Balloon model (Buxton et al., 2004)
and BOLD signal model (Stephan et al., 2007) for each brain
region. This specifies how changes in neuronal activity give rise
to changes in blood oxygenation that are measured with fMRI.

The hemodynamic model involves a set of hemodynamic
state variables, state equations and hemodynamic parameters, θh.
Neuronal activity z causes an increase in vasodilatory signal s that
is subject to autoregulatory feedback and inflow fin responds in
proportion to this

ṡ = z − κs − γ (fin − 1) (7)

ḟin = s

Blood volume v and deoxyhemoglobin content q then change
according to the Balloon model

τ v̇ = fin − fout (8)

τ q̇ = finE(fin, ρ) − fout
q

v

fout = v1/α (9)

where the first equation describes the filling of the venous
“Balloon” until inflow equals outflow, fout , which happens with
time constant τ . The proportion of oxygen extracted from the
blood is a function of flow

E(f , ρ) = 1 − (1 − ρ)1/f

ρ
(10)

where ρ is resting oxygen extraction fraction. The free parameters
of the model are the rate of signal decay in each region, κ , and the
transit time in each region, τ . The other parameters are fixed to
γ = α = ρ = 0.32 in accordance with previous work (Stephan
et al., 2007).

2.2.1. BOLD signal model
The BOLD signal is given by a static non-linear function of vol-
ume and deoxyhemoglobin that comprises a volume-weighted
sum of extra- and intra-vascular signals. This is based on a simpli-
fied approach (Stephan et al., 2007) (Equation 12) that improves
upon an earlier model (Friston et al., 2003)

y = V0

[
k1(1 − q) + k2

(
1 − q

v

)
+ k3(1 − v)

]
(11)

k1 = 4.3θ0ρTE

k2 = εr0ρTE

k3 = 1 − ε

where V0 is resting blood volume fraction, θ0 is the frequency
offset at the outer surface of the magnetized vessel for fully deoxy-
genated blood at 1.5T, TE is the echo time and r0 is the slope of the
relation between the intravascular relaxation rate and oxygen sat-
uration (Stephan et al., 2007). In this paper we use the standard
parameter values V0 = 4, r0 = 25, θ0 = 40.3 and for our fMRI
imaging sequence we have TE = 0.04. The only free parameter of
the BOLD signal model is ε, the ratio of intra- to extra-vascular
signal.

2.3. PRIORS
The overall model is fitted to data using the Variational Laplace
(VL) optimization algorithm (Friston et al., 2007). This is a
Bayesian estimation procedure which requires the specification
of prior distributions over model parameters. The algorithm is
widely used in neuroimaging, finding applications ranging from
fitting of Equivalent Current Dipole source models to DCMs
(Litvak et al., 2011). Within VL, priors must be specified as
Gaussians (see section 2.5). However, priors of any unimodal
form can in effect be specified over variables of interest by using
Gaussian latent variables and the appropriate non-linear trans-
form. For example, we use uniform priors over parameters of the
Tonotopic models (see below).
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2.3.1. Neural response function
In the absence of other prior information about NRF param-
eters we can initially use Gaussian priors with large variances,
or uniform priors over a large range. Applying the optimization
algorithm to selected empirical fMRI time series then provides
us with ballpark estimates of parameter magnitudes. The priors
can then be set to reflect this experience (Gelman et al., 1995).
Alternatively, one may be able to base these values on published
data from previous studies.

For the Repetition Suppression models used in this paper, we
use the following priors. The initial effect size has a Gaussian prior

p(βk) = N
(
βk; 1, σ 2

β

)
(12)

with σ 2
β = 10, and the decay coefficient also has a Gaussian prior

p(ak) = N
(
ak; 0, σ 2

a

)
(13)

with σ 2
a = 1. The baseline neuronal activity also has a Gaussian

prior

p(β0) = N
(
β0; 0, σ 2

β

)
(14)

For the Tonotopic Mapping examples we used uniform priors
over the center frequency, width, and amplitude as follows

p(μ) = U(μ;μmin, μmax) (15)

p(σ ) = U(σ ; σmin, σmax)

p(β) = U(β;βmin, βmax)

The minimum and maximum values were μmin = 0, μmax =
20, 000, σmin = 1, σmax = 5, 000, βmin = 0, βmax = 20. The cen-
ter frequency and width are expressed in Hz. These uniform
priors were instantiated in the VL framework by specifying a
Gaussian latent variable and relating model parameters to latent
variables via the required non-linearity. We used

μ = (μmax − μmin)�(θμ) + μmin (16)

σ = (σmax − σmin)�(θσ ) + σmin

β = (βmax − βmin)�(θβ) + βmin

The priors over the latent variables θμ, θσ , and θβ were standard
Gaussians (zero mean, unit variance). The required non-linearity
� was therefore set to the standard cumulative Gaussian func-
tion (Wackerley et al., 1996). The prior over β0 was given by
Equation (14).

In summary, for the Repetition Suppression example the neu-
ronal parameters are θn = {ak, βk, β0} and for the Tonotopic
Mapping example they are θn = {θμ, θσ , θβ, β0}.
2.3.2. Hemodynamic response function
The unknown parameters are {κ, τ, ε}. These are represented as

κ = 0.64 exp(θκ ) (17)

τ = 2 exp(θτ )

ε = exp(θε)

and we have Gaussian priors

p(θκ ) = N(θκ ; 0, 0.135) (18)

p(θτ ) = N(θτ ; 0, 0.135)

p(θε) = N(θε; 0, 0.135)

where θh = {θκ , θτ , θε} are the hemodynamic parameters to be
estimated. These priors are used for both the applications in this
paper and are identical to those used in DCM for fMRI.

2.4. INTEGRATION
Our overall parameter vector θ = {θn, θh} comprises neurody-
namic and hemodynamic parameters. Numerical integration of
the hemodynamic equations leads to a prediction of fMRI activ-
ity comprising a single model prediction vector g(θ, m). This has
dimension [T × 1] where T is the number of fMRI scans (length
of time series). The numerical integration scheme used in this
paper is the ode15s stiff integrator from Matlab’s ODE suite
(Shampine and Reichelt, 1997).

2.5. OPTIMIZATION
The VL algorithm can be used for Bayesian estimation of non-
linear models of the form

y = g(θ, m) + e (19)

where y is the fMRI time series, g(θ, m) is a non-linear function
with parameters θ , and m indexes assumptions about the NRF.
For example, in the Repetition Suppression example below (see
section 3) m indexes “item-lag” or “time-lag” models, and in the
Tonotopic Mapping example m indexes Gaussian or Mexican-Hat
parametric forms.

The term e denotes zero mean additive Gaussian noise. The
likelihood of the data is

p(y|θ, λ, m) = N(y; g(θ, m), exp(λ)−1IT) (20)

with noise precision exp (λ) and p(λ|m) = N(λ; μλ, Sλ) with
μλ = 0, Sλ = 1. Here IT denotes a dimension T identity matrix.
These values are used in DCM (Penny, 2012) and have been set so
as to produce data sets with signal to noise ratios that are typical
in fMRI.

The framework allows for Gaussian priors over model
parameters

p(θ |m) = N(θ; μθ , Cθ ) (21)

where μθ and Cθ have been set as described in the previous
section on priors.

These distributions allow one to write down an expression for
the joint log likelihood of data, parameters and hyperparameters

p(y, θ, λ|m) = p(y|θ, λ, m)p(θ |m)p(λ|m) (22)
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The VL algorithm then assumes an approximate posterior density
of the following factorized form

q(θ, λ|y, m) = q(θ |y, m)q(λ|y, m) (23)

q(θ |y, m) = N(θ; mθ , Sθ )

q(λ|y, m) = N(λ; mλ, Sλ)

The parameters of these approximate posteriors are then iter-
atively updated so as to minimize the Kullback-Leibler (KL)-
divergence between the true and approximate posteriors. This
is the basic principle underlying all variational approaches to
approximate Bayesian inference; that one chooses a factoriza-
tion of the posterior and updates parameters of the factors (here
mθ , Sθ , mλ, and Sλ) so as to minimize the KL-divergence. Readers
unfamiliar with this general approach can find introductory
material in recent texts (Jaakola et al., 1998; Bishop, 2006). For the
VL algorithm, this minimization is implemented by maximizing
the following “variational energies”

I(θ) =
∫

L(θ, λ)q(λ|y, m)dλ (24)

I(λ) =
∫

L(θ, λ)q(θ |y, m)dθ

where L(θ, λ) = log p(y, θ, λ|m). As the likelihood, priors, and
approximate posteriors are Gaussian the above integrals can be
computed analytically (Bishop, 2006). Maximization is effected
by first computing the gradient and curvature of the variational
energies at the current parameter estimate, mθ (old). For example,
for the parameters we have

jθ (i) = ∂I(θ)

∂θ(i)
(25)

Hθ (i, j) = d2I(θ)

∂θ(i)∂θ(j)

where i and j index the ith and jth parameters, jθ is the gradi-
ent vector and Hθ is the curvature matrix. These gradients and
curvatures are computed using central differences (Press et al.,
1992). In recent work (Sengupta et al., in press) we have proposed
a more efficient “adjoint method,” which computes gradients and
curvatures as part of the numerical integration process.

The estimate for the posterior mean is then given by

mθ (new) = mθ (old) − H−1
θ jθ (26)

which is equivalent to a Newton update (Press et al., 1992). In
regions of parameter space near maxima the curvature is negative
definite (hence the negative sign above). Equation (26) imple-
ments a step in the direction of the gradient with a step size
given by the inverse curvature. Large steps are therefore taken
in regions where the gradient changes slowly (low curvature)
and small steps where it changes quickly (high curvature). In the
SPM implementation (in the function spm_nlsi_GN.m from
http://www.fil.ion.ucl.ac.uk/spm/), the update

also incorporates a regularization term (Press et al., 1992).
Readers requiring a complete description of this algorithm are
referred to Friston et al. (2007).

A key feature of our approach, in which neurodynamic and
hemodynamic parameters are estimated together rather than in
a sequential “two-step” approach, can be illustrated by a closer
inspection of Equation (26). If we decompose the means, gra-
dients and curvatures into neurodynamic and hemodynamic
parts

mθ = [mn, mh]T (27)

jθ = [jn, jh]T

Hθ = [Hnn, Hnh; Hhn, Hhh]

then [using the Schur complement (Bishop, 2006)] we can write
the update for the neurodynamic parameters as

mn(new) = mn(old) −
[

Hnn − HnhH−1
hh Hhn

]−1
jn (28)

whereas the equivalent second step of a two-step approach
would use

mn(new) = mn(old) − H−1
nn jn (29)

Thus, the joint estimation procedure includes an additional term
such that components of the data that are explained by hemody-
namic variation are not attributed to a neuronal cause. If there is
no correlation between hemodynamic and neuronal parameters
then Hnh = Hhn = 0 and this additional term disappears. This is
similar to the issue of how correlated predictors are dealt with in
General Linear Modeling (Christensen, 2002; Friston et al., 2007).

2.6. MODEL COMPARISON
The VL algorithm also computes the model evidence p(y|m)
based on a free-energy approximation (Penny, 2012). Given mod-
els m = i and m = j the Bayes factor for i versus j is then given by
Kass and Raftery (1995)

BFij = p(y|m = i)

p(y|m = j)
(30)

When BFij > 1, the data favor model i over j, and when BFij < 1
the data favor model j. If there are more than two models to com-
pare then we can choose one as a reference and calculate Bayes
factors relative to that reference. A Bayes factor greater than 20 or,
equivalently, a log Bayes factor greater than 3 is deemed strong
evidence in favor of a model (Raftery, 1995). It is also possi-
ble to compute Bayes factors using the Savage–Dickey method,
which only requires fitting a single “grandfather” model (Penny
and Ridgway, 2013). The use of Bayes factors provides a Bayesian
alternative to hypothesis testing using classical inference (Dienes,
2011).

2.7. TAYLOR SERIES APPROXIMATION
Previously in the neuroimaging literature a Taylor series approx-
imation method has been used to estimate parameters that
relate stimulus properties non-linearly to neuronal activity
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(Buchel et al., 1998). One can apply this approach, for example,
to estimating time constants in Repetition Suppression experi-
ments. For example, if we take Equation (2) (but drop reference
to condition k for brevity) we have

z(t) = β

N∑
j = 1

δ[t − t(j)] exp[−ar(j)] (31)

A first order Taylor series expansion (in the variable a) of the
exponential function around an assumed value a0 then gives

FIGURE 2 | Repetition suppression paradigm. Stimuli were presented in
epochs with periods of silence in between. Within each epoch, stimuli were
presented in “pitch-trains” or “noise-trains,” where a pitch-train contained
between 1 and 6 stimuli of the same pitch, and noise-trains contained
between 1 and 6 noise stimuli. Colors indicate the various types of pitch
train: Random Interval Noise (RIN) (red), Harmonic Complex (HC) (green),
Click Train (CT) (blue), and noise (yellow). The black rectangle represents a
period of silence.

z(t) ≈ β

N∑
j = 1

δ[t − t(j)] (exp[−a0r(j)]

− (a − a0)r(j) exp[−a0r(j)]) (32)

This can be written as

z(t) = β1z1(t) + β2z2(t) (33)

β1 = β

β2 = β(a − a0)

z1(t) =
N∑

j = 1

δ[t − t(j)] exp[−a0r(j)]

z2(t) = −
N∑

j = 1

δ[t − t(j)]r(j) exp[−a0r(j)]

Convolution of this activity then produces the predicted BOLD
signal

g(t) = β1x1(t) + β2x2(t) (34)

x1 = z1 ⊗ h

x2 = z2 ⊗ h

FIGURE 3 | Magnitude of initial response, βk averaged over sessions, for

conditions k = 1, 2, 3, 4 (Harmonic Complex—HC, Click Train—CT,

Random Interval Noise—RIN, Noise). The red error bars indicate the

standard deviations. Estimates are shown for the six regions of interest;
TE10, TE11, and TE12 indicate primary, medial, and lateral regions of Heschl’s
Gyrus, and -L/-R indicates left/right hemisphere.
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where h is the hemodynamic response function (assumed
known). This also assumes linear superposition (that the response
of a sum is the sum of responses). This linearized model can be fit-
ted to fMRI data using a standard GLM framework, with design
matrix columns x1 and x2 and estimated regression coefficients
β̂1, β̂2. The estimated time constant is then given by

â = β̂2

β̂1

+ a0 (35)

The drawbacks of this approach are (1) it assumes that a reason-
ably accurate estimate of a can be provided (a0, otherwise the
Taylor series approximation is invalid), (2) it assumes the hemo-
dynamic response is known and fixed across voxels, (3) it assumes
linear superposition (e.g., neglecting possible hemodynamic sat-
uration effects), and (4) inference is not straightforward as the
parameter estimate is based on a ratio of estimated quantities.
However, the great benefit of this approach is that estimation
can take place using the GLM framework, allowing efficient
application to large areas of the brain.

2.8. REPETITION SUPPRESSION DATA
The experimental stimuli consisted of three pitch evoking stimuli
with different “timbres;” Regular Interval Noise (RIN), harmonic
complex (HC), and regular click train (CT). Five different pitch
values were used having fundamental frequencies equally spaced

on a log-scale from 100 to 300 Hz. The duration of each stimulus
was 1.5 s.

The RIN of a pitch value F0 was generated by first generating
a sample of white noise, delaying it by 1/F0 s and then adding it
back to the original sample. This delay and add procedure was
repeated 16 times to generate a salient pitch. The stimulus was
then bandpass filtered to limit its bandwidth between 1000 and
4000 Hz. New exemplars of white noise were used to generate RIN
stimuli that were repeated within trials.

The HC stimulus of fundamental frequency F0 was generated
by adding sinusoids of harmonic frequencies (multiples of F0) up
to a maximum frequency (half the sampling rate) with phases
chosen randomly from a uniform distribution. The resulting
signal was then Bandpass filtered between 1000 and 4000 Hz.

The CT of rate F0 consisted of uniformly spaced bursts of clicks
(click duration 0.1 ms) with interval duration (time between
clicks) equal to 1/F0 s. This train of clicks was then bandpass
filtered between 1000 and 4000 Hz.

We also included spectrally matched white noise stimuli
(Noise) which were bandlimited to the same frequency range
as pitch stimuli. Different white noise exemplars were used to
generate each RIN and Noise stimulus.

Stimuli were presented in epochs with periods of silence
in between, as shown in Figure 2. Within each epoch, stimuli
were presented in “pitch-trains” or “noise-trains,” where a pitch-
train contained between 1 and 6 stimuli of the same pitch, and

FIGURE 4 | Magnitude of repetition suppression effect, ak averaged

over sessions, for conditions k = 1, 2, 3, 4 (Harmonic Complex—HC,

Click Train—CT, Random Interval Noise—RIN, Noise). The red error
bars indicate the standard deviations. Positive values indicate

suppression and negative values facilitation. Estimates are shown for
the six regions of interest; TE10, TE11, and TE12 indicate primary,
medial, and lateral regions of Heschl’s Gyrus, and -L/-R indicates
left/right hemisphere.
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noise-trains contained between 1 and 6 noise stimuli. For the HC
and RIN stimuli, although the pitch value remained the same in
each pitch-train, the low level acoustic structure varied over stim-
uli. For the CT stimuli, however, the low level structures were
identical.

All imaging data were collected on a Siemens 3 Tesla Allegra
head-only MRI scanner. The participant gave written consent and
the procedures were approved by the University College London
Ethics committee. Stimuli were presented as shown in Figure 2,
with MRI data being continuously acquired from 30 slices cover-
ing the superior temporal plane (TR = 1.8 s, TE = 30 ms, FA =
90◦, isotropic voxel size = 3 mm). To ensure subjects attended to
the stimuli, they were asked to press a button at the start of each
silent period. The scanning time was divided into 5 sessions, each
lasting about 12 min. A total of 1800 volumes were acquired (360
per session).

After discarding the first 2 dummy images to allow for T1
relaxation effects, images were realigned to the first volume.
The realigned images were normalized to stereotactic space and
smoothed by an isotropic Gaussian kernel of 6 mm full-width at
half maximum.

Cytoarchitectonically, Heschl’s gyrus (HG) can be partitioned
into three different areas (Morosan et al., 2001): a primary
area (TE10) surrounded by two medial (TE11) and lateral
areas (TE12) (see Figure 11 in Morosan et al., 2001). To test
whether these three areas have different rates of adaptation to the

FIGURE 5 | Tonotopic Mapping with Gaussian neural response

functions. Top Left: Axial slice of structural image at z = 6 with bounding
box showing region displayed on other three panels (x, y, and z denote MNI
coordinates in mm). The labeling (A to F) refers to plots in Figures 6, 8. Top

Right: Amplitude β (arbitrary units), Bottom Left: Center Frequency μ (kHz).
Bottom Right: Tuning, W (ratio of Center Frequency to FWHM).

repetition of pitch and noise stimuli, we extracted a time series
from each of these areas. The anatomical mask of these areas,
available in the anatomy toolbox (Eickhoff et al., 2005), were used
to define the ROIs. Principal component analysis was carried out
to summarize multiple time series (from multiple voxels in a ROI)
to a single time series by the first principal component.

It is well known that repeated presentation of a stimulus
leads to adaptation of brain responses (Buckner et al., 1998;
Grill-Spector et al., 1999). These neural adaptation or repetition
suppression (RS) effects are described in a recent review (Weigelt
et al., 2008). In this paper we tested for Repetition Suppression
effects by estimating exponential neural response functions, as
described in section 3. We modeled neural activity as a function
of repetition number (“item-lag”) or repetition time (“time-lag”)
within each epoch, and our aim was to estimate the associated
time constant. Although stimuli varied in pitch this was neglected
for the current analysis.

2.9. TONOTOPIC MAPPING DATA
The stimuli for the tonotopic mapping consisted of 14 pure tones
of frequencies: 88, 125, 177, 250, 354, 500, 707, 1000, 1414,
2000, 2828, 4000, 5657, and 8000 Hz. Starting from a frequency
of 88 Hz, bursts of each tone were presented for 2 s after which
the frequency was increased to the next highest frequency until
all 14 frequencies were presented in a single block of 28 s. The
block of sound was followed by a 12 s silent period. This cycle
of 40 s was repeated 15 times in a single session lasting 10 min.
Stimuli were presented using sensimetrics earphones (http://
www.sens.com/products/model-s14/) at a sampling rate of
44,100 Hz.

Imaging data were acquired on Siemens 3 Tesla Quattro head-
only MRI scanner. The MRI images were acquired continuously
using 3D MRI sequence (TR = 1.1 s, two echoes per image; TE1 =
15.85 ms; TE2 = 34.39 ms; matrix size = 64 × 64). A total of 560
volumes were acquired in one session. After the fMRI run, a high
resolution (1 × 1 × 1 mm) T1-weighted structural MRI scan was
acquired. The two echoes of the images were first averaged. The
images were then pre-processed in the same way as the Repetition
Suppression data. We restricted our data analysis to voxels from
an axial slice (z = 6 mm) covering the superior temporal plane.

3. RESULTS
3.1. REPETITION SUPPRESSION
We report results on an exponential “item-lag” model, in which
neuronal responses were modeled using Equation (2), k indexes
the four stimulus types (HC, CT, RIN, Noise), and rk encodes
the number of item repeats since the first stimulus of that type
in the epoch. We also fitted “time-lag” models which used the
same equation but where rk encoded the elapsed time (in seconds)
since the first stimulus of that type in the epoch.

We first report a model comparison of the item-lag versus time
lag models. Both model types were fitted to data from five ses-
sions in six brain regions, giving a total of 30 data sets. The log
model evidence was computed using a free energy approximation
described earlier. The difference in log model evidence was then
used to compute a log Bayes factor, with a value of 3 or greater
indicating strong evidence.
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Strong evidence in favor of the “time-lag” model was found in
none out of 30 data sets, strong evidence in favor of the “item-lag”
model was found in 22 out of 30 data sets. In the remaining 8 data
sets, the Bayes factors were not decisive but the item-lag model
was preferred in 7 of them. We therefore conclude that item-lags
better capture the patterns in our data, and what follows below
refers only to the item-lag models.

We now present results on the parametric responses of interest
as captured by the βk (initial response) and ak (decay) variables.
These are estimated separately for each session of data using the
model fitting algorithm described earlier. We then combine esti-
mates over sessions using precision weighted averaging (Kasess
et al., 2010). This is a Bayes-optimal procedure in which the over-
all parameter estimate is given by a weighted average of individual
session estimates. The weights are given by the relative preci-
sions (inverse variances) of the session estimates so that those
with higher precision contribute more to the final parameter
estimate.

The estimates of the initial response magnitudes, βk, are
shown in Figure 3 and the estimates of the suppression effects,
ak, are shown in Figure 4. Figure 3 shows that the pattern of
initial responses (responses at item lag 0) is similar over all
regions with CT and RIN typically eliciting the largest responses.
Figure 4 shows that the noise stimulus does not elicit any repe-
tition suppression effect in any region. The CT stimulus elicits a

suppression effect which is strongest in TE10-L whereas the HC
stimulus elicits a facilitation effect in all regions.

3.2. TONOTOPIC MAPPING
This section describes the estimation of Neural Response
Functions for the Tonotopic Mapping data. We first focus on
the Gaussian parametric form described in Equation (4). The
Full Width at Half Maximum is given by FWHM = 2

√
(2 ln 2)σ .

Following Moerel et al. (2012) we define the Tuning Value as
W = μ/FWHM where μ and FWHM are expressed in Hz. Larger
tuning values indicate more narrowly tuned response functions.

We restricted our data analysis to a single axial slice (z = 6)
covering superior temporal plane. This slice contained 444 voxels
in the auditory cortex.

Figure 5 shows the parameters of a Gaussian NRF as esti-
mated over this slice. The main characteristics are as follows. First,
the center frequency decreases and then increases again as one
moves along the posterior to anterior axis with high frequencies
at y = −30, low frequencies at y = −10 and higher frequen-
cies again at y = 5. There is a single region of high amplitude
responses that follows the length of Heschl’s Gyrus (the diagonal
band in the top right panel of Figure 5). These responses have a
low center frequency of between 200 and 300 Hz. Finally the tun-
ing values are approximately constant over the whole slice, with a
value of about W = 1, except for a lateral posterior region with a

FIGURE 6 | Estimated Gaussian neural response functions at six selected voxels (voxel indices denote MNI coordinates in mm). The labeling (A – F)
refers to positions shown in the top left panel of Figure 5.

Frontiers in Neuroinformatics www.frontiersin.org May 2014 | Volume 8 | Article 48 | 9

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


Kumar and Penny Estimating neural response functions from fMRI

much higher value of about W = 4. Figure 6 plots the estimated
Gaussian response functions at six selected voxels.

We also modeled neural responses using a Mexican-Hat
wavelet function. Figure 7 plots the parameters of this NRF over
the same slice through auditory cortex. The parameter estimates
are very similar to those for the Gaussian NRFs, with minor differ-
ences in the lateral posterior region. Figure 8 shows the estimated
NRFs for the same selected voxels as before, with the characteristic
side lobes of the Mexican-Hat function clearly evident. Figure 9
plots a map of the log Bayes factor (see section 2.6) with posi-
tive values providing evidence for the Gaussian NRF and negative
values providing evidence for the Mexican-Hat NRF. There was
strong evidence (log BF > 3) in favor of the Gaussian model at
38% voxels and of the Mexican-Hat model (log BF < −3) at 8%
voxels. Neither model is favored at the remaining 54% voxels.
Figure 9 shows that the Mexican-Hat parametric form is favored
in a posterior region, and the Gaussian function in more anterior
regions.

3.3. NEURONAL OFFSETS
As the neuronal offset β0 (see Equations 3–5) is not part of the
original HDM approach we were interested to see if the estimated
offsets were significantly non-zero. This was assessed by comput-
ing the Bayes Factor in favor of a model with versus without such a
term. This was computed using a Savage–Dickey approach which
uses the prior and posterior distributions over parameters of the

FIGURE 7 | Tonotopic Mapping with Mexican-Hat neural response

functions. Top Left: Axial slice of structural image at z = 6 with bounding
box showing region displayed on other three panels (x, y, and z denote MNI
coordinates in mm), Top Right: Amplitude β (arbitrary units). Bottom Left:

Center Frequency μ (kHz). Bottom Right: Tuning, W (ratio of Center
Frequency to FWHM).

fitted model (and so does not require re-fitting of a model without
the offset parameter) (Penny and Ridgway, 2013).

If the offset parameter is found to be useful for even a single
fMRI time series then it is worth including in the model. Whilst
it is true that adding parameters that don’t explain variability in
the data are deleterious for the model, we are in the fortunate
situation of having many degrees of freedom to play with. This is
because our models have the order of tens of parameters, whereas
the fMRI time series comprise hundreds of time points.

For the Repetition Suppression data strong evidence
(log BFij > 3) in favor of models with an offset term was found
for 6 out of 30 time series. For the Tonotopic Mapping data
modeled with Gaussian NRFs strong evidence for the offset term
was found for 192 out of 444 time series. For the Mexican-Hat
NRF, strong evidence was found in 173 out of 444. We therefore
conclude that it is useful to incorporate offset terms.

4. DISCUSSION
This paper has proposed a methodology for estimating neural
response functions from fMRI data. The method is based on
a two-stage model comprising an NRF and an HRF that are
together fitted to fMRI data using a Bayesian optimization algo-
rithm that is widely used in neuroimaging (Friston et al., 2007).
This algorithm has the added benefit of producing a model evi-
dence score which we have used to provide a formal model
comparison method (Penny, 2012) for evaluating alternative
NRFs.

The work in this paper may be considered an advance from
three different perspectives. The first views this work as an exten-
sion of the HDM, which uses the Balloon model to characterize
the HRF, but constrains the relation between stimuli and neuronal
activity to be purely categorical. The extension in this paper allows
that relation to be parametric.

The second perspective views this work as an extension of
linear models with “Parametric Modulation” terms, in which
experimental variables of interest are used to modulate the height
or duration of boxcar functions representing neuronal activity
(Buchel et al., 1998; Grinband et al., 2008). The parametric mod-
ulators can reflect stimulus characteristics or, more generally,
any experimental variable of interest. One use of the method
is in “model-based fMRI” or “computational fMRI” in which
computational models are first fitted to subjects behavioral data
(reaction times and error rates) and the internal variables of these
models are used as parametric modulators (O’Doherty et al.,
2007; Friston and Dolan, 2009). The work in this paper represents
an extension of this approach by allowing for non-linear relations
between fMRI signals and unknown parametric variables. Whilst
it is true that non-linear relationships can be accommodated in
the linear framework by using a Taylor series approach, this has a
number of disadvantages, as described in section 2.7.

The third perspective views this work as a novel method for
the estimation of Population Receptive Fields (PRFs). These are
similar, in principle, to receptive field functions derived for indi-
vidual neurons from single unit electrophysiology (Dayan and
Abbott, 2001) but estimate population rather than single neu-
ron responses (Dumoulin and Wandell, 2008). In these studies
parametric forms are derived for how neural responses depend on
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FIGURE 8 | Estimated Mexican-Hat neural response functions at six selected voxels (same voxels as in Figure 6). The labeling (A – F) refers to positions
shown in the top left panel of Figure 5.

properties of sensory stimuli, such as orientation and contrast, in
addition to spatial and temporal characteristics (Heckman et al.,
2007; Dumoulin and Wandell, 2008; Kay et al., 2008).

Previously, a two-step procedure has been proposed for NRF
estimation (Dumoulin and Wandell, 2008). The first step esti-
mates an HRF assuming known neural activity, and the second
estimates an NRF based on the estimated HRF. In this pro-
cedure the first step neglects the uncertainty in the assumed
neural response and the second step neglects the uncertainty in
the estimated HRF. This can lead to over-confident inferences.
The simultaneous optimization of NRF and HRF parameters
proposed in this paper, however, does not neglect these uncertain-
ties. The conditional dependencies are captured in the relevant
off-diagonal terms in the posterior covariance matrix and this
guides parameter estimates during the optimization process (see
Equations 27, 28). Additionally, models with highly correlated
parameters also have lower model evidence (Penny, 2012), so this
is also reflected in model comparison.

In this paper, we applied our method to investigate repeti-
tion suppression in the auditory system. Our model comparisons
showed an exponential NRF based on item-lag was superior to
one based on time-lag. Intuitively, one might think that if the
brain charges and discharges some dynamical system then the
time-lag model would be more likely than the item-lag model.
However, it is well known that there are multiple brain systems

for supporting discrete representations, as indicated for exam-
ple by studies of numerosity (Dehaene and Brannon, 2011).
Recent work in the visual domain has even characterized PRFs
for numerosity (Harvey et al., 2013). Moreover, a dominant
paradigm in the repetition suppression literature has assumed an
item-lag like model, in which the number of repetitions is the
key variable (Grill-Spector et al., 2006; Weigelt et al., 2008). This
paper provides a methodology for testing such assumptions.

We found evidence of repetition suppression for the Click
Train (CT) stimulus, facilitation for the Harmonic Complex (HC)
in all the areas, facilitation for RIN in some areas (e.g., TE12R)
and no suppression or facilitation for the noise stimulus. In our
experiment the click trains (of a given pitch value) were identi-
cal within a trial, whereas the acoustic structure of HC, RIN and
Noise varied within a trial (because of randomization of phase in
the HC and use of a new exemplar of noise both for generation of
RIN and Noise). The identical acoustic structure of CT and varia-
tion in acoustic structure in HC, RIN and Noise within trials may
explain suppression of neural activity for CT and lack of it for HC,
RIN and Noise.

We also applied our method to estimate tonotopic maps using
two different functions: Gaussian and Mexican-Hat. The two
functions produced maps which were similar. The results showed
that low frequencies activated HG whereas regions posterior to
HG were activated by high frequencies. This is in agreement with
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FIGURE 9 | Top Left: Axial slice of structural image at z = 6 with bounding
box showing region displayed on other three panels (x, y, and z denote MNI
coordinates in mm), Top Right: Log Bayes factor for Gaussian versus
Mexican-Hat NRFs (full range of values). Positive values provide evidence
for the Gaussian and negative values for the Mexican-Hat NRF. Bottom

Left: As top right but scale changed to range log BFij > 3. Bottom Right:

A plot of log BFji over range log BFji > 3 (i.e., in favor of Mexican-Hat). The
Mexican-Hat is favored in a posterior region, and the Gaussian more
anteriorly.

the tonotopic organization shown in previous works (Formisano
et al., 2003; Talavage et al., 2004; Moerel et al., 2012). Bayesian
comparison of the two models using Gaussian and Mexican-Hat
functions showed that the former was preferred along the HG
whereas the latter was the preferred model in regions posterior
to HG. This is in agreement with a previous study (Moerel et al.,
2013) that showed spectral profiles with a single peak in the
central part of HG and Mexican-Hat like spectral profiles lying
posterior to HG. We also observed broad tuning curves along the
HG and narrow tuning curves posterior to HG. However, we did
not observe the degree of variation in tuning width in areas sur-
rounding HG, as was found in Moerel et al. (2012). This may be
due to the fact that computations in our work were confined to
a single slice. Further empirical validation is needed to produce
maps of the tuning width covering wider areas of the auditory
cortex.

A disadvantage of our proposed method is the amount of
computation time required. For our auditory fMRI data (com-
prising 300 or 500 time points), optimization takes approxi-
mately 5 min per voxel/region on a desktop PC (Windows Vista,
3.2 GHz CPU, 12G RAM). One possible use of our approach
could therefore be to provide “ballpark” estimates of NRF param-
eters, using data from selected voxels, and then to derive estimates

at neighboring voxels using the standard Taylor series approach.
Alternatively, optimization with a computer cluster should deliver
results overnight for large regions of the brain (e.g., comprising
thousands of voxels).

Our proposed method is suitable for modeling neural
responses as simple parametric forms as assumed in previous
studies using parametric modulators or population receptive
fields. It could also be extended to simple non-linear dynamical
systems, for example of the sort embodied in non-linear DCMs
(Marreiros et al., 2008).

Two disadvantages of our approach are that there is no explicit
model of ongoing activity, and it is not possible to model stochas-
tic neural responses. Additionally, as the NRFs are identified solely
from fMRI data our neural response estimates will not capture
the full dynamical range of neural activity available from other
modalities such as Local Field Potentials. On a more positive note,
however, our approach does inherit two key benefits of fMRI; that
it is a non-invasive method with a large field of view.

An additional finding of this paper is that model fits were
significantly improved by including a neuronal offset parameter.
This offset could also be included in Dynamic Causal Models
(Friston et al., 2003) by adding an extra term to the equation
governing vasodilation (Equation 7).
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